
End-to-end Data-flow Parallelism for
Throughput Optimization in

 High-speed Networks

Esma Yildirim
Data Intensive Distributed Computing Laboratory

University at Buffalo (SUNY)
Condor Week 2011

Motivation
ì  Data grows larger hence the need for speed to transfer it

ì  Technology develops with the introduction of high-speed networks
and complex computer architectures which are not fully utilized
yet

ì  Still many questions are out in the uncertainty
I can not receive
the speed I am
supposed to get

from the network

I have a 10G high-speed
network and

supercomputers
connecting. Why do I

still get under 1G
throughput?

I can’t wait for a new
protocol to replace the

current ones, why can’t I
get high throughput with

what I have at hand?

OK, may be I am asking
too much but I want to
get optimal settings to

achieve maximal
throughput

I want to get high
throughput without

congesting the traffic
too much. How can I

do it in the application
level?

2	

Introduction

Ø  Users of data-intensive applications need intelligent services
and schedulers that will provide models and strategies to
optimize their data transfer jobs

Ø  Goals:
Ø  Maximize throughput
Ø  Minimize model overhead
Ø  Do not cause contention among users
Ø  Use minimum number of end-system resources

3	

Introduction
Ø  Current optical technology supports 100 G transport hence, the

utilization of network brings a challenge to the middleware to
provide faster data transfer speeds

Ø  Achieving multiple Gbps throughput have become a burden over
TCP-based networks
Ø  Parallel streams can solve the problem of network utilization

inefficiency of TCP
Ø  Finding the optimal number of streams is a challenging task

Ø  With faster networks end-systems have become the major source
of bottleneck
Ø  CPU, NIC and Disk Bottleneck

Ø  We provide models to decide on the optimal number of
parallelism and CPU/disk stripes

4	

Outline

Ø  Stork Overview
Ø  End-system Bottlenecks
Ø  End-to-end Data-flow Parallelism
Ø Optimization Algorithm
Ø  Conclusions and Future Work

5	

Stork Data Scheduler

Ø  Implements state-of-the art models and
algorithms for data scheduling and optimization

Ø  Started as part of the Condor project as PhD
thesis of Dr. Tevfik Kosar

Ø  Currently developed at University at Buffalo and
funded by NSF

Ø Heavily uses some Condor libraries such as
ClassAds and DaemonCore

6	

Stork Data Scheduler (cont.)

Ø  Stork v.2.0 is available with enhanced features
Ø  http://www.storkproject.org

Ø  Supports more than 20 platforms (mostly Linux flavors)
Ø Windows and Azure Cloud support planned soon
Ø  The most recent enhancement:

Ø  Throughput Estimation and Optimization Service

7	

End-to-end Data Transfer

Ø  Method to improve the end-to-end data transfer throughput

Ø  Application-level Data Flow Parallelism
Ø  Network level parallelism (parallel streams)
Ø  Disk/CPU level parallelism (stripes)

8	

Network Bottleneck
" Step1: Effect of Parallel Streams on Disk-to-disk Transfers
Ø  Parallel streams can improve the data throughput but only to a

certain extent
Ø  Disk speed presents a major limitation.
Ø  Parallel streams may have an adverse effect if the disk speed

upper limit is already reached

 200

 400

 600

 800

 1000

 1 2 4 8 16

M
bp

s

number of streams

a) LONI-GridFTP-disk

Throughput

 200
 400
 600
 800

 1000
 1200

 1 2 4 8 16

M
bp

s

number of streams

b) Teragrid-GridFTP-disk

Throughput

 100

 200

 300

 400

 1 2 4 8 16
M

bp
s

number of streams

c) Inter-node-GridFTP-disk

Throughput

9	

Disk Bottleneck
" Step2: Effect of Parallel Streams on Memory-to-memory
Transfers and CPU Utilization
Ø  Once disk bottleneck is eliminated, parallel streams improve

the throughput dramatically
Ø  Throughput either becomes stable or falls down after reaching

its peak due to network or end-system limitations. Ex:The
network interface card limit(10G) could not be reached (e.g.
7.5Gbps-internode)

