
Fixing Races for Fun and Profit: How to useaccess(2)

Drew Dean∗

Computer Science Laboratory, SRI International
ddean@csl.sri.com

Alan J. Hu†

Dept. of Computer Science, University of British Columbia
ajh@cs.ubc.ca

Abstract

It is well known that it is insecure to use theaccess(2)
system call in a setuid program to test for the ability of
the program’s executor to access a file before opening
said file. Although theaccess(2)call appears to have
been designed exactly for this use, such use is vulnera-
ble to a race condition. This race condition is a classic
example of a time-of-check-to-time-of-use (TOCTTOU)
problem. We prove the “folk theorem” that no portable,
deterministic solution exists without changes to the sys-
tem call interface, we present a probabilistic solution,
and we examine the effect of increasing CPU speeds on
the exploitability of the attack.

1 Introduction

Since the 1988 Morris worm, and particularly the 1996
tutorial on stack smashing in Phrack [1], the buffer over-
flow has been the attacker’s weapon of choice for sub-
verting system security. Many techniques for preventing
or mitigating the effects of the lack of memory safety
have appeared in the literature [9, 14, 12, 13, 3]. Prior to
the popularization of stack smashing, various race con-
ditions were commonly utilized as the key step in privi-
lege escalation attacks,i.e., gaining superuser privileges
on a machine to which one has access via an ordinary
account. While not quite as catastrophic as a buffer over-
flow in a network server that hands out superuser priv-

∗Work supported by the Office of Naval Research under contract
N00014-02-1-0109. Any opinions, findings, and conclusionsor rec-
ommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Office of Naval Research.

†Work done mostly while a Visiting Fellow at SRI. Supported in
part by a grant from the Natural Science and Engineering Research
Council of Canada.

ileges to anyone who knows the magic packet to send,
local privilege escalation attacks remain a serious threat.
This is particularly true as another security vulnerability
may give the attacker the ability to execute code of their
choice as an unprivileged user. Given the wide range
of privilege escalation attacks on many common oper-
ating systems, it is very difficult to prevent an attacker
from “owning” a machine once they can get the first ma-
chine instruction of their choice executed. Hence, one
is wise to expend great effort to make sure that the at-
tacker cannot execute the first instruction of an attack.
If we could prevent privilege escalation, we would have
more confidence in the ability of lower-level operating
system primitives to contain the damage of security vul-
nerabilities exposed to the network. We make one of
many required steps towards that goal in this paper.

One particular race condition is especially infamous
among developers of security-critical software, particu-
larly setuid programs, on Unix and Unix-like systems:
the one between an appearance of theaccess(2)sys-
tem call, and a subsequentopen(2)call. Although this
paradigm appears to have been the intended use ofac-
cess(2), which first appeared in V7 Unix in 1979, it has
always been subject to this race condition. Recall that in-
dividual Unix system calls are atomic, but sequences of
system calls offer no guarantees as to atomicity. This is a
long standing problem: a 1993 CERT advisory [7] docu-
ments this exact race condition inxterm , and earlier ex-
ploits based on this problem are believed to exist. How-
ever, there is no generally available, highly portable, cor-
rect solution for providing the functionality ofaccess(2).
This paper remedies this unfortunate situation. It is com-
monly accepted that fixing this problem requires a ker-
nel change. While this is true for a deterministic solu-
tion, we present a highly portable probabilistic solution
that works under the existing system call interface. The
technique used is reminiscent ofhardness amplification
as found in the cryptology literature [16], but applied to

Page 1 of 12



system calls, rather than cryptologic primitives.

We first survey the problem, its history, partial solutions,
and related work. We then prove the “folk theorem”
that there is no (deterministic) solution to the problem
short of a kernel modification. We present our proba-
bilistic solution, and experimental data showing the ex-
ploitability of the problem across several generations of
machines. Final thoughts are presented in the conclu-
sion.

2 Background

We first describe the problem that we are solving, ex-
plain why some known partial solutions are not optimal,
and describe related work on this problem.

2.1 The Problem

One of Unix’s patented innovations was the introduc-
tion of the setuid bit on program files, to indicate that a
program should execute with the privileges of its owner,
rather than the user that invoked the program, as is the
normal case. As more sophisticated programs were de-
veloped using the setuid facility, there was desire to have
the ability to do access control checks based on the in-
voker of the program (i.e., the real user id of the pro-
gram, as opposed to the effective user id of the pro-
gram). The kernel is clearly the proper place to perform
these checks, as pathname parsing and traversal is tricky,
particularly since the introduction of symbolic links in
4.2 BSD [2]. This need was addressed with the addi-
tion of the access(2)system call to V7 Unix in 1979.
It appears that the intention was for the following code
fragment:

if(access(pathname, R_OK) == 0)
if((fd = open(pathname, O_RDONLY))

== 0) ...

to work in the obvious way – that is, to check whether
pathnameis readable, and if so, open the file for reading
on file descriptorfd.

