
Christian Collberg

University of Arizona

collberg@cs.arizona.edu

Intellectual property attacks on software

Software watermarking

Code obfuscation

Code tamperproofing

SandMark

Supported by grants from the NSF and the AFRL.

1

Malicious Clients vs. Malicious Hosts

Internet worm

Application with virus

Vulnerable Host Malicious Clients

Cryptolope

Mobile Shopping

Agent

Malicious Host

Business rule: Play Once

Best price: $45

Vulnerable Clients

• The client destroys data

on the host.

• Focus of most current

security research.

• Typical idea: run the

client in a sandbox.

• The client must protect some In-

tellectual Property from the host.

• Focus of our research.

• Typical ideas: Obfuscate, water-

mark, tamperproof the client.

2

Malicious Reverse Engineering

Buy one

copy
Reuse

module
Sell

M
Y

X

Q
M

N

P

O

• Alice and Bob are competing software developers.

• Module M contains Alice’s algorithmic trade secrets.

• Bob reverse engineers M and includes it in his own program.

• Worse with easily decompilable distribution formats such as

Java bytecode, .NET, ANDF.

3

Software Piracy

Resell

Make illegal

copies
Buy one

copy P

P

P

• Alice is a software developer.

• Bob buys one copy of Alice’s application.

• Bob makes illegal copies and sells them to a third party.

• Software piracy is a 15 billion-dollar a year industry.

4

Tampering

Modify

container

Extract

media

Resell

Cryptolope

Software PlayerEncrypted
media

Partial Keys

Signatures

Business Rules

Partial Keys
Codecs

FREE PLAY!

• Alice is a media (images,audio,video) publisher. She packages

her media into a cryptolope.

• Bob tampers with the software player to extract keys or

decrypted media or to tamper with the business rules.

• InterTrust, Intel, IBM, Xerox, Microsoft,. . . .

5

Military Piracy

Sell to
Sensitive

Software

Issue to

trusted

party

Make

illegal

copy

foreign

government

P P

• The military and intelligence communities are also worried

about illegal redistribution of software.

• At the very least, they would like to be able to track the

whereabouts of classified software.

6

Military Tampering

Extract

data

Intercept

Modify

player

Modify

container

Software Player

Software Player

Redistribute

bogus

container

Partial Keys
rank=general

Partial Keys
rank=private

Partial Keys

Encrypted
map

Partial Keys

Encrypted
map

rank > major

rank > major

• Cryptolopes can be used for military data.

• To avoid class attacks, players (with new keys/privileges) may

have to be redistributed in the field.

7

Military Reverse Engineering

Extract

hardware
Extract

software

Decompile

and reverse

engineer

Tamperproof
hardware

M M

• In 1944, the Soviets recovered three B-29 bombers. 105,000

parts were reverse engineered. The B-29 became the Tu-4 in

just two years.

• In 1976, a MiG-25 pilot defected to Japan. The plane was sent

back (disassembled) in boxes.

• In 2001, an EP-3 spy/reconnaissance plane landed in China

after a collision. The crew was unable to destroy all equipment.

• Much AFRL anti-tamper funding in coming years.

8

Threat Models

Cryptolope

Mobile Shopping

Agent

Malicious Host

Business rule: Play Once

Best price: $45

Vulnerable Clients

• The malicious host is a

– human reverse engineer, or a

– tool that automatically analyses the client, or a

– human aided by automatic tools.

• The tools could do static analysis , dynamic analysis

(debugging, tracing), statistical analysis, . . .

9

Code Obfuscation

T1 T2 T3P P′

• Code obfuscation is a software-only approach to hamper

malicious reverse engineering.

• The idea is to slow down the reverse engineering process by

making software harder to understand.

• Complete protection is not expected.

10

Software Watermarking

Watermarked

Program
Original

Program

Embed

Watermark

Extract

Watermark

WW KK
P P′

• To assert our IP rights we add an invisible copyright notice (a

watermark) to our code.

• To trace software pirates we add an invisible fingerprint (a

customer identification number) to the code.

11

Tamper Proofing

S S
P

T
P′ P′′

• We add code to our program that

1. detects if the program has been tampered with, and

2. either fails or repairs itself .

12

Code Obfuscation

Buy one

copy
Reuse

module
Sell

T1 T2 T3P P′

M
Y

X

Q
M

N

P

O

13

Obfuscating Transformation

Let P
T−→ P ′ be a transformation of a source program P into a

target program P ′. P
T−→ P ′ is an obfuscating transformation , if

P and P ′ have the same observable behavior .

