
Improving User
Accounting and

Isolation with Linux
Kernel Features

Brian Bockelman
Condor Week 2011

Case Study: MPD

• The MPICH2 library is a common
implementation of the MPI interface, a
popular parallel programming paradigm.

• One issue in MPI is spawning processes:
some entity external to the library needs
to spawn one process per core in the job.

• Process spawning is typically handled by the
batch system.

Case Study: MPD

• If MPICH2 isn’t integrated with the batch system, it
has a small python program, MPD, that does
process spawning for you.

• Common occurrence: The tenured faculty thinks
they are smarter than those lazy sysadmins and
decides to compile their private copy of MPI
with dangerous compiler settings. Their private
copy of MPI is not integrated with the batch
system, and MPD is used.

MPD

• MPD is designed for single-user clusters
without batch systems:

• Automatically double-forks and
backgrounds itself.

• User job communicates with MPD via a
world-writable socket in /tmp; uses this
to launch actual running processes.

MPD Issues:

• World writable socket: Any user who can
write to /tmp can launch processes as your
username.

• Double-forking: batch systems (even
Condor!) lose track of the MPI processes.

• Job can’t be cleanly killed anymore.

• Accounting is incorrect.

MPD

• So, the unsuspecting user has made the pool hard
to manage and insecure!

• Today, we’ll talk about new almost ready Condor
capabilities on Linux that could have helped in this
situation.

• Improved process accounting with cgroups
(requires RHEL6 or kernel 2.6.24).

• Improved isolation (requires RHEL6 or kernel
2.6.24).

Accounting

• Accounting, in this context, is tracking the
system resources used by the user in a job
slot.

• What do we keep track of in Condor?

• Processes associated with the job slot.

• CPU time used by the job processes.

• Memory usage of the job processes.

Wishlist: Block I/O, network I/O

State of the Art

• The condor_procd is responsible for process
accounting. Its job is hard because:

• It is poll-based (out of lack of better
alternatives); it has poor visibility into short-lived
processes.

• Linux has had no ability to track arbitrary sets
of processes that can’t be “escaped”.

• Memory accounting for a set of processes is a
mess.

Introducing cgroups

• Cgroups are control structures for
aggregating/partitioning processes in a
system

• Different cgroups subsystems may act on
these structures to control scheduler
policy, allocate/limit resources, account for
usage.

http://www.kernel.org/doc/Documentation/cgroups/
cgroups.txt

http://en.wikipedia.org/wiki/Cgroups

http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://en.wikipedia.org/wiki/Cgroups
http://en.wikipedia.org/wiki/Cgroups

Cgroups

• The cgroups structures - presented as a
filesystem like /proc - are a kernel-level
mechanism for doing the process tracking
the procd was doing from user-space.

• There exists cgroup subsystems for CPU
accounting, memory accounting, block I/O,
and killing processes.

• That’s everything the procd does!

Condor and Cgroups

• Condor ProcD has will have the ability to
create a cgroup per job using the memory,
block, and CPU accounting subsystems.

• The “freezer” subsystem then provides
the ability to deliver signals atomically.

• If cgroups fail, the procd can fall back to the
traditional methods.

Future Work?

• Well, it does need to be committed first...

• Network I/O needs to be accounted.

• We haven’t touched on resource limiting:

• CPU affinity/scheduler (allows us to monitor
amount of swapping done per batch slot).

• Hard limits on memory used per batch slot
enforced by the OS.

• Block I/O can be bandwidth-limited or fair-
shared between batch slots.

Isolation

• Two running jobs are isolated if the throughput
and outcome of each job is independent of the
other.

• Typically, two running multiple jobs on the same
node are not isolated.

• Likely never will be 100% isolated until we start
running on more expensive hardware...

• Same is true for shared networks, shared storage
or submit hosts.

We can’t provide complete isolation, but we can often do a
better job!

Isolation

• Condor provides some level of isolation
already:

• CPU affinity.

• Preemption based upon memory use.

• Preemption based upon disk use.

Isolation

• Cgroups likely will improve this:

• More accurate memory accounting.

• We could easily monitor the per-batch-
slot swap rates.

• Has ability to do per-job scheduling
(network, block, memory, CPU).

Other Isolation

• Besides isolating system resources, we can also
remove the job’s ability to interact with each
other:

• PID namespaces: The job can only see (and signal)
processes in the same namespace.

• FS namespace: Each job gets its own filesystem
mounts.

PID Namespaces

• Each process within the namespace gets a
PID local to the namespace.

• I.e., the top-level process has PID 1; outside
the namespace, it has a normal-looking PID.

• POSIX calls (getpid, kill) will work within
the namespace using the local PIDs.

• “ps aux” will only show local processes.

Example Sessions

[bbockelm@rcf-bockelman condor]$ condor_run ps faux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
bbockelm 1 0.0 0.0 106200 1032 ? SN 12:51 0:00 /bin/bash /home/bbockelm/
projects/condor/.condor_run.29620
bbockelm 2 0.0 0.0 108052 964 ? RN 12:51 0:00 ps faux

[bbockelm@rcf-bockelman condor]$ ls /tmp/
condorLocks hsperfdata_condor hsperfdata_root keyring-amZ5iJ
gnome-system-monitor.bbockelm.1758109379 hsperfdata_hsqldb keyring-Agrhyl keyring-imIakq
[bbockelm@rcf-bockelman condor]$ condor_run ls /tmp
[bbockelm@rcf-bockelman condor]$

PID Namespaces

• Pitfalls: Small change in semantics!

• A job doesn’t know its PID outside the
namespace. Hence, the job’s logs will
record PIDs that are not meaningful to
the sysadmin.

• PID uniqueness is no longer guaranteed:
You can’t create a unique filename using
the PID (note: don’t do this anyway; it’s
insecure).

FS Namespaces

• FS namespaces (available since RHEL4)
allow jobs to have a unique mount table.

• Per-job mount of storage: don’t have to
drain the node to make mount changes.

• Unique /tmp and /var/tmp: don’t have to
worry about jobs leaving world-writable
sockets or temporary files outlasting the
job.

Condor vs. System

• It’s possible to run the condor_master itself in a
separate PID namespace.

• Prevents batch system users from seeing what
else is running on the system.

• Narrows an attack vector: it’s harder to attack
specific services if you don’t know what’s
running. Reduces the ability for a partially
compromised Condor to be used to attack the
host system.

Future Work

• Both PID and FS namespaces aren’t yet committed.

• Both need integration with PrivSep.

• Allow generic per-job mounts.

• Hide the working directories of other running
jobs.

• At this point, two jobs running under the same
Unix username shouldn’t be able to interfere
with each other.

Returning to MPD

• The world-writable socket no longer accessible
with FS namespaces.

• Cgroups can track, account for, and kill the MPD
daemon.

• Issues like MPD are difficult to avoid: they’re
created by eager and well-meaning users.

• Better isolation is not a “security thing” - it
helps users from inadvertently colliding.

• Cgroups and namespaces are a welcome
addition to our toolkit for managing resources.

