
Intelligent Power Management 
over Large Clusters 

Stephen McGough*, Clive Gerrard*, Paul Haldane*, 
Sindre Hamlander+, Paul Robinson+, Dave Sharples*, 

Dan Swan*, Stuart Wheater+ 

* Newcastle University 
+ Arjuna Technologies Ltd 

Condor Week 2011 

Overview 

•  What is the DI? 
•  Background 
•  MoPvaPon 

•  Power saving in Condor 
•  Intelligent Power Management 

•  Conclusion 

What is the DI? 

Society is increasingly dependent on digital technologies 
 energy, transport, healthcare, commerce, engineering…. 

 How can Newcastle researchers develop and harness these 
technologies to shape the future for everyone's benefit? 

Research is increasingly dependent on digital technologies 
 record, store, analyse, model, share, visualise.. 

 How can Newcastle researchers harness these technologies to do new, innovaPve research? 

InsPtute Goals 
•  Facilitate InternaPonally‐Leading Research 

–  innovaPve, exciPng, pioneering 
–  impact on researchers & society 

•  Thriving, Inter‐Disciplinary Research Community 

Newcastle

London

Dublin

England

Wales

Scotland

Ireland

Northern
Ireland

Belfast

Liverpool Manchester

Leeds

Edinburgh

Glasgow

Prestwick

Aberdeen
Inverness

DoverDover

Newquay

Exeter

Bristol

Cardiff
Oxford Cambridge

Southampton
Gatwick

Stansted
Heathrow

Plymouth

Norwich

Carlisle

Birmingham

Nottingham

Background 

Condor at Newcastle 

•  Using open access cluster computers around campus 
–  ~ 1300 Computers Windows Based 
–  ~ 250 Computers Linux Based 

•  Using Staff Desktops 
–  ~ 3000 Computers (not all Condor enabled – yet!) 

•  Using dedicated resources 
–  ~ 200 Computers in research groups around Campus 

•  All computers at least dual core, moving to quad 
–  ~ 6000 – 10000 core cluster 

•  Condor originally installed 5 years ago as ‘unsupported’ 
service. Now we’re making it a supported service 

Power Efficiency of Computers 

•  Power Efficiency: 

efficiency = flops/(PUE ∗ wals) 
•  Flops/wals – pre‐determined 

–  Average value used 

•  Power Usage EffecPveness (PUE) – depends on locaPon of 
computer (and Pme) 

Type  flops  Wa+age 

Ultraslim Desktop  941M  54 

CAD Computer  1265M  87 

Legacy  600M  100 

Cluster LocaPons 

Old
Library

ArmstrongArmstrong
Building

Great
North

Museum:
Hancock

Civic
Centre

Newcastle United
Football Club
Newcastle United
Football Club

Union

Herschel
Building
Herschel
Building

Royal Victoria
In!rmary (RVI)

Leazes Park

Sports
Centre

Northern
Stage

Robinson
Library

WINDSOR TERRACE

D
A

O
R

D
R

OFY
D

N
AS

CL AR E MONT

ROAD

CL AR E MONT R OAD

Q
U

EE
N

V I
C

TO
R

I A
R

O
A

D

Haymarket
Bus StationPE

R
CY

Haymarket

JE SMOND R OAD WE ST

CL AR E MONT R OAD

LOVE R S ’ LANE

B
EL

LE
G

R
O

VE
TE

R
R

AC
E

R ICHAR DSON
R OAD

WALLACE STR E ET FR AMLINGT ON P L ACE

KEN
S IN

G
TO

N
TER

R
ACE

KING’S W
ALK

OLD QUAD

ELDON PL
N

O
R

TH
U

M
B

ER
LAN

D
ST

JO
H

N
D

O
B

SO
N

STR
EET

NOR TH U MB E R L AND
R OAD

R IDLE Y

VINE LANE

C
O
LLEG

E
STR

EET

B
AR

R
A
S
B
R
ID

G
E

S T THOMAS ’ ST

EDWARD’S WK

LEAZES
TERR ACE

ST THOMAS ’ CR E SC
E N

T

LEAZES
PA

R
K

R
O

A
D

K IN
G’S

R OAD

Exhibition Park Great North Road to:
Easton Flats
Bowsden Court
Freeman Hospital

Great North Road to:
Easton Flats
Bowsden Court
Freeman Hospital

Percy Street to:
Magnet Court
Newcastle University Business School
Institute of Human Genetics and NESCI
Newburn Water Sports Centre

