
CIL API Documentation (version 1.3.2)

May 12, 2005

Contents

1 Module Pretty : Utility functions for pretty-printing. 1

2 Module Errormsg : Utility functions for error-reporting 6

3 Module Clist : Utilities for managing "concatenable lists" (clists). 8

4 Module Stats : Utilities for maintaining timing statistics 9

1 Module Pretty : Utility functions for pretty-printing.

The major features provided by this module are

• An fprintf-style interface with support for user-de�ned printers

• The printout is �t to a width by selecting some of the optional newlines

• Constructs for alignment and indentation

• Print ellipsis starting at a certain nesting depth

• Constructs for printing lists and arrays

Pretty-printing occurs in two stages:

• Construct a Pretty.doc[1] object that encodes all of the elements to be printed along with
alignment speci�ers and optional and mandatory newlines

• Format the Pretty.doc[1] to a certain width and emit it as a string, to an output stream or
pass it to a user-de�ned function

The formatting algorithm is not optimal but it does a pretty good job while still operating in
linear time. The original version was based on a pretty printer by Philip Wadler which turned out
to not scale to large jobs.

API

type doc

1

The type of unformated documents. Elements of this type can be constructed in two ways.
Either with a number of constructor shown below, or using the Pretty.dprintf[1] function
with a printf-like interface. The Pretty.dprintf[1] method is slightly slower so we do not
use it for large jobs such as the output routines for a compiler. But we use it for small jobs
such as logging and error messages.

Constructors for the doc type.

val nil : doc

Constructs an empty document

val (++) : doc -> doc -> doc

Concatenates two documents. This is an in�x operator that associates to the left.

val text : string -> doc

A document that prints the given string

val num : int -> doc

A document that prints an integer in decimal form

val real : float -> doc

A document that prints a real number

val chr : char -> doc

A document that prints a character. This is just like Pretty.text[1] with a one-character
string.

val line : doc

A document that consists of a mandatory newline. This is just like (text "\n"). The new
line will be indented to the current indentation level, unless you use Pretty.leftflush[1]
right after this.

val leftflush : doc

Use after a Pretty.line[1] to prevent the indentation. Whatever follows next will be
�ushed left. Indentation resumes on the next line.

val break : doc

A document that consists of either a space or a line break. Also called an optional line
break. Such a break will be taken only if necessary to �t the document in a given width. If
the break is not taken a space is printed instead.

val align : doc

Mark the current column as the current indentation level. Does not print anything. All
taken line breaks will align to this column. The previous alignment level is saved on a stack.

val unalign : doc

Reverts to the last saved indentation level.

2

val mark : doc

Mark the beginning of a markup section. The width of a markup section is considered 0 for
the purpose of computing identation

val unmark : doc

The end of a markup section

Syntactic sugar

val indent : int -> doc -> doc

Indents the document. Same as ((text " ") ++ align ++ doc ++ unalign), with the
speci�ed number of spaces.

val markup : doc -> doc

Prints a document as markup. The marked document cannot contain line breaks or
alignment constructs.

val seq : sep:doc -> doit:('a -> doc) -> elements:'a list -> doc

Formats a sequence. sep is a separator, doit is a function that converts an element to a
document.

val docList : ?sep:doc -> ('a -> doc) -> unit -> 'a list -> doc

An alternative function for printing a list. The unit argument is there to make this function
more easily usable with the Pretty.dprintf[1] interface. The �rst argument is a separator,
by default a comma.

val d_list : string -> (unit -> 'a -> doc) -> unit -> 'a list -> doc

sm: Yet another list printer. This one accepts the same kind of printing function that
Pretty.dprintf[1] does, and itself works in the dprintf context. Also accepts a string as the
separator since that's by far the most common.

val docArray : ?sep:doc ->
(int -> 'a -> doc) -> unit -> 'a array -> doc

Formats an array. A separator and a function that prints an array element. The default
separator is a comma.

val docOpt : (unit -> 'a -> doc) -> unit -> 'a option -> doc

Prints an 'a option with None or Some

module MakeMapPrinter :
functor (Map : Map.S) -> sig

val docMap :
?sep:Pretty.doc ->
(Map.key -> 'a -> Pretty.doc) -> unit -> 'a Map.t -> Pretty.doc

Format a map, analogous to docList.

3

val d_map :
?dmaplet:(Pretty.doc -> Pretty.doc -> Pretty.doc) ->
string ->
(unit -> Map.key -> Pretty.doc) ->
(unit -> 'a -> Pretty.doc) -> unit -> 'a Map.t -> Pretty.doc

Format a map, analogous to d_list.

end

Format maps.

val insert : unit -> doc -> doc

A function that is useful with the printf-like interface

val dprintf : ('a, unit, doc) Pervasives.format -> 'a

This function provides an alternative method for constructing doc objects. The �rst
argument for this function is a format string argument (of type ('a, unit, doc) format; if
you insist on understanding what that means see the module Printf). The format string is
like that for the printf function in C, except that it understands a few more formatting
controls, all starting with the @ character.

