

Enabling Grids for E-sciencE

## gLite and Condor Present and Future.

John White, Helsinki Institute of Physics. EGEE JRA1 Deputy Middleware Manager.

www.eu-egee.org







#### Contents

#### • gLite overview.

- Resources, EGEE-II.
- Middleware, Integration, Testing.
- Development.
- gLite and Condor.
  - Collaboration.
  - WMS, CE..
  - CREAM, glexec, accounting
- Future.



## **EGEE** Resources





## **EGEE** Resources



- 42 Countries, 187 Sites, 25k CPUs 3.5PB Storage.
- http://gridportal.hep.ph.ic.ac.uk/rtm/



## EGEE-II

- EGEE phase 2.
- EU-Funded for 2 years (until March 2008).
- EGEE offers the largest production grid facility in the world open to many applications (HEP, BioMedical, generic).
- **Pre-production** service based on gLite 3.0 (LCG/gLite).
- Existing production service based on LCG.
- Middleware Activity
  - Re-engineer and harden Grid middleware.
  - Provide production quality middleware.



# EGEE/EGEE-II

Enabling Grids for E-sciencE



EGEE-II INFSO-RI-031688



- We follow a service-oriented approach.
  - Lightweight services.
  - Allow for multiple interoperable implementations.
  - Easily and quickly deployable.
- Use existing services where possible.
  - Condor, EDG, Globus, LCG, ?
- Portable(?)
  - Builds on Scientific Linux and (working) on ia64.
- Security.
  - Considered for both applications and deployment sites.
- Performance/Scalability & Resilience/Fault Tolerance.
  - Comparable to deployed infrastructure.
- Co-existence with other deployed infrastructure
  - eg. Interoperability with OSG and NAREGI.
- Site autonomy to reduce dependence on "global" services
- Open source (Apache?) license.



Integration and nightly build as usual.

- 224 modules, build in "n" to "m" hours.
- Work underway to port to ia64 architecture.
- Deployment Modules implemented high-level gLite node types (WMS, CE, R-GMA Server, VOMS Server, FTS, etc).
  - An XML configuration file with all required parameters.
  - A configuration script that configures and starts the node.



Integration and nightly build as usual.

- 224 modules, build in "n" to "m" hours.
- Work underway to port to ia64 architecture.
- Deployment Modules implemented high-level gLite node types (WMS, CE, R-GMA Server, VOMS Server, FTS, etc).
  - An XML configuration file with all required parameters.
  - A configuration script that configures and starts the node.

Build system now spun off into the **ETICS** project.



Integration and nightly build as usual.

- 224 modules, build in "n" to "m" hours.
- Work underway to port to ia64 architecture.
- Deployment Modules implemented high-level gLite node types (WMS, CE, R-GMA Server, VOMS Server, FTS, etc).
  - An XML configuration file with all required parameters.
  - A configuration script that configures and starts the node.

Build system now spun off into the **ETICS** project.

- Started on Jan 20th 2006.
- Univ. Wisc part of the project.
- Will provide a single build system for gLite software.



Testing

- Three well-defined areas:
- **Testbed infrastructure**: procedures for installation, configuration and maintenance.
  - Dedicated testbed: CERN, Imperial College, Hannover.
  - Installation of self-consistent RPM sets, weekly phone meeting.
- **Test development**: functional, regression and scalability tests.
  - Followed the TestManager suite.
- Testing of release candidates from the integration team.
  - Every single bug-fix individually tested before a release.
  - For gLite 3.0 much fast-track testing of critical components.



Testing

- Three well-defined areas:
- **Testbed infrastructure**: procedures for installation, configuration and maintenance.
  - Dedicated testbed: CERN, Imperial College, Hannover.
  - Installation of self-consistent RPM sets, weekly phone meeting.
- **Test development**: functional, regression and scalability tests.
  - Followed the TestManager suite.
- Testing of release candidates from the integration team.
  - Every single bug-fix individually tested before a release.
  - For gLite 3.0 much fast-track testing of critical components.
- Certification, gLite 3.0 on, now a Service activity.



- Development uses a fast prototyping approach
  - Distributed development test beds.
- EGEE-II Technical Coordination Group made up of activity/client reps.
  - TCG gathers/prioritizes requirements.
  - From CERN HEP experiments, BioMed and "others".
- Components selected by Integration & Testing activity (SA3).
  - Ensures components are deployable and work.
- Deployed by European Grid Support, Operation and Management activity (SA1).
  - Firstly, to a Pre-Production Service.
  - Finally, to the Production Service.



Enabling Grids for E-sciencE

- Development uses a fast prototyping approach
  - Distributed development test beds.
- EGEE-II Technical Coordination Group made up of activity/client reps.
  - TCG gathers/prioritizes requirements.
  - From CERN HEP experiments, BioMed and "others".
- Components selected by Integration & Testing activity (SA3).
  - Ensures components are deployable and work.
- Deployed by European Grid Support, Operation and Management activity (SA1).
  - Firstly, to a Pre-Production Service.
  - Finally, to the Production Service.

#### EGEE-II software development is client-driven.



- gLite 3.0 now on the PPS. Open to applications on the 20/03/06.
  - Usable, still some problems, testing ongoing.
- gLite 3.1 should be released to the Production Service in **September 2006**.
- Once components are on the PPS they can be evaluated (case-by-case) and see how much (and when) work is needed for the next release (gLite 3.1).

| July and August | PPS runs       | Holidays!  |
|-----------------|----------------|------------|
| June            | PPS deployment | Experience |
| May             | Certification  | Experience |
| April           | Integration    | ETICS/YAIM |

- Integrated RC must be available end of April.
- $\rightarrow$  Functionality must be (have been) frozen end of March.
- Fixes can be introduced at any time following problems found in the integration/certification/pre-production



- History stretches to DataGrid WP1 and Condor-G.
  - Provided language for expressing job description.
  - Proper framework for match-making ("new" classads).
  - Execute jobs on GRAM-accessible resources, via Condor-G..
  - Provide L&B (or accounting) information about jobs..
  - Be 'community' match-making, local job information 'database'.