Percy Street to:
Magnet Court
Newcastle University Business School
Institute of Human Genetics and NESCI
Newburn Water Sports Centre

R ACK
R OAD

BRANDLING PK

CE N T R AL MOT OR WAY A1 6 7 (M)

DUR R AN T

Claremont
Quad

DEVONSHIRE WALK

Richardson RoadRichardson Road

78 94 95
A167(M) to:
St Mary’s College
Cockle Park Farm

A167(M) to:
St Mary’s College
Cockle Park Farm

Freeman HospitalFreeman Hospital

ASSEM
BLY

LANE
S T MAR Y’S P L ACE

DEVONSHIRE TER

North Terrace
PG Houses

8

66
68

67

69

70

Marris House
Student Flats
Marris House
Student Flats71

72

73

75

76

80 81 82 93

79

84 85 86

North Terrace
PG Houses

Leazes
Terrace
Leazes
Terrace

To:
Leazes Parade
To:
Leazes Parade

Castle Leazes
and Castle Court
Castle Leazes
and Castle Court

Claremont Road to:
Moorbank Botanical
Claremont Road to:
Moorbank Botanical

92

One square
represents
approximately
2 minutes’ walk

North

University
Information

University Visitor
Centre

Travel Shop

Public Toilets

Public Accessible
Toilets

Metro

Bus

Taxi

Public Parking

Accessible Parking

Newcastle University

University
Accommodation

Building Entrance

Hospital

Campus Café
Restauran t

Main pedestrian routes
through campus

Newcastle University’s
campus is accessible
except where marked

Under Construction

Accessible Entrance

Accessible Lift

Campus Map

4

6

5

3

110

King’s
Gate

King’s
Road
Centre

Claremont T
ower9

11 12

7

2

13Newcastle
Law School
Newcastle
Law School

Medical
School

Walton
Library

Bedson
Building
Bedson
Building

Follow Lovers’
Lane up to 8

Medical School
& Walton Library

ISS computer clusters
with Internet access

1 OLUA (Old Library
 User Area)

2 Robinson Library

3 Armstrong Building
 Fayol

4 Herschel Building
 Bank, Brig, Loch, Pond

5 Bedson Building
 Side (open 24hrs)
 Chart

6 King George VI
 Lawn

7 Daysh Building
 Brae

8 Medical School
 Fell (open 24hrs)
 Pool, Dean, Linn

 Merz Court
 Oracle

 Percy Building
 Gate

 Ridley Building
 Nereid

 Stephenson Building
 Tree

 Newcastle Law School
 Eldon

For more information visit
www.ncl.ac.uk/iss/clusters

University Libraries

 Robinson Library
 (Main Library)

 Walton Library
 5th Floor, Catherine
 Cookson Building,
 Medical School

 Law Library
 Newcastle Law School

For more information visit
www.ncl.ac.uk/library

 9

10

11

12

13

13

8

2

Computer clusters and Library map

Old Library 
Basement Cluster room 
Needs heaPng all year 
PUE < 1 (offset heat from  
computers against room  
heaPng) 

MSc Compu:ng Cluster 
South facing cluster  
room in High tower. 
PUE > 1  
(needs air‐con all year) 

MoPvaPon 

MoPvaPon 

•  University has strong desire to power down 
computers to save energy (money) 

•  If a computer is not ‘working’ it should be 
powered down. 

Table II
BREAKDOWN OF TIME USED BY CONDOR

Total time Seconds Time Percent
used by Condor 1610913772 51y 29d 100%
- successful execution 559065399 17y 265 d 35%
Wasted 1051848373 33y 129d 65%
- jobs that completed 228979785 7y 95d 14%
- for removed jobs 822868588 26y 33d 51%

is shown in Table II. The time wasted by Condor on jobs
removed before execution was 0 seconds. However, the time
consumed by jobs that started and were then removed by the
user was just over 51%. Only 35% of time consumed by
Condor went to successfully completing jobs the remaining
15% went on executions that were evicted. In effect for every
1 second of useful execution time required from Condor
2.8 seconds of actual computing time was needed. Even
if we negate jobs removed by the user this still leaves
1.4 seconds Condor time for every successful second of
execution. Clearly this is not an energy efficient use of the
Condor system.