 1000
 2000

 4000

 8000

 1 4 8 16 32 64 128

M
bp

s

number of streams

a) LONI-GridFTP

Throughput

 1000

 2000

 3000

 4000

 5000

 6000

 1 4 8 16 32 64

M
bp

s

number of streams

b) Teragrid-GridFTP

Throughput

 1000
 2000

 4000

 8000

 1 4 8 16 32
M

bp
s

number of streams

c) Inter-node-GridFTP

Throughput

10	

CPU Bottleneck

" Step3: Effect of Striping and Removal of CPU Bottleneck
Ø  Striped transfers improves the throughput dramatically
Ø  Network card limit is reached for inter-node transfers(9Gbps)

 1000
 2000

 4000

 8000

 16 32 64

M
bp

s

number of streams

a) LONI-GridFTP

1 stripe
2 stripes
4 stripes

 1000
 2000
 3000
 4000
 5000
 6000

 8 16 32

M
bp

s

number of streams

b) Teragrid-GridFTP

1 stripe
2 stripes
4 stripes

 1000
 2000

 4000

 8000
 9000

 1 2 4
M

bp
s

number of streams

c) Inter-node-GridFTP

1 stripe
2 stripes
4 stripes

11	

Prediction of Optimal Parallel Stream
Number
Ø  Throughput formulation : Newton’s Iteration Model

Ø  a’ , b’ and c’ are three unknowns to be solved hence 3

throughput measurements of different parallelism level
(n) are needed

Ø  Sampling strategy:
Ø  Exponentially increasing parallelism levels

Ø  Choose points not close to each other
Ø  Select points that are power of 2: 1, 2, 4, 8, … ,

2k
Ø  Stop when the throughput starts to decrease or

increase very slowly comparing to the previous
level

Ø  Selection of 3 data points
Ø  From the available sampling points

Ø  For every 3-point combination, calculate the
predicted throughput curve

Ø  Find the distance between the actual and
predicted throughput curve

Ø  Choose the combination with the minimum
distance

 0

 10

 20

 30

 40

 1 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

number of parallel streams

LAN-WAN Newton’s Method Model

GridFTP
Newton 1_8_16

Dinda 1_16

 0

 10

 20

 30

 40

 1 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

number of parallel streams

LAN-WAN Full Second Order Model

GridFTP
Full 1_8_16
Dinda 1_16

!

Thn =
n

a'nc ' + b'

12	

Flow Model of End-to-end Throughput

Ø  CPU nodes are considered as nodes of a maximum flow problem
Ø  Memory-to-memory transfers are simulated with dummy source

and sink nodes
Ø  The capacities of disk and network is found by applying parallel

stream model by taking into consideration of resource capacities
(NIC & CPU)

13	

Flow Model of End-to-end Throughput

Ø  Convert the end-system and network
capacities into a flow problem

Ø  Goal: Provide maximal possible data transfer
throughput given real-time traffic (maximize
(Th))
Ø  Number of streams per stripe (Nsi)
Ø  Number of stripes per node (Sx)
Ø  Number of nodes (Nn)

14	

Ø  Assumptions
Ø  Parameters not given and found by the model:

Ø  Available network capacity (Unetwork)
Ø  Available disk system capacity (Udisk)

Ø  Parameters given
Ø  CPU capacity (100% assuming they are idle

at the beginning of the transfer) (UCPU)
Ø  NIC capacity (UNIC)
Ø  Number of available nodes (Navail)

Flow Model of End-to-end Throughput
Ø  Variables:

Ø  Uij = Total capacity of each arc from node i to node j
Ø  Uf= Maximal (optimal) capacity of each flow (stripe)
Ø  Nopt = Number of streams for Uf
Ø  Xij = Total amount of flow passing i −> j
Ø  Xfk = Amount of each flow (stripe)
Ø  NSi= Number of streams to be used for Xfkij
Ø  Sxij= Number of stripes passing i− > j
Ø  Nn = Number of nodes

Ø  Inequalities:
Ø  There is a high positive correlation between the throughput of parallel streams and CPU

utilization
Ø  The linear relation between CPU utilization and Throughput is presented as :

Ø  a and b variables are solved by using the sampling throughput and CPU utilization

measurements in regression of method of least squares

15	

!