The following special formatting characters are understood (these do not correspond to
arguments of the function):

• @[Inserts an Pretty.align[1]. Every format string must have matching
Pretty.align[1] and Pretty.unalign[1].

• @] Inserts an Pretty.unalign[1].

• @! Inserts a Pretty.line[1]. Just like "\n"

• @? Inserts a Pretty.break[1].

• @< Inserts a Pretty.mark[1].

• @> Inserts a Pretty.unmark[1].

• @^Inserts a Pretty.leftflush[1] Should be used immediately after @! or "\n".

• @@ : inserts a @ character

In addition to the usual printf % formatting characters the following two new characters
are supported:

• %t Corresponds to an argument of type unit -> doc. This argument is invoked to
produce a document

• %a Corresponds to two arguments. The �rst of type unit -> 'a -> doc and the
second of type 'a. (The extra unit is do to the peculiarities of the built-in support for
format strings in Ocaml. It turns out that it is not a major problem.) Here is an
example of how you use this:

dprintf "Name=%s, SSN=%7d, Children=@[%a@]\n"
pers.name pers.ssn (docList (chr ',' ++ break) text)
pers.children

4

The result of dprintf is a Pretty.doc[1]. You can format the document and emit it using
the functions Pretty.fprint[1] and Pretty.sprint[1].

val fprint : Pervasives.out_channel -> width:int -> doc -> unit

Format the document to the given width and emit it to the given channel

val sprint : width:int -> doc -> string

Format the document to the given width and emit it as a string

val fprintf :
Pervasives.out_channel -> ('a, unit, doc) Pervasives.format -> 'a

Like Pretty.dprintf[1] followed by Pretty.fprint[1]

val printf : ('a, unit, doc) Pervasives.format -> 'a

Like Pretty.fprintf[1] applied to stdout

val eprintf : ('a, unit, doc) Pervasives.format -> 'a

Like Pretty.fprintf[1] applied to stderr

val gprintf : (doc -> doc) -> ('a, unit, doc) Pervasives.format -> 'a

Like Pretty.dprintf[1] but more general. It also takes a function that is invoked on the
constructed document but before any formatting is done.

val withPrintDepth : int -> (unit -> unit) -> unit

Invokes a thunk, with printDepth temporarily set to the speci�ed value

The following variables can be used to control the operation of the printer

val printDepth : int Pervasives.ref

Speci�es the nesting depth of the align/unalign pairs at which everything is replaced with
ellipsis

val printIndent : bool Pervasives.ref

If false then does not indent

val fastMode : bool Pervasives.ref

If set to true then optional breaks are taken only when the document has exceeded the
given width. This means that the printout will looked more ragged but it will be faster

val flushOften : bool Pervasives.ref

If true the it �ushes after every print

val countNewLines : int Pervasives.ref

Keep a running count of the taken newlines. You can read and write this from the client
code if you want

5

2 Module Errormsg : Utility functions for error-reporting

val logChannel : Pervasives.out_channel Pervasives.ref

A channel for printing log messages

val debugFlag : bool Pervasives.ref

If set then print debugging info

val verboseFlag : bool Pervasives.ref

val warnFlag : bool Pervasives.ref

Set to true if you want to see all warnings.

exception Error

Error reporting functions raise this exception

val error : ('a, unit, Pretty.doc) Pervasives.format -> 'a

Prints an error message of the form Error: Use in conjunction with s, for example:
E.s (E.error ...).

val bug : ('a, unit, Pretty.doc) Pervasives.format -> 'a

Similar to error except that its output has the form Bug: ...

val unimp : ('a, unit, Pretty.doc) Pervasives.format -> 'a

Similar to error except that its output has the form Unimplemented: ...

val s : Pretty.doc -> 'a

Stop the execution by raising an Error. Use "s (error "Foo")"

val hadErrors : bool Pervasives.ref

This is set whenever one of the above error functions are called. It must be cleared manually

val warn : ('a, unit, Pretty.doc) Pervasives.format -> 'a

Like Errormsg.error[2] but does not raise the Errormsg.Error[2] exception. Use: ignore
(E.warn ...)