Analysis of those jobs which wasted time indicates that
99% of wasted time is due to under 5% of job submissions.
Figure 4 illustrates the average wasted time for jobs of a
given successful execution time. For jobs with successful
execution times less than 160 minutes the average wasted
time is small and fairly linear in comparison to the successful
execution time. After 160 minutes the wasted time becomes
erratic and larger. This indicates an upper bound should per-
haps be placed on the successful execution times to ensure
efficient use of the Condor resources. It should be noted that
this analysis ignores jobs with successful execution times
over 470 minutes (7.3 hours), as there were not enough jobs
in this range to give any statistical significance. Most of the
jobs requiring over 470 minutes of successful execution time
produced significant wasted time. For example two jobs with
successful execution times over 25 hours each wasted over
35 days clearly an inefficient use of Condor.

Only 839 (0.013%) submissions used the Rank element,
with ordering being done over preferring Linux to Windows,
preferring computers with more memory and preferring
computers with higher load. The last case appears to be a
misunderstanding of how Condor works.

Figure 5 reflects the use of a single open access cluster
within the University running Windows XP over a one-week
period. The blue area indicates computers that are occupied
by users whilst red indicates powered up computers. The
computers are configured to power down over night as soon
as there are no Condor jobs running on them. Some of
the red areas indicate system maintenance. The number
of computers able to accept jobs overnight is low – this
situation will become worse as Windows 7 is rolled out
where computers will power down during the day if there is

!""#

!"""#

!""""#

!"""""#

!""""""#

!"""""""#

"# $"# !""# !$"# %""# %$"# &""# &$"# '""#

!
"
!
#!
$
%
&'
!
()
%
*
&+
,
%
&-
(%
./
0
*
(1
&

(2..%((324&%5%.2+/0&+,%&-(%./0*(1&

()(*(+,#-(./,0#12,#

Figure 4. Average wasted time per job for given successful execution
times

5

0

10

15

20

25

30

Mon Tue Wed Thu Fri Sat Sun
Day

C
o
m
p
u
te
rs

Figure 5. Example cluster usage

no activity. This particular cluster is open over the weekend,
whilst others will be powered off over the weekend.

IV. POWER MANAGEMENT INFORMATION

It is necessary to know the power consumption of a
computer so we may select between them. To model this
precisely is a difficult task, as each piece of software will
stress different parts of the computer’s architecture. A com-
putationally intensive job may fully load the processor whilst
a data intensive job may stress the disk (or network). These
will each give different power consumption profiles. This is
further compounded by multi-core processors, which have
significantly different electrical power profiles depending on
the number of active cores.

Presently we are working with the assumption that an
active piece of work will produce a constant power load
on the computer during execution. We are therefore inter-
ested in the following information: The number of Floating
Point Operations Per Second (FLOPS) provided per watt of
electricity on each core within a computer and the Power
Usage Effectiveness (PUE) of the computer within its envi-
ronment. Computational power (FLOPS) can be assessed in
different ways some more appropriate than others depending
on computational context. The FLOPS measure may be
ambiguous - factors such as cache coherence, precision etc.

Windows XP Cluster  Windows 7 Cluster 

MoPvaPon 

Descrip:on  Number  % 

Total number of jobs submiled to Condor  642298  100% 

  ‐ Which Completed  469184  73% 

    ‐ Without wasted Pme  415807  65% 

    ‐ With wasted Pme  53377  8% 

  ‐ Which were removed  173114  27% 

    ‐ Before execuPon  164059  26% 

    ‐ Auer some execuPon  9055  1.4% 

•   We have five years of condor logging to mine 
-   Other computers were used 
- though this is the main log 

- IniPal analysis looks promising… 

Total Time used by Condor  51 years, 29 days, 20h, 2m, 52s  100% 

Total Wasted Pme  33 years, 129 days, 4h, 6m, 13s  65% 

Total Pme wasted on jobs removed  26 years, 33 days, 22h, 36m, 28s  51% 

Total Pme wasted on completed jobs  7 years, 95 days, 5h, 29m, 45s  14% 

Total real job execuPon Pme  17 years, 265 days, 15h, 56m, 39s  35% 

MoPvaPon 

•  Further analysis didn’t look as good… 

(Data from main Condor Submit computer – others exist) 
•  For every 1 second of useful Pme we require ~3 
seconds through Condor 