- History stretches to DataGrid WP1 and Condor-G.
  - Provided language for expressing job description.
  - Proper framework for match-making ("new" classads).
  - Execute jobs on GRAM-accessible resources, via Condor-G..
  - Provide L&B (or accounting) information about jobs..
  - Be 'community' match-making, local job information 'database'.
- Present, EGEE/EGEE-II and Condor.
  - EGEE Design Team includes reps from MW providers (AliEn, Condor, Globus...)
  - Wisconsin is one of the development prototype sites. Uses: Condor pool as backend; Globus RLS.
  - We use the VDT distribution of Condor and Globus.



- History stretches to DataGrid WP1 and Condor-G.
  - Provided language for expressing job description.
  - Proper framework for match-making ("new" classads).
  - Execute jobs on GRAM-accessible resources, via Condor-G..
  - Provide L&B (or accounting) information about jobs..
  - Be 'community' match-making, local job information 'database'.
- Present, EGEE/EGEE-II and Condor.
  - EGEE Design Team includes reps from MW providers (AliEn, Condor, Globus...)
  - Wisconsin is one of the development prototype sites. Uses: Condor pool as backend; Globus RLS.
  - We use the VDT distribution of Condor and Globus.

#### The Collaboration Continues



## Condor-C in gLite WMS



- Extend the practice of reliable job transfer.
- Extend the guarantees of once and only once execution.

# Condor-C in gLite CE



- Need set of Condor-C daemons per {submitting node/user DN/user VO} triplet.
- Run as VO user, submit jobs via sudo service to batch system.
- One set of daemons switching UID via glexec/LCMAPS.
- BLAH scripts for Condor planned. Link to Condor accounting.
- Apart from that, it's (on-going at a steady rate) bugfixing..

**e6666** 



- CREAM (Computing Resource Execution And Management) Service. (http://grid.pd.infn.it/cream/field.php)
- Simple, lightweight service implements all operations at the CE.
- WS-based interface, extension of the Java-Axis servlet.
  - Implies interoperability through WSDL (C/C++,Java,Perl).
- Runs inside an Apache Tomcat container.
- CREAM can be invoked through.
  - WMS, through ICE (gSOAP/C++ intermediate layer).
  - Direct submission from C++/Java CLI.
- ICE layer subscribes to CEMon to receive notifications about job status.

#### **CREAM Architecture**



EGEE-II INFSO-RI-031688



- Job Submission.
  - Possibility of direct staging of input sandbox files GLITE WMS JDL compliance (with CREAM-specific extensions).
  - Support for batch and MPI jobs.
  - Support for bulk jobs being integrated.
- Manual and automatic proxy delegation.
- Job Cancellation.
- Job Info with configurable level of verbosity and filtering based on submission time and/or job status.
- Job List.
- Job Suspension and Resume.
- GSI-based authentication.
- VOMS-based authorization.
- Job Purge for terminated jobs.
- Possibility (for admin) to disable new submissions.
- Uses BLAH interface to the underlying LRMS.



# **CREAM CE**



- WS Interface on CE.
- DAGs go to Condor.
- WMProxy writes bulk submission to DAGS → Condor.
- (WM/JC. Direct bulk submission to ICE).
- CREAM API will be released after gLite verification.
- Planned for gLite 3.n (n≥1).



- Some experiments (already) want to optimize Grid usage (get more jobs in).
- Start a pilot job on a batch system and accept/launch sub-jobs (Condor Glide-in).
- Need a scheme to switch ID(s) on the worker node.
- glexec is the "front end" to LCAS/LCMAPS plugin framework.
- OSG uses GUMS. Interest in glexec... Planned work:
  - Write LCMAPS plugin to GUMS
  - Implement an interface to the GT4 WS AuthZ.
- (Optimistic) Time frame, end of May 2006\*.
  - \* pending communications with others.



- Some experiments (already) want to optimize Grid usage (get more jobs in).
- Start a pilot job on a batch system and accept/launch sub-jobs (Condor Glide-in).
- Need a scheme to switch ID(s) on the worker node.
- glexec is the "front end" to LCAS/LCMAPS plugin framework.
- OSG uses GUMS. Interest in glexec... Planned work:
  - Write LCMAPS plugin to GUMS
  - Implement an interface to the GT4 WS AuthZ.
- (Optimistic) Time frame, end of May 2006\*.
  - \* pending communications with others.
- This should allow VDT packaging of glexec/LCMAPS.



- Contributions from Condor team to EGEE effort.
  - Through design team, prototyping, product (and ETICS).
- Condor link to OSG is very important to EGEE.
- Grid middleware cannot be developed separately.
  - Open communication channels.
  - Effective exchange of ideas, requirements, solutions and technologies.
  - Early detection of differences and disagreements.
- Attempt to develop/modify components in a cooperative manner.
  - eg. ICE/CREAM, glexec/LCMAPS.



- Contributions from Condor team to EGEE effort.
  - Through design team, prototyping, product (and ETICS).
- Condor link to OSG is very important to EGEE.
- Grid middleware cannot be developed separately.
  - Open communication channels.
  - Effective exchange of ideas, requirements, solutions and technologies.
  - Early detection of differences and disagreements.
- Attempt to develop/modify components in a cooperative manner.
  - eg. ICE/CREAM, glexec/LCMAPS.

More info: http://www.glite.org