Unfortunately, there is a classic time-of-check-to-time-
of-use (TOCTTOU) [11] problem lurking here: the pair
of access(2)and open(2)system calls isnot a single,
atomic operation. Hence, a clever attacker can change

the file system in between the two system calls, to trick
a setuid program into opening a file that it should not.
Apple (MacOS X 10.3) and FreeBSD (4.7) are very suc-
cinct in their manual pages foraccess(2): “Access() is a
potential security hole and should never be used.” For
näıve uses ofaccess(2), this is true; however, we shall
see that the real situation is more complicated.

2.2 Partial Solutions

We will show that the Unix system call interface, as de-
fined, offers no completely portable, deterministic solu-
tion to the problem. The definitive solution to this prob-
lem is a kernel change, of which there are many possi-
bilities, all of which can be made to work correctly. The
simplest change would appear to be the addition of an
O RUID option to be passed toopen(2), specifying that
open(2)should use the real user id of the process, rather
than its effective user id, for access control decisions.
Without a kernel modification, two other solutions par-
tially fix the problem.

User id juggling Since the advent of saved user ids
in 4.2BSD, through one mechanism or another, modern
Unixes have had a way to temporarily drop privileges
gained from a program being setuid and then later re-
gain those privileges. Unfortunately, the setuid family
of system calls is its own rats nest. On different Unix
and Unix-like systems, system calls of the same name
and arguments can have different semantics, including
the possibility of silent failure [8]. Hence, a solution de-
pending on user id juggling can be made to work, but is
generally not portable.

Passing an open file descriptor A somewhat im-
proved approach is to fork off a child process, have that
process permanently drop all extra privileges, and then
attempt to open the file. If successful, the child process
can pass the open file descriptor across a Unix-domain
socket and exit.1 The user id handling is greatly simpli-
fied, although some of the caveats above still apply. The
major drawback is thatfork(2) is a relatively expensive
system call, even with copy-on-write optimizations.

1This idea was communicated to the first author by Michael Plass
of PARC.

Page 2 of 12



2.3 Related Work

The standard paper on this subject is the 1996 work of
Bishop and Dilger [6]. They provide a very comprehen-
sive description of the problem, dissecting a 1993 CERT
advisory of a real life instance of this problem. Bishop
and Dilger then go on to discuss static analysis tech-
niques for finding the problem in C programs. Rather
surprisingly, Bishop’s well known 1987 paper, “How to
Write a Setuid Program” [4] doesnot mention this pit-
fall. Bishop’s book [5] also discusses the problem and its
workarounds. We have tried to find the first description
of this problem in the literature, but so far have come up
empty.2 The first author recalls this problem being part
of the folklore in the late 1980s.3

Cowan,et al., [10] cover a very similar problem, a race
condition between the use ofstat(2)andopen(2), with
their RaceGuard technology. They changed the ker-
nel to maintain a small per-process cache of files that
have been stat’d and found not to exist. If a subsequent
open(2)finds an existing file, the open fails. This race
condition is primarily found in the creation of tempo-
rary files. While it is essentially equivalent to theac-
cess(2)/open(2)race we consider in this paper, the solu-
tion is entirely different: they modify the kernel, we do
not. Tsyrklevich and Yee [15] take a similar approach
to RaceGuard, in that their solution involves a kernel
modification. However, they have a richer policy lan-
guage to express what race conditions they will inter-
cept, and they suspend the putative attacker process (a
process that interfered with another process’ race prone
call sequence) rather than causing anopen(2)call to fail.
Again, Tsyrklevich and Yee modify the kernel, to fix ex-
isting vulnerable applications, whereas we are proposing
a user level technique to solve the problem.

3 No Deterministic Solution

Given the difficulties and overheads of existing solu-
tions to theaccess(2)/open(2)race, it’s tempting to try to
imagine a solution that doesn’t require kernel changes,
juggling user ids, forking processes, or dropping privi-
leges. Fundamentally, the problem arises because per-
missions to a file are a property of a path (being depen-
dent on the relevant execute permission along all direc-

2We would greatly appreciate any citation between 1979 and 1992
being brought to our attention.

3Messrs. Bellovin, Kernighan, Ritchie, Shapiro and Ms. Mintz
concur with this recollection in private communication, January 2004.

tories on the path and the relevant permissions for the
filename), and the mapping of paths to files is mutable.
However, the inode (and device number, and generation
number if available) for a file is not a mutable mapping;
it’s the ground truth. Perhaps a clever combination of
system calls and redundant checks, verifying that the
path-to-inode mapping did not change, could be made
to work, analogous to mutual exclusion protocols that
don’t need atomic test-and-set instructions.