Average Wasted Time 
Table II

BREAKDOWN OF TIME USED BY CONDOR

Total time Seconds Time Percent
used by Condor 1610913772 51y 29d 100%
- successful execution 559065399 17y 265 d 35%
Wasted 1051848373 33y 129d 65%
- jobs that completed 228979785 7y 95d 14%
- for removed jobs 822868588 26y 33d 51%

is shown in Table II. The time wasted by Condor on jobs
removed before execution was 0 seconds. However, the time
consumed by jobs that started and were then removed by the
user was just over 51%. Only 35% of time consumed by
Condor went to successfully completing jobs the remaining
15% went on executions that were evicted. In effect for every
1 second of useful execution time required from Condor
2.8 seconds of actual computing time was needed. Even
if we negate jobs removed by the user this still leaves
1.4 seconds Condor time for every successful second of
execution. Clearly this is not an energy efficient use of the
Condor system.

Analysis of those jobs which wasted time indicates that
99% of wasted time is due to under 5% of job submissions.
Figure 4 illustrates the average wasted time for jobs of a
given successful execution time. For jobs with successful
execution times less than 160 minutes the average wasted
time is small and fairly linear in comparison to the successful
execution time. After 160 minutes the wasted time becomes
erratic and larger. This indicates an upper bound should per-
haps be placed on the successful execution times to ensure
efficient use of the Condor resources. It should be noted that
this analysis ignores jobs with successful execution times
over 470 minutes (7.3 hours), as there were not enough jobs
in this range to give any statistical significance. Most of the
jobs requiring over 470 minutes of successful execution time
produced significant wasted time. For example two jobs with
successful execution times over 25 hours each wasted over
35 days clearly an inefficient use of Condor.

Only 839 (0.013%) submissions used the Rank element,
with ordering being done over preferring Linux to Windows,
preferring computers with more memory and preferring
computers with higher load. The last case appears to be a
misunderstanding of how Condor works.

Figure 5 reflects the use of a single open access cluster
within the University running Windows XP over a one-week
period. The blue area indicates computers that are occupied
by users whilst red indicates powered up computers. The
computers are configured to power down over night as soon
as there are no Condor jobs running on them. Some of
the red areas indicate system maintenance. The number
of computers able to accept jobs overnight is low – this
situation will become worse as Windows 7 is rolled out
where computers will power down during the day if there is

!""#

!"""#

!""""#

!"""""#

!""""""#

!"""""""#

"# $"# !""# !$"# %""# %$"# &""# &$"# '""#

!
"
!
#!
$
%
&'
!
()
%
*
&+
,
%
&-
(%
./
0
*
(1
&

(2..%((324&%5%.2+/0&+,%&-(%./0*(1&

()(*(+,#-(./,0#12,#

Figure 4. Average wasted time per job for given successful execution
times

5

0

10

15

20

25

30

Mon Tue Wed Thu Fri Sat Sun
Day

C
o
m
p
u
te
rs

Figure 5. Example cluster usage

no activity. This particular cluster is open over the weekend,
whilst others will be powered off over the weekend.

IV. POWER MANAGEMENT INFORMATION

It is necessary to know the power consumption of a
computer so we may select between them. To model this
precisely is a difficult task, as each piece of software will
stress different parts of the computer’s architecture. A com-
putationally intensive job may fully load the processor whilst
a data intensive job may stress the disk (or network). These
will each give different power consumption profiles. This is
further compounded by multi-core processors, which have
significantly different electrical power profiles depending on
the number of active cores.

Presently we are working with the assumption that an
active piece of work will produce a constant power load
on the computer during execution. We are therefore inter-
ested in the following information: The number of Floating
Point Operations Per Second (FLOPS) provided per watt of
electricity on each core within a computer and the Power
Usage Effectiveness (PUE) of the computer within its envi-
ronment. Computational power (FLOPS) can be assessed in
different ways some more appropriate than others depending
on computational context. The FLOPS measure may be
ambiguous - factors such as cache coherence, precision etc.

(minutes) 

Rank 

•  Rank used to express preference 

•  Vast majority of people don’t use Rank 
– Some who do get it wrong! 

Rank Statement  %  Meaning 

Null  99.87%  No Preference 

LoadAvg  0.082%  Prefer computers with higher loads 

((OpSys == "WINNT51")) + 
((OpSys == "LINUX") * 2) 

0.047%  Prefer Linux to Windows 

Memory  0.0015%  Prefer computers with more memory 

!!! 

