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 Prediction 
Error 
(%) 

BT-256 128 98.52% 1.5% 

SP-256 128 99.23% 6.4% 

SMG2000-256 128 98.25% 3.8% 

Sweep3D-256 128 92.38% 3.5% 
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 Prediction Error 
(%) 

BT-256 256 98.63% 6.4% 

SP-256 256 99.37% 3.4% 

SMG2000-256 256 98.24% 3.8% 

Sweep3D-256 256 92.35% 6.2% 
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Possible Threat? 

›  Clouds and Grids have databases with management 
and operational information   

›  Denial of Service:  
–  Prevent updates in the database 

	  
	  

4 



Possible Threat? 

›  Hijack machines 
–  Process escapes Cloud/Grid/control: Keeps 

forking and exiting to escape detection. 
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Possible Threat? 

›  Cloud/Grid Accounting System 
– Maintains a Grid-wide view of resource 

utilization. 
• Job Submission (Priority in the batch 

queue, CPU time, Memory usage) 
• Storage (Disk usage, Tape storage) 

–  Accounting Information easily available 
to people (web interface) and to 
applications (Web Services) 

›  Use the Accounting System for bad 
purposes. 
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Possible Threat? 
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Real Threat! 
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What the bad guys can do 

›  Gain root access 
›  Privilege escalation 

–  Gain higher privilege access (admin, condor) 
›  Hijack machines 

–  Attack the process running there 
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What the bad guys can do 

›  Injections  
–  Command 
–  SQL 
–  Directory traversal 
–  Log 

1.   String	  user	  =	  request.getParameter("user");	  
2.   String	  password	  =	  request.getParameter

("password");	  
3.   String	  sql	  =	  "select	  *	  from	  user	  where	  username='	  "	  

+	  user	  +	  "	  '	  and	  password='	  "	  +	  password	  +	  "	  '	  ";	  

	  '	  or	  '1'='1'-‐-‐	  
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What the bad guys can do 

›  Injections  
–  Command 
–  SQL 
–  Directory traversal 
–  Log 

›  Denial of Service (DoS) 
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What the bad guys can do 

›  Injections  
–  Command 
–  SQL 
–  Directory traversal 
–  Log 

›  Denial of Service (DoS) 
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Why do we care 

›  Machines belonging to a cloud/grid site are 
accessible from the Internet 

›  Hundred of thousands of machines are 
appealing  

›  Those machines are continuously probed: 
–  Attackers trying to brute-force passwords 
–  Attackers trying to break Web applications 
–  Attackers trying to break into servers and 

obtain administrator rights 
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Why do we do it 

›  SW has vulnerabilities 
›  Cloud and Grid SW is complex and large 
›  Vulnerabilities can be exploited by legal 

users or by others 
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Why do we do it 

›  Attacker chooses the time, place, method, … 

›  Defender needs to protect against all 
possible attacks (currently known, and those 
yet to be discovered) 
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Key Issues for Security 

›  Need independent assessment 
–  Software engineers have long known that 

testing groups must be independent of 
development groups 

›  Need an assessment process that is NOT 
based solely on known vulnerabilities 
–  Such approaches will not find new types 

and variations of attacks 
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Our Piece of the Solution Space 
First Principles Vulnerability Assessment: 
›  An analyst-centric (manual) assessment process. 
›  You can’t look carefully at every line of code so: 

 then identify key resources and 
privilege levels, component interactions 
and trust delegation, then focused component 
analysis. 

Don’t start with known threats … 
… instead, identify high value assets in the 
code and work outward to derive threats. 

•   Start with architectural analysis,    



First Principles Vulnerability Assessment 
Understanding the System 

Step 1: Architectural Analysis  
–  Functionality and structure of the system, 

major components (modules, threads, 
processes), communication channels  

–  Interactions among components and with users 



Architectural Analysis: Condor 

condor & root 
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First Principles Vulnerability Assessment 
Understanding the System 

Step 2: Resource Identification  
–  Key resources accessed by each component 
– Operations allowed on those resources 

Step 3: Trust & Privilege Analysis  
– How components are protected and who can 

access them 
–  Privilege level at which each component runs 
–  Trust delegation 



condor 
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First Principles Vulnerability Assessment 
 Search for Vulnerabilities 

Step 4: Component Evaluation 
–  Examine critical components in depth 
–  Guide search using: 

Diagrams from steps 1-3 
Knowledge of vulnerabilities 

–  Helped by Automated scanning tools 

 



First Principles Vulnerability Assessment 
 Taking Actions 

Step 5:  Dissemination of Results 
–  Report vulnerabilities 
–  Interaction with developers 
–  Disclosure of vulnerabilities 
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Our Experience 
   

  Condor, University of Wisconsin 
  Batch queuing workload management system 
  15 vulnerabilities                          600 KLOC of C and C++ 

  SRB, SDSC 
  Storage Resource Broker - data grid 
  5 vulnerabilities                           280 KLOC of C 

  MyProxy, NCSA 
  Credential Management System 
  5 vulnerabilities                           25 KLOC of C 

  glExec, Nikhef 
  Identity mapping service 
  5 vulnerabilities                           48 KLOC of C 

  Gratia Condor Probe, FNAL and Open Science Grid 
  Feeds Condor Usage into Gratia Accounting System 
  3 vulnerabilities                           1.7 KLOC of Perl and Bash 

  Condor Quill, University of Wisconsin 
  DBMS Storage of Condor Operational and Historical Data 
  6 vulnerabilities                           7.9 KLOC of C and C++ 
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Our Experience 
 

  Wireshark, wireshark.org 
  Network Protocol Analyzer  
  in progress               2400 KLOC of C 

  Condor Privilege Separation, Univ. of Wisconsin 
  Restricted Identity Switching Module 
                21 KLOC of C and C++ 

  VOMS Admin, INFN 
  Web management interface to VOMS data    
               35 KLOC of Java and PHP 

  CrossBroker, Universitat Autònoma de Barcelona 
  Resource Mgr for Parallel & Interactive Applications 
                    97 KLOC of C++ 
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Our Experience 
 

  ARGUS 1.2, HIP, INFN, NIKHEF, SWITCH  
  gLite Authorization Service 
  in progress    

  glExec 0.8, Nikhef 
  Identity mapping service 
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What do we do 

›  Make cloud/grid software more secure 
›  Make in-depth assessments more 

automated 
›  Teach tutorials for users, developers, 

admin, managers: 
–  Security risks 
–  Vulnerability assessment 
–  Secure programming 
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