
End-to-end Data-flow Parallelism for 
Throughput Optimization in 

 High-speed Networks 

Esma Yildirim 
Data Intensive Distributed Computing Laboratory 

University at Buffalo (SUNY) 
Condor Week 2011  



Motivation 
ì  Data grows larger hence the need for speed to transfer it 

ì  Technology develops with the introduction of high-speed networks 
and complex computer architectures which are not fully utilized 
yet  

ì  Still many questions are out in the uncertainty 
I can not receive 
the speed I am 
supposed to get 

from the network 

I have a 10G high-speed 
network and 

supercomputers 
connecting. Why do I 

still get under 1G 
throughput? 

I can’t wait for a new 
protocol to replace the 

current ones, why can’t I 
get high throughput with 

what I have at hand? 

OK, may be I am asking 
too much but I want to 
get optimal settings to 

achieve maximal 
throughput 

I want to get high 
throughput without 

congesting the traffic 
too much. How can I 

do it in the application 
level? 
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Introduction 

Ø  Users of data-intensive applications need intelligent services 
and schedulers that will provide models and strategies to 
optimize their data transfer jobs 

Ø  Goals: 
Ø  Maximize throughput 
Ø  Minimize model overhead 
Ø  Do not cause contention among users  
Ø  Use minimum number of end-system resources  
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Introduction 
Ø  Current optical technology supports 100 G transport hence, the 

utilization of network brings a challenge to the middleware to 
provide faster data transfer speeds 

Ø  Achieving multiple Gbps throughput have become a burden over 
TCP-based networks 
Ø  Parallel streams can solve the problem of network utilization 

inefficiency of TCP 
Ø  Finding the optimal number of streams is a challenging task 

Ø  With faster networks end-systems have become the major source 
of bottleneck 
Ø  CPU, NIC and Disk Bottleneck 

Ø  We provide models to decide on the optimal number of 
parallelism and CPU/disk stripes  
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Outline 

Ø  Stork Overview 
Ø  End-system Bottlenecks 
Ø  End-to-end Data-flow Parallelism 
Ø Optimization Algorithm 
Ø  Conclusions and Future Work 
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Stork Data Scheduler 

Ø  Implements state-of-the art models and 
algorithms for data scheduling and optimization 

Ø  Started as part of the Condor project as PhD 
thesis of Dr. Tevfik Kosar  

Ø  Currently developed at University at Buffalo and 
funded by NSF 

Ø Heavily uses some Condor libraries such as 
ClassAds and DaemonCore 
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Stork Data Scheduler (cont.) 

Ø  Stork v.2.0 is available with enhanced features 
Ø  http://www.storkproject.org 

Ø  Supports more than 20 platforms (mostly Linux flavors) 
Ø Windows and Azure Cloud support planned soon 
Ø  The most recent enhancement: 

Ø  Throughput Estimation and Optimization Service 
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End-to-end Data Transfer 

Ø  Method to improve the end-to-end data transfer throughput 

Ø  Application-level Data Flow Parallelism 
Ø  Network level parallelism (parallel streams) 
Ø  Disk/CPU level parallelism (stripes) 
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Network Bottleneck 
" Step1: Effect of Parallel Streams on Disk-to-disk Transfers 
Ø  Parallel streams can improve the data throughput but only to a 

certain extent 
Ø  Disk speed presents a major limitation. 
Ø  Parallel streams may have an adverse effect if the disk speed 

upper limit is already reached 
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Disk Bottleneck 
" Step2: Effect of Parallel Streams on Memory-to-memory 
Transfers and CPU Utilization 
Ø  Once disk bottleneck is eliminated, parallel streams improve 

the throughput dramatically 
Ø  Throughput either becomes stable or falls down after reaching 

its peak due to network or end-system limitations. Ex:The 
network interface card limit(10G) could not be reached (e.g.
7.5Gbps-internode)  
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CPU Bottleneck 

" Step3: Effect of Striping and Removal of CPU Bottleneck 
Ø  Striped transfers improves the throughput dramatically 
Ø  Network card limit is reached for inter-node transfers(9Gbps)  
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Prediction of Optimal Parallel Stream 
Number 
Ø  Throughput formulation : Newton’s Iteration Model  

 
 
Ø  a’ , b’ and c’ are three unknowns to be solved hence 3 

throughput measurements of different parallelism level 
(n) are needed  

Ø  Sampling strategy: 
Ø  Exponentially increasing parallelism levels  

Ø  Choose points not close to each other 
Ø  Select points that are power of 2: 1, 2, 4, 8, … , 