0 " Xij "Uij

!

0 " X fk "Uf

!

Ucpu = a + b " Th

 OPTB Algorithm for Homogeneous
Resources

Ø  This algorithm finds the best parallelism values for maximal
throughput in homogeneous resources

Ø  Input parameters:
Ø  A set of sampling values from sampling algorithm (ThN)
Ø  Destination CPU, NIC capacities (UCPU, UNIC)
Ø  Available number of nodes (Navail)

Ø  Output:
Ø  Number of streams per stripe (Nsi)
Ø  Number of stripes per node (Sx)
Ø  Number of nodes (Nn)

Ø  Assumes both source and destination nodes are idle

16	

 OPTB-Application Case Study

17	

9Gbps	

Ø  Systems: Oliver, Eric

Ø  Network: LONI (Local Area)

Ø  Processor: 4 cores

Ø  Network Interface: 10GigE Ethernet

Ø  Transfer: Disk-to-disk (Lustre)

Ø  Available number of nodes: 2

OPTB-Application Case Study

18	

9Gbps	

Ø  ThNsi=903.41Mbps p=1

Ø  ThNsi=954.84 Mbps p=2

Ø  ThNsi=990.91 Mbps p=4

Ø  ThNsi=953.43 Mbps p=8

 Ø  Nopt=3 Nsi=2

!"#$%&'(
!"#$%&)(!"#$%&*(!"#$%&+(

,(

),,(

+,,(

-,,(

.,,(

',,,(

'),,(

'()(*(+(/(-(0(.(

!"#$%&'()'*+&%,#*'

,-./01%&23&0425672*0!8/%'*+&09%''