1. If P fails to terminate or terminates with an error condition,

then P ′ may or may not terminate.

2. Otherwise, P ′ must terminate and produce the same output as

P .

• P ′ may have side-effects that P does not, as long as these side

effects are not experienced by the user.

• P and P ′ don’t have to be equally efficient.

14

Protection By Obfuscation

• The level of security from reverse engineering that an

obfuscator adds to an application depends on

1. the sophistication of the obfuscating transformations,

2. the power of the deobfuscator,

3. the amount of resources available to the deobfuscator.

• Ideally, we would like to mimic the situation in cryptography,

where there is a dramatic difference in the cost of encryption

and decryption.

• There are obfuscating transformations that can be applied in

polynomial time but which require worst-case exponential time

to deobfuscate.

15

Principles of Code Obfuscation

T1 T2 T3P P′

Maximize obscurity Understanding P ′ is harder than

understanding P.

Maximize resilience Automatic de-obfuscation tools are hard to

construct or expensive to run.

Maximize stealth P and P ′ have similar statistical properties.

Minimize cost P and P ′ have similar execution times.

16

Software Metrics

Halstead: E(P) increases with the # of operators+operands in P .

McCabe: E(P) increases with the # of predicates in P .

Harrison: E(P) increases with the nesting level of conditionals in P .

Munson: E(P) increases with the complexity of the static data

structures (arrays, records) declared in P .

Chidamber: E(C) increases with

• the number of methods in the class C,

• the depth of C in the inheritance tree,

• the number of direct subclasses of C,

• the number of other classes to which C is coupled,

• the number of methods that can be executed in response to a

message sent to an object of C.

17

Obfuscating Control Transformations

A

B
P TP ?

f(B) = f(B′)

P T
T FT FT F

f(B) 6= f(BBug)

A

B

A

B B′ B

A

BBug

Opaque predicates: P T ≡ TRUE, P F ≡ FALSE, P ? ≡

 TRUE

FALSE

18

Irreducible Flow Graphs

Decom−

pile cate
Obfus-

cate
Obfus-

E

P F
T

F

F

T

E

QF F

T

T

F

while (E) do {

}
} else

while (E) do {

}

if (P F) then {

P F
F

T

Compile

A; B

D

C; D

C; D

while (E) {
A; B

C; D
}A; B

C

D

E

T

F

A; B

C; D

A

C

D

B

19

Elementary Opaque Predicates

Fact Comments

∀x, y ∈ I, 7y2 − 1 6= x2

∀x ∈ I, 2|(x + x2)

∀x ∈ I, 3|(x3 − x)

∀x ∈ I,
∑2x−1

i=1,26|i i = x2 The sum of the odd integers

is a perfect square.

∀x ∈ I+, 8|(72x+1 + 17x)

∀x ∈ I+, 2|bx2

2
c The second bit of a squared

number is always 0.

20

Manufacturing Opaque Predicates

• Control transformations require strong opaque predicates.

• Threat-model: Deobfuscators will use static analysis.

• Base opaque predicates on hard static analysis problems, such

as alias analysis.

Move() Split()

F

(f = g)? (f = g)? (f = g)F

f
g

G

f
g

G

f
g

G

21

Opaque Predicates by Concurrency

S.start;

T.start;

Main Program

X = X*X;

Y = 7*B*B;X = A*A;

Thread S Thread T

int Y;int X;

if ((Y− 1) == X)F · · ·
· · ·

B = rand(0,∞);A = rand(0,∞);

• Parallel programs are hard

to analyze statically:

PAR{S1; S2; · · · ; Sn}
can be executed in n! differ-

ent ways.

• We create a set of threads

that occasionally update a

global data structure V .

• V is kept in a state such that

opaque queries can be made.

22

Concurrency & Aliasing

Main Program

p = Insert(p);

wait(4);
q = Move(q);

wait(3);

Thread S Thread T

q
p

S.start; T.start; · · ·
if (p == q)F · · ·

• If we let V be a dynamic

data structure, we can com-

bine interleaving and alias-

ing effects.

• The threads asynchronously

move the global pointers p

and q around in their respec-

tive components.

• This is quite resilient to de-

obfuscation attacks by static

analysis.