Aims 

•  Reduce Power ConsumpPon 
•  Produce no impact on interacPve machine users 
•  Produce no impact on Condor users 
•  Provide audiPng on compuPng Pme used 
•  On a cycle‐scavenging Condor system. 

•  All These Things can be done using Condor 
–  So What’s new? 

Power Saving in Condor 

What’s Wrong With Condor? 

•  Nothing – Condor is “too good”, but… 
– With a good administrator all this can be done 
– With plenty of Pme this can be done 

•  Put another way 
– Administrators are busy people 
–  They have plenty of other tasks to do other than 
monitor and tweak Condor which gets along with 
things just fine 

•  Most users don’t know enough Condor 
–  Can’t specify preferences over resources 
– Only 3 users had done this at Newcastle – and one got 
it wrong 

Power Saving in Condor 

•  Power raPng (wals) and a PUE added to each 
worker descripPon 

•  Rank equaPon needs to be added to each job 
submission 

Rank = flops/(PUE ∗ wals) 
– AutomaPcally added by our system 

– And merged with user rank ‐ if present 

Powering up and down 

•  We use our own computer power‐down script 
– When no‐one is using the computer 

– When no Condor jobs are running 

•  A persistent ClassAd is sent to Condor 
–  Indicates computer is powered down 

•  Rooster can power up the computer 
–  If a job descripPon requests this 
– This calls our wakeup script 

Powering down Windows 

•  We suspend computers 
•  Windows can (wake up and) suspend for many reasons 
–  Not all under our control 

•  AnP‐Virus updates, souware updates 
•  We can catch many of these 
–  But ~20% we can’t 

•  We monitor the cluster for these 
– Monitor condor_status for nodes which don’t update 
–  If a node fails to update ping it 

•  If it’s no longer there copy it’s last classad and post a fake 
replacement for a hibernaPng computer 

Intelligent Power Management 

Aims 

•  Reduce Power ConsumpPon 
•  Produce no impact on interacPve machine users 
•  Produce no impact on Condor users 
•  Provide audiPng on compuPng Pme used 
•  On a cycle‐scavenging Condor system. 

•  All These Things can be done using Condor 
–  So What’s new? 

•  Do this all in a more automaPc ‘intelligent’ way 

•  Arjuna's Agility is a federaPon tool 
– Ouen used with Cloud CompuPng Pla{orms 

•  Support structuring of the Cloud into 
federated sub‐clouds through Service  

!"#$#%&'

Table III
COMPUTER SPECIFICATIONS

Computer Type MFLOPS Wattage MF/W
Ultraslim Desktop 941 54 17
CAD Workstations 1265 87 15
Legacy Computers 600 100 6

can also be important. We are evaluating benchmarking tools
(such as LINPACK [13] to measure the performance of our
computers.

PUE is the ratio of total amount of power used by a
computer facility to the power delivered to computing equip-
ment. In a data centre this gives a value greater than one with
the added energy consumption coming from cooling, power
conversion etc. Within a cluster room the PUE value can be
less than one with the heat generated offsetting the heating
required for the room. This information needs to be pre-
determined through analysis and added to the ClassAd for
the computer so that Condor can use it to make decisions
on which computer is most appropriate to use.

Newcastle University has a policy of replacing all of its
cluster computers on a four-year cycle. For the last three
years a concerted effort has been made to purchase power
efficient computers. This can be seen from the computer
specifications in Table III. From this table we can rank the
computers in terms of their output per Watt (MFLOPS /
Wattage). This can be combined with the PUE values for
computers to give an overall rating of the efficiency of a
given computer. Note that the PUE value for computers
of the same type can vary dependent on location or time.
The majority of cluster room computers are the Ultraslim
desktops, though there are a couple of hundred more pow-
erful CAD workstations provided for engineering/design
applications.

V. ARJUNA AGILITY CLOUD COMPUTING PLATFORM

Agility [4] is a Federated Cloud Computing Platform
designed to improve business agility through a flexible
infrastructure approach. Agility transforms traditional IT
infrastructure into a flexible, agile Private Cloud that allows
organisations to be networked together in order to share
service without sacrificing organisational independence.

