
1

Security Risks in Clouds and Grids

Condor Week
May 5, 2011

Barton P. Miller
James A. Kupsch

Computer Sciences Department
University of Wisconsin

bart@cs.wisc.edu

Elisa Heymann

Computer Architecture and
Operating Systems Department

Universitat Autònoma de Barcelona

Elisa.Heymann@uab.es

Efficient execution of SPMD Applications on Multicore Environments

Multicore Environment

Pr
ob

le
m

Hierarchical
communication
architecture

5

1

4 2

3

SPMD
Application

Message Passing
 Interface

SPMD Tile
Communications Core

Idle Time

Ideal Size of Supertile

Ideal Number of Core

Internal tile

Edge tile

SuperTile allows to overlap the
internal computation with edge

communication

Methodology

How?

Ø Maximum Speedup
Ø Efficiency over a defined

 threshold

Objective

Base Machine

 Build Parallel

Application Signature
(Coordinated Checkpoint

+ Phases + Weights)

Instrumentation Parallel
Application

Collection data

Parallel Application Model

Patterns Identification

Extract Phases and
Weights

Target Machine B Target Machine A

Time of each
Phase by

weight

Prediction

S

Program Cores Application
Execution Time
reduction (%)

 Prediction
Error
(%)

BT-256 128 98.52% 1.5%

SP-256 128 99.23% 6.4%

SMG2000-256 128 98.25% 3.8%

Sweep3D-256 128 92.38% 3.5%

Time of each
Phase by

weight

Prediction

Program

Cores Application
Execution Time
reduction (%)

 Prediction Error
(%)

BT-256 256 98.63% 6.4%

SP-256 256 99.37% 3.4%

SMG2000-256 256 98.24% 3.8%

Sweep3D-256 256 92.35% 6.2%

S

Possible Threat?

›  Clouds and Grids have databases with management
and operational information

›  Denial of Service:
–  Prevent updates in the database

	
	

4

Possible Threat?

›  Hijack machines
–  Process escapes Cloud/Grid/control: Keeps

forking and exiting to escape detection.

Evil Job
PID 1

Evil Job
PID 2

Evil Job
PID 3

fork fork fork

Evil Job
PID n . . .

?

5

Possible Threat?

›  Cloud/Grid Accounting System
– Maintains a Grid-wide view of resource

utilization.
• Job Submission (Priority in the batch

queue, CPU time, Memory usage)
• Storage (Disk usage, Tape storage)

–  Accounting Information easily available
to people (web interface) and to
applications (Web Services)

›  Use the Accounting System for bad
purposes.

6

7

Possible Threat?

8

Real Threat!

9

What the bad guys can do

›  Gain root access
›  Privilege escalation

–  Gain higher privilege access (admin, condor)
›  Hijack machines

–  Attack the process running there

10

What the bad guys can do

›  Injections
–  Command
–  SQL
–  Directory traversal
–  Log

1.   String	 user	 =	 request.getParameter("user");	
2.   String	 password	 =	 request.getParameter

("password");	
3.   String	 sql	 =	 "select	 *	 from	 user	 where	 username='	 "	

+	 user	 +	 "	 '	 and	 password='	 "	 +	 password	 +	 "	 '	 ";	

	 '	 or	 '1'='1'-‐-‐	

11

What the bad guys can do

›  Injections
–  Command
–  SQL
–  Directory traversal
–  Log

›  Denial of Service (DoS)

12

What the bad guys can do

›  Injections
–  Command
–  SQL
–  Directory traversal
–  Log

›  Denial of Service (DoS)

13

Why do we care

›  Machines belonging to a cloud/grid site are
accessible from the Internet

›  Hundred of thousands of machines are
appealing

›  Those machines are continuously probed:
–  Attackers trying to brute-force passwords
–  Attackers trying to break Web applications
–  Attackers trying to break into servers and

obtain administrator rights

14

Why do we do it

›  SW has vulnerabilities
›  Cloud and Grid SW is complex and large
›  Vulnerabilities can be exploited by legal

users or by others

15

Why do we do it

›  Attacker chooses the time, place, method, …

›  Defender needs to protect against all
possible attacks (currently known, and those
yet to be discovered)

16

Key Issues for Security

›  Need independent assessment
–  Software engineers have long known that

testing groups must be independent of
development groups

›  Need an assessment process that is NOT
based solely on known vulnerabilities
–  Such approaches will not find new types

and variations of attacks

17

Our Piece of the Solution Space
First Principles Vulnerability Assessment:
›  An analyst-centric (manual) assessment process.
›  You can’t look carefully at every line of code so:

 then identify key resources and
privilege levels, component interactions
and trust delegation, then focused component
analysis.