1234562$57(

83&9:;7&9<'<)<.(

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

1	

1	

1	

1	
 1	

1	

1	

1	

1	

1	

1	

1	
 1	

1	

1	

1	

1	

1	

0	

0	

0	

0	
 0	

0	

0	

0	

0	

0	

0	

0	

2	

2	

2	
 2	

2	

2	

2	

2	

2	
4	

4	

4	
 4	

4	

4	

4	

4	

4	
8	

8	

8	
 8	

8	

8	

8	

8	

8	

OPTB-Application Case Study

19	

9Gbps	

Ø  Sx=2 ThSx1,2,2=1638.48

Ø  Sx=4 ThSx1,4,2=3527.23

Ø  Sx=8 ThSx2,4,2=4229.33

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

Nsi=	

Sxij=	

2	

1	

2	

1	
 2	

1	
 1	

2	

1	

2	

1	
 2	

1	

2	

1	

2	

1	

0	

0	

0	

0	
 0	

0	

0	

0	

0	

0	

0	

0	

2	

2	

2	

2	
 2	

2	

2	

2	

2	

2	
4	

4	

4	
 4	

4	

4	

4	

4	

4	
8	

2	

4	

2	

4	
 2	

4	

8	

2	

4	

2	

4	

2	

4	

8	

!"#$%&'(

!"#$%&)(

!"#$%&*(

!"#$%&+(

,(
-,,(

',,,(
'-,,(
),,,(
)-,,(
*,,,(
*-,,(
+,,,(
+-,,(
-,,,(

'.
/'
!01
/)
!0#

(

'.
/)
!01
/)
!0#

(

'.
/*
!01
/)
!0#

(

'.
/+
!01
/)
!0#

(

).
/-
!01
/)
!0#

(

).
/2
!01
/)
!0#

(

).
/3
!01
/)
!0#

(

).
/4
!01
/)
!0#

(

!
"#

$%

&'(")*%+,%$-*.#)$%

/012.3)*45*./46784('29%$-*.#)%

5617896$80(

:1&;<=0&;>'>+>4(

OPTB-LONI-memory-to-memory-10G

20	

!"#$%&'(

!"#$%&)(

!"#$%&*(!"#$%&+(

,(

',,,(

),,,(

*,,,(

+,,,(

-,,,(

.,,,(

/,,,(

'()(*(+(-(.(/(0(

!
"#

$%

&'(")*%+,%$-*).($%

./0123)*45*2647894()(+*:4$2&;1)%$-*2#)%

1234562$57(

83&9:;7&9<'<+<0(

!"

#"

$!"

$#"

%!"

%#"

&!"

$" %" '" ("

!"
#$
"%

&'
("
)

%*+,"#)-.)/&#"'+/)

,012%(3")/"56$-#"/57!8)8932:'9-%)

)*+,-.*/0"

!"#$%&'(

!"#$%&)(

!"#$%&*(

+(

'+++(

)+++(

*+++(

,+++(

-+++(

.+++(

/+++(

0+++(

1+++(

'++++(

'23'!453,!4#('23)!453,!4#()23*!453,!4#()23,!453,!4#(

!
"#

$%

&'(")*%+,%$-*.#)$%

/012.3)*45*./46784()(+*94('2:%$-*.#)%

67589:7$94(

;5&<=>4&<?'?)?,(

!"
#"

$!"
$#"
%!"
%#"
&!"
&#"
'!"
'#"
#!"

$()$*+,)'*+-" $()%*+,)'*+-"

!"
#$
"%

&'
("
)

%*+,"#)-.)/"/)

234*56)/"78$-#"/79!:):650;'6-%)

./0123/4("

OPTB-LONI-memory-to-memory-1G-
Algorithm Overhead

 100
 200

 400

 600

 20 30 40 60

se
c

data size(GB)

a) Oliver-Eric-1G NIC-1GB sampling size

Sampling overhead
Total optimized time

Optimized time with history
Non-optimized time

 100
 200

 400

 600

 20 30 40 60

se
c

data size(GB)

b) Oliver-Eric-1G NIC-2GB sampling size

Sampling overhead
Total optimized time

Optimized time with history
Non-optimized time

 50

 100

 150

 200

 20 30 40 60

se
c

data size(GB)

c) Oliver-Eric-10G NIC-1GB sampling size

Sampling overhead
Total optimized time

Optimized time with history
Non-optimized time

 50

 100

 150

 200

 20 30 40 60

se
c

data size(GB)

d) Oliver-Eric-10G NIC-2GB sampling size

Sampling overhead
Total optimized time

Optimized time with history
Non-optimized time

21	

Conclusions

Ø We have achieved end-to-end data transfer
throughput optimization with data flow parallelism
Ø Network level parallelism

Ø Parallel streams

Ø  End-system parallelism
Ø CPU/Disk striping

Ø  At both levels we have developed models that
predict best combination of stream and stripe
numbers

22	

Future work

Ø We have focused on TCP and GridFTP protocols and
we would like to adjust our models for other
protocols

Ø We have tested these models in 10G network and
we plan to test it using a faster network

Ø We would like to increase the heterogeneity among
the nodes in source or destination

23	

Acknowledgements
Ø  This project is in part sponsored by the National

Science Foundation under award numbers
Ø  CNS-1131889 (CAREER) – Research & Theory
Ø OCI-0926701 (Stork) – SW Design & Implementation
Ø  CCF-1115805 (CiC) – Stork for Windows Azure

Ø We also would like to thank to Dr. Miron Livny and the
Condor Team for their continuous support to the Stork
project.

Ø  http://www.storkproject.org

24	