Agility is installed as an overlay (as illustrated in Figure
6), which is capable of operating independently of existing
IT infrastructure. Agility can be used to monitor an organ-
isation’s IT infrastructure and take action when required.
Policies can be written for Agility to automate regular tasks
carried out by an Administrator. Typically (either intra- or
extra-enterprise) interactions are agreed through an informal
process, which is rarely recorded or monitored, making it
difficult to understand the true costs incurred and bene-
fits delivered across the organisations. Introducing Agility
provides a means of capturing those relationships without

!"#$"#%#&'

()*+#,,#$-,

!$.#/0

1-'"20

133#/#'-/0

!$.#/0

45/6.$2

7'8)/%#$-

!$.#/0

()*+#,,#$-

!$.#/0

('"9#/':52"''+'-%

+$8#3#/5%#$-

;"25-#,5%#$-5.

+$8#3#/5%#$-

<2#.#%0= <2#.#%0=

()*+#,,#$-

('"9#/':<2"''+'-%

>-8"

('"9#/':<2"''+'-%

()*+#,,#$-

('"9#/':<2"''+'-%

>-8":?,'":@$+5#- >$-8$":@$+5#-

Figure 6. Agility as an overlay

impacting the existing operations. In its interaction with
the underlying IT infrastructure Agility may be unobtrusive
(simply recording the relationships), may monitor operations
(reporting on conformance), or may actively drive resources
(taking action to ensure conformance). We adopt the third
approach here. Each Agility Server is deployed as a single
stand-alone server at each organisation that is to engage
within the federated network.

A. Accountability with Service Agreements

Agility delivers accountability through its use of Service
Agreements (SAs), which record the responsibilities of all
parties. A SA can contain any rights or obligations of the
involved parties and is not restricted to defining discrete
levels as you would expect from a Service Level Agreement
(SLA). With SAs in place Policy Modules can monitor
performance and can identify when quality of service is
threatened in order to take remedial action. Policy Modules
can be developed by experienced Administrators to automate
regular tasks that they currently carry out as a manual
process, or add new functionality.

Once a SA is in place it may, with the agreement of both
parties, be modified or terminated. SAs may also be nested,
relative to one another. This allows a SA to be created
under an existing longer-lived SA. The SA will typically
be defined in terms meaningful to the relationship between
a consumer and provider, such as quality of service, rather
than in terms specific to the mechanism of providing the
Service, such as what hardware it will be deployed upon.
For example, a consumer may create a SA with a Provider
who is offering Condor as a Service. The SA would state the
conditions under which the Consumer may submit jobs and
the obligations for both parties. Subsequently nested SAs can
be created for individual Condor Submissions, which could
state submission specific requirements such as its priority.

 Agreements 
•   User configured (or 
implemented) policies can 
be installed to manage 
the interacPon via Service 
Agreements 

•  Using Agility to provide intelligent management 
between parts of Condor 

•  Adding in Rank 
•  Deciding if a user has the right to power up computers 
•  Monitoring acPvity and looking for anomalous 
behavior 

•  Behavior is modified by the addiPon of new Agility 
policies 
–  A Service Agreement change will be accepted only if no 
Policy rejects it and at least one Policy accepts it 

– ModificaPon of Agility policies can lead to modificaPon of 
the condor policies and/or modificaPon of incoming jobs 

•  Audit individuals' worker usage for potenPal billing  

!"#$#%&'

General Architecture 

User

WOL

Z
Z
Z

Z
Z
Z

Condor
Submission

Condor
System

M
o
n
ito

r

Agreement!"#$#%&' !"#$#%&'

Figure 1. The Condor Agility Architecture

then be automatically re-written to make better use of the
current status of the Condor system. Once accepted the
job is submitted through the standard Condor interface and
Agility monitors its progress. This allows Agility to act as a
dedicated actor intent on ensuring efficient execution of the
job based on policies defined in Agility.

We conclude this section with an analysis of related work.
We briefly describe the Condor system in Section II before
analysing the use of Condor at Newcastle University in
Section III, this provides a motivation for our work. In
Section IV we describe our power management information.
Section V describes the Agility Cloud Computing Platform
used in our architecture, which is described in Section VI.
We look at more advanced power management techniques
in Section VII, before concluding in section VIII.