Don’t start with known threats …
… instead, identify high value assets in the
code and work outward to derive threats.

•  Start with architectural analysis,

First Principles Vulnerability Assessment
Understanding the System

Step 1: Architectural Analysis
–  Functionality and structure of the system,

major components (modules, threads,
processes), communication channels

–  Interactions among components and with users

Architectural Analysis: Condor

condor & root

 OS privileges

user

master

Condor submit host

schedd

shadow

submit

1. fork

3. submit job
ClassAd

8. fork

master

Condor execute host

startd

starter

job

1. fork

8. fork

10. start job

master

Stork server host

stork_server

1. fork

Condor execute host
master

negotiator collector

1. fork 1. fork

5. Negotiator
cycle

2. machine
ClassAd

4. job
ClassA
d

5. Negotiator
cycle

6. Report
match

6. Report
match

7. claim host

9. establish
channel

First Principles Vulnerability Assessment
Understanding the System

Step 2: Resource Identification
–  Key resources accessed by each component
– Operations allowed on those resources

Step 3: Trust & Privilege Analysis
– How components are protected and who can

access them
–  Privilege level at which each component runs
–  Trust delegation

condor

 OS privileges

root
user

generic Condor daemon

(a) Common Resources on All Condor Hosts

Condor
Binaries &
Libraries

Condor
Config

etc
Operational

Data &
Run-time

Config Files

spool
Operational
Log Files

log

ckpt_server

(b) Unique Condor Checkpoint Server Resources

Checkpoint Directory
ckpt

(d) Unique Condor Submit Resources

shadow

User’s Files
user

(c) Unique Condor Execute Resources

User Job starter

Job Execution
Directories

execute

System Call
Forwarding and

Remove I/O
(with Standard
Universe Jobs)

Send and
Receive

Checkpoints
(with Standard
Universe Jobs)

Resource Analysis: Condor

First Principles Vulnerability Assessment
 Search for Vulnerabilities

Step 4: Component Evaluation
–  Examine critical components in depth
–  Guide search using:

Diagrams from steps 1-3
Knowledge of vulnerabilities

–  Helped by Automated scanning tools

First Principles Vulnerability Assessment
 Taking Actions

Step 5: Dissemination of Results
–  Report vulnerabilities
–  Interaction with developers
–  Disclosure of vulnerabilities

24

Our Experience

 Condor, University of Wisconsin
 Batch queuing workload management system
 15 vulnerabilities 600 KLOC of C and C++

 SRB, SDSC
 Storage Resource Broker - data grid
 5 vulnerabilities 280 KLOC of C

 MyProxy, NCSA
 Credential Management System
 5 vulnerabilities 25 KLOC of C

 glExec, Nikhef
 Identity mapping service
 5 vulnerabilities 48 KLOC of C

 Gratia Condor Probe, FNAL and Open Science Grid
 Feeds Condor Usage into Gratia Accounting System
 3 vulnerabilities 1.7 KLOC of Perl and Bash

 Condor Quill, University of Wisconsin
 DBMS Storage of Condor Operational and Historical Data
 6 vulnerabilities 7.9 KLOC of C and C++

25

Our Experience

 Wireshark, wireshark.org
 Network Protocol Analyzer
 in progress 2400 KLOC of C

 Condor Privilege Separation, Univ. of Wisconsin
 Restricted Identity Switching Module
 21 KLOC of C and C++

 VOMS Admin, INFN
 Web management interface to VOMS data
 35 KLOC of Java and PHP

 CrossBroker, Universitat Autònoma de Barcelona
 Resource Mgr for Parallel & Interactive Applications
 97 KLOC of C++

26

Our Experience

 ARGUS 1.2, HIP, INFN, NIKHEF, SWITCH
 gLite Authorization Service
 in progress

 glExec 0.8, Nikhef
 Identity mapping service

27

What do we do

›  Make cloud/grid software more secure
›  Make in-depth assessments more

automated
›  Teach tutorials for users, developers,

admin, managers:
–  Security risks
–  Vulnerability assessment
–  Secure programming

28

Who we are

Elisa Heymann
Eduardo Cesar
Jairo Serrano
Guifré Ruiz
Manuel Brugnoli

Bart Miller
Jim Kupsch
Karl Mazurak
Rohit Koul
Daniel Crowell
Wenbin Fang

29

Security Risks in Clouds and Grids

Barton P. Miller
James A. Kupsch

bart@cs.wisc.edu

Elisa Heymann

Elisa.Heymann@uab.es

 http://www.cs.wisc.edu/mist/

http://www.cs.wisc.edu/mist/papers/VAshort.pdf