23

Obfuscating Data Transformations

p q V 2p + q

0 0 False 0

0 1 True 1

1 0 True 2

1 1 False 3

AND 0 1 2 3

0 3 0 0 0

1 3 1 2 3

2 0 2 1 3

3 3 0 0 3

bool A,B,C;

B = False;

C = False;

C = A & B;

C = A & B;

if (A) · · ·;
if (B) · · ·;

T⇒
short a1,a2,b1,b2,c1,c2;

b1=0; b2=0;

c1=1; c2=1;

x=AND[2*a1+a2,2*b1+b2]; c1=x/2; c2=x%2;

c1=(a1 ^ a2) & (b1 ^ b2); c2=0;

x=2*a1+a2; if ((x==1) || (x==2)) · · ·;
if (b1 ^ b2) · · ·;

24

Software Piracy vs. Watermarking

Resell

Make illegal

copies
Buy one

copy

Watermarked

Program
Original

Program

Embed

Watermark

Extract

Watermark

WW

P

P

P

KK
P P′

25

Watermarking & Fingerprinting

Watermark: a secret message embedded into a cover message.

• Image, audio, video, text,. . .

• Visible or invisible marks.

• Watermarking

1. discourages theft,

2. allows us to prove theft.

• Fingerprinting

3. allows us to trace violators.

26

Attacks on Software Watermarks

F

F

W
W

W

W
W

W W’ W’

Collusive
Attack

Additive
Attack

Distortive
Attack

P1

PP
K1

K2
P2

P′P
K

K1

KP′′

P KK
P′ P′′

27

Principles of Software Watermarking

Embed a structure W into a program P such that:

Maximize resilience

• W can be reliably located and extracted from P

Maximize bit-rate

• W is large

Maximize performance

• the embedding does not adversely affect P

Maximize stealth

• the embedding does not change P ’s statistical properties

Signature property

• W has an “interesting” mathematical property.

28

Static Data Watermarks – DICE Method

class Main {
const Picture C =

· · ·
}

• US Patent 5,745,569, Jan

1996.

• A watermarked media object

is embedded in the program’s

static data segment.

29

Static Code Watermarks – Microsoft

goto B1

· · · · · ·

if (e) goto B2

· · · · · ·

goto B3

· · · · · ·
goto B2

· · · · · ·
goto B7

· · · · · ·

⇒
· · · · · ·

· · · · · ·

if (e) goto B2

· · · · · ·

if (e) goto B3

· · · · · ·

· · · · · ·
goto B2

· · · · · ·

if (e) goto B6

B0

B7

· · · · · ·
if (e) goto B6
goto B5

if (e) goto B3

B0

B3

B4

B1

B2

B3

B4

B5

B6

B7

B2

B1

B6

B5

• Davidson & Myhrvold,

US Patent 5,559,884,

Microsoft, 1996.

• The watermark is

encoded in the ba-

sic block sequence

〈B5, B2, B1, B6, B3, B4〉.

30

Dynamic Watermarks — Easter Eggs

• The watermark performs an

action that is immediately

perceptible.

⇓
Extraction is trivial.

• Effects must not be too subtle.

• www.eeggs.com/lr.html.

31

Dynamic Watermarks — Execution Trace

15%

8%

22%

9%

push ’C’

push ’O’

....

push ’P’
....

push ’Y’

push ’R’

push ’C’

push ’O’

....

push ’P’
....

push ’Y’

push ’R’

WW

W

add
sub
push
xor

I⇒ push ’C’
add
push ’O’
......

K

⇓ ⇓

⇓ ⇓

P

P′

• Dynamic watermarks are constructed

at run-time in response to a secret in-

put sequence I = I1, · · · , Ik.

• Execution trace watermarks are em-

bedded within the instruction or ad-

dress trace.

• The watermark is extracted from

– the actual trace, or

– from some statistical property of

the trace.

32

Dynamic Watermarks — Data Structure

Embed

Extract

W

W

W

......

V[0]="C"
V[1]="O"
V[2]="P"

R
I

......

V[0]="C"
V[1]="O"
V[2]="P"

K

K

P′

P′

R
⇒

⇓

I

P

• The watermark is embedded

within the state (globals, heap,

stack) of the program.

• A recognizer R extracts the

watermark by examining the

state after input I.

• No “special” output is produced.

• R is not shipped.