A. Related Work
As Condor can make use of non-dedicated computers

that might otherwise be sitting idle, it allows for spare
computational cycles, which would otherwise go to waste,
to be used [5]. The use of job check-pointing and migra-
tion can significantly reduce the wasted execution time as
evicted Condor jobs can continue from a pre-saved state [6].
Although this has not been a consideration of our work,
as check-pointing requires a UNIX platform and the ability
to compile your code against the Condor libraries, we see
no reason why our approach could not be applied. UCL
has deployed Condor over its student computer clusters that
allow jobs to run at the same time as users who are actively
using them. This is possible as they use the computers as
thin clients, which use only 5% of the CPU [7], again our
approach could be used here. For organisations with clusters
distributed around the world work can targeted at clusters
outside of working hours[8], we see this as complementary
to our work. The University of Liverpool used a commercial
power management toolset along with a simple UNIX cron
script which monitored the number of waiting Condor jobs,
powering up computers as needed [9]. Their paper pre-
dates Condor Rooster, which along with the use of Agility
provides a more intelligent power management approach.

Figure 2. The standard Condor architecture

II. CONDOR

Condor, developed by the University of Wisconsin, is
a batch job execution service for the purpose of high-
throughput computing. In its default configuration Condor
utilises unused computing power within a collection of
network-connected computers. When a computer has free
cycles available a Condor daemon indicates this to the
Condor Manager, which can then make use it. If someone
starts using the computer (either locally or remotely) Condor
will vacate, either by evicting the active job or migrating the
job elsewhere dependent on the computers configuration.

The Condor system comprises a number of services (Fig-
ure 2). A daemon (Schedd) runs on each submit machine,
containing information on all jobs submitted from that
host. When a user submits a job, the daemon transmits
the job description to the collector. The Startd daemon on
each Execute Machine reports to the Collector the state
of that machine. The Negotiator (or matchmaker) matches
together job descriptions and machine descriptions held in
the Collector notifying the corresponding submit and execute
host daemons about matches [10]. The Schedd will then send
the job to the Startd and generate a Shadow daemon for the
job on the Submit Machine which acts as a local instance
of the remote service for file staging etc. The Startd then
launches the job and interacts with the Shadow daemon.

Condor uses the same description language for both job
and resource descriptions, the ClassAd [11]. These are
semi-structured documents allowing arbitrary elements to be
defined of the form “name” equals “eval”, where “eval” can
be evaluated to a basic type (number, boolean or string). The
Requirements and Rank elements are used for evaluating
matches between documents. A pair of documents are said to
match if both their Requirements evaluate to true. While the
evaluation of the Rank element, to a number, indicates the
quality of the match – higher values are best and will be tried
first. There is no explicit queue as documents can be paired
at any time. This provides a powerful mechanism for users
to indicate a preference, however, most users do not use this
feature – those that do target the most powerful computers. A
Condor submission script is a simplified ClassAd document;
an example is given in Figure 3. To allow for fair sharing a
priority value can be set on a job, which Condor uses when
selecting which documents to process first.

Job Submission Route 

Submit Machine

Relationship agreement

Central Manager

Negotiator Collector Rooster

Execute Machine

Startd

Starter

Job

Condor
Syscall

Lib

Condor
Submit

Schedd

Shadow

Job Submission 1 agreement

:
:

Job 1.0 Agreement

Submit

job

job*

job

WOL

Sleeping Execute Machine

Startd

Job 1.1 Agreement !"#$#%&'!"#$#%&'

Sleeping Execute Machine

Startd

Sleeping Execute Machine

Startd

Sleeping Execute Machine

Startd

Sleeping Execute Machine

Startd

Sleeping Execute Machine

Startd

M
o
n
ito

r

Defined Policy 

•  Favor Energy efficient computers 
–  Unless user states otherwise 

•  PrioriPze submissions 
–  Professors over PhD’s 

•  Mark and manage Rogue jobs 
–  Jobs that have executed for too long 
–  Jobs that have been restarted too many Pmes 
–  Jobs incorrectly submiled 

•  Backlog reducPon 
–  Modify above policy to deal with backlogs 

•  AudiPng 
–  Provide audiPng for all jobs (per –user, ‐group, ‐school, ‐faculty, 

university) 

AudiPng 

•  Agility stores all alempted job runs. We can use 
this to provide audits of computer use 

•  A job which takes n alempts to run consumes 
power of: 

– Do we include evicted job Pme? 

•  Can produce audit on user, group, school or 
university 

!"#$#%& !"#$#%&

'()*(+

,-./#%

'()*(+

012+

3()*(+41-./#%

,-./#11#() 52"(%#6%27,-./#11#()7,!

3()*(+41-./#%

,-./#11#()8

9(*#:&7

,-./#11#()

,-./#11#()8

9()#%(+0;*6%27<(.71%6%-17#)7,2+=#327!"+22/2)%1

<(.7+21-$%1

Figure 9. Interaction between components of the system

them. Policy code is situated within each Agility server,
which monitors and reacts to changes in the SAs.