2k  
Ø  Stop when the throughput starts to decrease or 

increase very slowly comparing to the previous 
level 

Ø  Selection of 3 data points 
Ø  From the available sampling points  

Ø  For every 3-point combination, calculate the 
predicted throughput curve 

Ø  Find the distance between the actual and 
predicted throughput curve 

Ø  Choose the combination with the minimum 
distance 
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Flow Model of End-to-end Throughput 

Ø  CPU nodes are considered as nodes of a maximum flow problem 
Ø  Memory-to-memory transfers are simulated with dummy source 

and sink nodes 
Ø  The capacities of disk and network is found by applying parallel 

stream model by taking into consideration of resource capacities 
(NIC & CPU) 
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Flow Model of End-to-end Throughput 

Ø  Convert the end-system and network 
capacities into a flow problem 

Ø  Goal: Provide maximal possible data transfer 
throughput given real-time traffic (maximize
(Th)) 
Ø  Number of streams per stripe (Nsi) 
Ø  Number of stripes per node (Sx) 
Ø  Number of nodes (Nn) 
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Ø  Assumptions 
Ø  Parameters not given and found by the model:  

Ø  Available network capacity (Unetwork)  
Ø  Available disk system capacity (Udisk) 

Ø  Parameters given 
Ø  CPU capacity (100% assuming they are idle 

at the beginning of the transfer) (UCPU)  
Ø  NIC capacity (UNIC)  
Ø  Number of available nodes (Navail) 



Flow Model of End-to-end Throughput 
Ø  Variables: 

Ø  Uij = Total capacity of each arc from node i to node j 
Ø  Uf= Maximal (optimal) capacity of each flow (stripe) 
Ø  Nopt = Number of streams for Uf  
Ø  Xij = Total amount of flow passing i −>  j  
Ø  Xfk = Amount of each flow (stripe)  
Ø  NSi= Number of streams to be used for Xfkij  
Ø  Sxij= Number of stripes passing i− > j  
Ø  Nn = Number of nodes 

Ø  Inequalities: 
Ø  There is a high positive correlation between the throughput of parallel streams and CPU 

utilization 
Ø  The linear relation between CPU utilization and Throughput is presented as : 

 
Ø  a and b variables are solved by using the sampling throughput and CPU utilization 

measurements in regression of method of least squares  
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! 

0 " Xij "Uij

! 

0 " X fk "Uf

! 

Ucpu = a + b " Th



 OPTB Algorithm for Homogeneous 
Resources 

Ø  This algorithm finds the best parallelism values for maximal 
throughput in homogeneous resources 

Ø  Input parameters:  
Ø  A set of sampling values from sampling algorithm (ThN) 
Ø  Destination CPU, NIC capacities (UCPU, UNIC) 
Ø  Available number of nodes (Navail) 

Ø  Output: 
Ø  Number of streams per stripe (Nsi) 
Ø  Number of stripes per node (Sx) 
Ø  Number of nodes (Nn) 

Ø  Assumes both source and destination nodes are idle 
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 OPTB-Application Case Study 
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9Gbps	


Ø  Systems: Oliver, Eric  

Ø  Network: LONI (Local Area) 

Ø  Processor: 4 cores 

Ø  Network Interface: 10GigE Ethernet 

Ø  Transfer: Disk-to-disk (Lustre) 

Ø  Available number of nodes: 2 



OPTB-Application Case Study 
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9Gbps	


Ø  ThNsi=903.41Mbps p=1 

Ø  ThNsi=954.84 Mbps p=2 

Ø  ThNsi=990.91 Mbps p=4 

Ø  ThNsi=953.43 Mbps p=8  

 Ø  Nopt=3           Nsi=2 
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OPTB-Application Case Study 
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9Gbps	


Ø  Sx=2 ThSx1,2,2=1638.48 

Ø  Sx=4 ThSx1,4,2=3527.23 

Ø  Sx=8 ThSx2,4,2=4229.33 
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OPTB-LONI-memory-to-memory-10G 
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OPTB-LONI-memory-to-memory-1G-
Algorithm Overhead 
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Conclusions 

Ø We have achieved end-to-end data transfer 
throughput optimization with data flow parallelism 
Ø Network level parallelism 

Ø Parallel streams 

Ø  End-system parallelism  
Ø CPU/Disk striping 

Ø  At both levels we have developed models that 
predict best combination of stream and stripe 
numbers  
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Future work 

Ø We have focused on TCP and GridFTP protocols and 
we would like to adjust our models for other 
protocols 

Ø We have tested these models in 10G network and 
we plan to test it using a faster network 

Ø We would like to increase the heterogeneity among 
the nodes in source or destination 
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