33

Dynamic Graph Watermark — Embed

Embed

1: 2: 22:

48:

W

62 × 73=3 · 64 + 2 · 63+

3 · 62 + 4 · 61+

1 · 60

n

P′

p=new Node()
q=new Node()
addEdge(p,q)

P

R

I = I1, · · · , Ik

34

Dynamic Graph Watermark — Extract

Program State

Globals

Stack

Heap

ExtractW

W

n
P′
R

I = I1, · · · , Ik
R

P′

35

Dynamic Watermarks — Obfuscate

Embed

Obfuscate

W1 W2

W’1 W’2

n m

P1 P2

P′1 P′2

P
I

• Using graph water-

marks for fingerprint-

ing leaves us open to

collusive attacks.

⇓
Embed

+

Obfuscate

36

Tampering vs. Tamperproofing

Modify

container

Extract

media

Resell

Cryptolope

Software PlayerEncrypted
media

Partial Keys

Signatures

Business Rules

Partial Keys
Codecs

FREE PLAY!

S S
P

T
P′ P′′

37

Tamperproofing

Attacks Defense

Don’t execute P if Protect P such that
1. P ’s watermark W has

been altered,

2. P has been augmented

with a virus,

3. P ’s security sensitive

code has been altered.

1. we can detect that P has

been altered,

2. we can cause P to fail

when tampering is de-

tected.

• Detection and failure should be separated by time and space.

38

Tamperproofing Defenses

Inspect Code f
(
P

)
=? Examine the executable

program itself.

Inspect State f
(
I, P

)
=? Use program result check-

ing to examine intermedi-

ate results.

Generate Code f(X) = P Generate the executable

on the fly.

39

Tamperproofing Watermarks – DICE

class Main {
const Picture C =

· · ·
Code R = Decode(C);

Execute(R);

}

• Generate Code

• “Essential” parts of the

program are steganograph-

ically encoded into the me-

dia.

• If the watermarked image

is attacked, the embedded

code will crash.

40

Tamperproofing — Aucsmith/Intel

U

p

p

e

r

L

o

w

e

r

Decrypt&Jump

Code

Encrypted

Code block #2

Decrypt&Jump

Code

Code block #3

Encrypted

Decrypt&Jump

Code

Encrypted

Code block #4

Code block #1

Plaintext

Decrypt&Jump

Code U

p

p

e

r

L

o

w

e

r

Decrypt&Jump

Code

Encrypted

Code block #4

Decrypt&Jump

Code

Code block #1

Encrypted

Decrypt&Jump

Code

Encrypted

Code block #2

Decrypt&Jump

Code

Code block #3

Plaintext

⊗ ⊗
Tamper-proof
Obfuscate/

⊗

⊗
P

41

Tamperproofing by Guards

GUARD

GUARD

GUARD

CODE

CODE
(copy)

CODE
(copy)

CODE CODE
(copy)

CODE

• Chang & Atallah (Purdue).

• Extend the code with guards

which

1. checksum the code, and

2. repair tampered segments.

• Guards form a network,

checking and repairing each

other.

42

Tamperproofing Graph Watermarks

RL

RL

RL

RL

RL

RL RL

RL

• Inspect State

• A planted plane cubic tree.

• Planarity check:

For each internal node x,

the left-most child of x’s

right subtree is L-linked to

the right-most child of x’s

left subtree.

43

Discussion

• What’s our threat model?

1. Manual inspection?

2. Static analysis?

3. Dynamic analysis?

4. Class attacks?

• How do we evaluate software protection techniques?

1. Runtime overhead (time/space)?

2. Stealth?

3. Resilience to semantics-preserving transformations?

• What theoretical approach should we take?

44

AλgoVista

• A search engine for pro-

grammers.

• Query-by-example not

query-by-keyword.

• Draw a description of the

problem you’re looking for.

• Joint work with Todd

Proebsting.

• www.algovista.com.

45

• SandMark is our framework for studying the effectivness of

software protection techniques.

• Our goal is to implement and evaluate every known algorithm.

• SandMark watermarks, obfuscates, and tamper-proofs Java

applications.

• SandMark is 40 KLOC of Java.

• SandMark uses a very simple plug-and-play architecture: drop

in a new algorithm, type make. . .

• We’re still coding; no results yet.

46

BLOAT

optimize

utils ui

scriptinggui

statistics

static dynamic

watermarking
algorithms

static dynamic application methodclass

obfuscation
algorithms

bytecode
tools

BLOATbcel disassemble

view

CT

decompile

47

48

49

50