The interaction life-cycle is illustrated in Figure 9. The
user generates a Condor submit script as normal. When
this script is submitted we intercept it and pass it to the
Client domain Agility server. The Policy module verifies
what relationships it has with the Cloud offering a Condor
service. This relationship states that the submit machine may
submit Condor Submissions along with a priority. The Policy
module then proposes a Submission SA under the existing
Relationship SA.

The Policy module in the Condor domain checks the
proposed SA – in particular if the user allowed to create
submissions of the specified priority. If acceptable the Policy
module in the Submit domain will be informed and the SA
will now be in place. The Condor domain Policy module
may change the requirements of a submission to fulfil its
requirements, such as the required priority. This is achieved
by proposing a change to the submission SA which must
be accepted by both Agility servers. When negotiations are
complete, the real condor submit command is invoked with
the modified submission script, this is then processed by
Condor as normal. Waking up off-line workers with Rooster,
if appropriate, using wake on LAN. A new Job SA will be
created, under its parent Submission SA, for each job within
the submission script. This SA is used to record the progress
of the job through Condor. On completion, the total energy
used by the job is added to the Job SA.

A. Example Policy

Figure 10 shows pseudo code for priority handling Policy
Module. Although the module must implement a number of
methods only those required for SA are illustrated here:

onChanged: This method is invoked whenever a SA
change is confirmed. We are only interested here in newly
created SA where the priority is set to ‘LOW’. In this case
the job submission script will be modified to only use online
workers and the change proposed to other modules.

Class PriorityPolicyModule implements PolicyModule {
onChanged(ServiceAgreement submission) {
if (submission is new && submission.priority == LOW) {

append ‘Offline =?= False’
to submission.requirements
propose changed submission

}
}
changeProposed(ServiceAgreement sa) {
if (proposing my change) {

return ACCEPT
} else {

return IGNORE;
}

}
...
}

Figure 10. Pseudo code for a policy

changeProposed: All modules are asked to vote on all
proposed changes. If this module is being asked to vote on
its own proposal it will respond ‘ACCEPT’ otherwise it will
‘IGNORE’. After voting either the ‘onChanged’ method or
‘onChangeFailed’ method will be called, as appropriate.

B. Agility Policies
The Policies we support include:
Favour Energy Efficient Workers: This Policy modifies the

submission script to add or augment the Rank property with:
Rank = kflops/(PUE ∗ watts). Care needs to be taken
when augmenting an existing Rank statement to scale this
value to match the existing Rank range.

Prioritise Submissions: If the user is permitted to submit
higher priority jobs the submission script is modified to
allow workers to be powered up, or not powered up for
low priority jobs. Other levels could be used here, such
as highest-priority where workers are selected on raw CPU
power with the extra costs being billed back to the user.

Detection of Rogue Submissions: The Condor ‘queue’ is
monitored for rogue jobs identified as:

• A job that has been re-submitted too many times.
• A job that has run for too long.
• A job not proposed through the standard submit server.

In the first two cases the user will be warned about their
jobs. If no response is received within a reasonable time-
scale the jobs will be terminated along with the associated
SA. In the last case the jobs will be terminated.

Backlog Reduction: If a large number of jobs await execu-
tion and do not have the ability to wake up workers Agility
can choose to wake up workers to reduce the backlog.

C. Auditing
A full Audit history can be created from a Submission SA

(and associated Job SAs) as we record all events and event
triggers. In particular we can calculate the power consumed
by each job, which required n attempts to complete:

n∑

i=1

PUEi ∗ wattsi(end timei − start timei)

Future Policy 

•  FederaPng between Condor Pools 
•  FederaPng with the Cloud – Cloud BursPng 
•  Resource profiling 
– Working out when resources are idle and for how long 

•  Job profiling 
–  Try to esPmate job lengths for users 

•  Dedicated workers for evictees 
•  Running jobs on computers with acPve users 
•  EducaPon of users 

Conclusion 

•  Condor is good 
– Most users aren’t as good 

– System administrators are busy 
– They need tooling to automaPcally monitor and 
tweak the setup 

•  This along with preferring power efficient 
computers and turning off computers can save 
a lot of energy (and money) 

QuesPons? 

stephen.mcgough@ncl.ac.uk 