val warnOpt : ('a, unit, Pretty.doc) Pervasives.format -> 'a

Like Errormsg.warn[2] but optional. Printed only if the Errormsg.warnFlag[2] is set

val log : ('a, unit, Pretty.doc) Pervasives.format -> 'a

Print something to logChannel

val logg : ('a, unit, Pretty.doc) Pervasives.format -> 'a

same as Errormsg.log[2] but do not wrap lines

val null : ('a, unit, Pretty.doc) Pervasives.format -> 'a

6

Do not actually print (i.e. print to /dev/null)

val pushContext : (unit -> Pretty.doc) -> unit

Registers a context printing function

val popContext : unit -> unit

Removes the last registered context printing function

val showContext : unit -> unit

Show the context stack to stderr

val withContext : (unit -> Pretty.doc) -> ('a -> 'b) -> 'a -> 'b

To ensure that the context is registered and removed properly, use the function below

val newline : unit -> unit

val newHline : unit -> unit

val getPosition : unit -> int * string * int

val getHPosition : unit -> int * string

high-level position

val setHLine : int -> unit

val setHFile : string -> unit

val setCurrentLine : int -> unit

val setCurrentFile : string -> unit

type location = {
file : string ;

The �le name

line : int ;

The line number

hfile : string ;

The high-level �le name, or "" if not present

hline : int ;

The high-level line number, or 0 if not present

}

Type for source-�le locations

val d_loc : unit -> location -> Pretty.doc

val d_hloc : unit -> location -> Pretty.doc

val getLocation : unit -> location

val parse_error : string -> 'a

val locUnknown : location

An unknown location for use when you need one but you don't have one

7

val readingFromStdin : bool Pervasives.ref

Records whether the stdin is open for reading the goal *

val startParsing : ?useBasename:bool -> string -> Lexing.lexbuf

val startParsingFromString :
?file:string -> ?line:int -> string -> Lexing.lexbuf

val finishParsing : unit -> unit

3 Module Clist : Utilities for managing "concatenable lists" (clists).

We often need to concatenate sequences, and using lists for this purpose is expensive. This module
provides routines to manage such lists more e�ciently. In this model, we never do cons or append
explicitly. Instead we maintain the elements of the list in a special data structure. Routines are
provided to convert to/from ordinary lists, and carry out common list operations.

type 'a clist =
| CList of 'a list

The only representation for the empty list. Try to use sparingly.

| CConsL of 'a * 'a clist

Do not use this a lot because scanning it is not tail recursive

| CConsR of 'a clist * 'a
| CSeq of 'a clist * 'a clist

We concatenate only two of them at this time. Neither is the empty clist. To be sure
always use append to make these

The clist datatype. A clist can be an ordinary list, or a clist preceded or followed by an
element, or two clists implicitly appended together

val toList : 'a clist -> 'a list

Convert a clist to an ordinary list

val fromList : 'a list -> 'a clist

Convert an ordinary list to a clist

val single : 'a -> 'a clist

Create a clist containing one element

val empty : 'a clist

The empty clist

val append : 'a clist -> 'a clist -> 'a clist

Append two clists

val checkBeforeAppend : 'a clist -> 'a clist -> bool

8

A useful check to assert before an append. It checks that the two lists are not identically the
same (Except if they are both empty)

val length : 'a clist -> int

Find the length of a clist

val map : ('a -> 'b) -> 'a clist -> 'b clist

Map a function over a clist. Returns another clist

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b clist -> 'a

A version of fold_left that works on clists

val iter : ('a -> unit) -> 'a clist -> unit

A version of iter that works on clists

val rev : ('a -> 'a) -> 'a clist -> 'a clist

Reverse a clist. The �rst function reverses an element.

val docCList :
Pretty.doc -> ('a -> Pretty.doc) -> unit -> 'a clist -> Pretty.doc

A document for printing a clist (similar to docList)

4 Module Stats : Utilities for maintaining timing statistics

val reset : bool -> unit

Resets all the timings. Invoke with "true" if you want to switch to using the hardware
performance counters from now on. You get an exception if there are not performance
counters available

exception NoPerfCount

val has_performance_counters : unit -> bool

Check if we have performance counters

val sample_pentium_perfcount_20 : unit -> int

Sample the current cycle count, in megacycles.

val sample_pentium_perfcount_10 : unit -> int

Sample the current cycle count, in kilocycles.

val time : string -> ('a -> 'b) -> 'a -> 'b

Time a function and associate the time with the given string. If some timing information is
already associated with that string, then accumulate the times. If this function is invoked
within another timed function then you can have a hierarchy of timings

9

val repeattime : float -> string -> ('a -> 'b) -> 'a -> 'b

repeattime is like time but runs the function several times until the total running time is
greater or equal to the �rst argument. The total time is then divided by the number of times
the function was run.

val print : Pervasives.out_channel -> string -> unit

Print the current stats preceeded by a message

val lastTime : float Pervasives.ref

Time a function and set lastTime to the time it took

val timethis : ('a -> 'b) -> 'a -> 'b

10