A widely held belief is that such a solution isn’t possi-
ble, but to our knowledge this has never been precisely
stated nor proven. Here, we state and prove this theo-
rem. Furthermore, the assumptions needed to prove the
theorem will suggest an alternative solution.

Theorem 1 Under the following assumptions:

• the only way for a setuid program to determine
whether the real user id should have access to a file
is via theaccess(2)system call or other mechanisms
based on the pathname (e.g., parsing the pathname
and traversing the directory structures) rather than
the file descriptor,

• none of the system calls for checking access per-
mission also atomically provide a file descriptor or
other unchangeable identifier of the file,

• an attacker can win all races against the setuid pro-
gram,

then there is no way to write a setuid program that is
secure against theaccess(2)/open(2)race.

The first assumption means that the theorem ignores so-
lutions based on juggling user ids and giving up privi-
lege, which we rule out because of portability and ef-
ficiency concerns. The first two assumptions also im-
ply ignoring various solutions based on kernel changes:
for example, anfaccess(2)call that determines access
permissions given a file descriptor violates the first as-
sumption, whereas anO RUID option toopen(2), as dis-
cussed in Section 2.2, violates the second assumption.
Note that althoughfstat(2)at first glance appears to vio-
late the first assumption, it actually doesn’t, since the stat
buffer contains permission information for the file only,
but doesn’t consider the permissions through all directo-
ries on the file’s path. In general, the theorem applies to
any combination of the typical accessors of the file sys-
tem state:access(2), open(2), stat(2), fstat(2), lstat(2),
read(2), getdents(2), etc. The third assumption is stan-
dard when analyzing security against race conditions.

Page 3 of 12



Proof: Any attempted solution will perform a sequence
of system calls. We can model this sequence as a string
σ over the alphabet{a, o}, wherea represents a call to
an access-checking function, ando represents any other
call, e.g., open(2). (If the attempted solution has mul-
tiple control flow paths making different sequences of
calls, we can model this as a finite set of strings, one
for each path through the program, and the attacker can
attack each of these strings separately.) Similarly, we
can model the attacker’s execution as a stringτ over the
alphabet{g, b}, whereg represents swapping in a good
file (one for which the real user id has permission) for
the file whose access is being checked, andb represents
swapping in a bad file (one for which the real user id
doesn’t have permission). An attempted attack is an in-
terleavingρ of the stringsσ andτ .

The assumption that the attacker can win races against
the setuid program means that the attacker can control
what interleaving occurs (at least some fraction of the
time — we only need one success for a successful at-
tack). Suppose the attempted solutionσ containsn in-
stances ofa. The attack can then consist of the string
(gb)n, and the attacker can make the interleavingρ such
that each calla is immediately bracketed before byg and
after byb. Therefore, every access-checking call checks
the good file and grants permission, whereas all other
operations will see the same bad file, and hence there
will be no inconsistencies that can be detected. There-
fore, under the assumptions, there is no secure solution.

The above theorem actually generalizes to other TOCT-
TOU problem instances that satisfy similar assumptions.
If there is no way to check something and acquire it in
a single atomic operation, and if we assume the attacker
can win races, then the attacker can always swap in the
good thing before each check and swap in the bad thing
before any other operations.

Notice how strongly the proof of the theorem relies on
the assumption that the attacker can win races when-
ever needed. This assumption is reasonable and pru-
dent when considering the security of ad hoc races that
occurred by oversight, since a determined attacker can
employ various means to increase the likelihood of win-
ning races and can repeat the attack millions of times.
However, is this assumption still reasonable if we care-
fully design an obstacle course of races that the attacker
needs to win? By analogy to cryptology, an attacker that
can guess bits of a key can break any cryptosystem, but
with enough key bits, the probability of guessing them
all correctly is acceptably small. This insight leads to
our probabilistic solution.

4 A Probabilistic Solution

Our probabilistic solution relies on weakening the as-
sumption that the attacker can win all races whenever
needed. Instead, we will assume the more realistic as-
sumption that, for each race, the attacker has some prob-
ability of winning. This probability will vary depending
on the details of the code, the OS, the CPU speed, the
disks, etc., which we will discuss in Section 5, but the
fundamental idea is to treat races as probabilistic events.

The other major assumption needed for our solution is
that the calls toaccess(2)andopen(2)must be idempo-
tent and have no undesirable side effects. For typical
usages of opening files for reading or writing, this as-
sumption is reasonable. However, one must be careful
with certain usages ofopen(2). In particular, some com-
mon flag combinations, like(O_CREAT | O_EXCL),
are not idempotent and will not work with our solution.
Similarly, calling open(2)on some devices may cause
undesirable side effects (like rewinding a tape), which
our solution will not prevent.

The probabilistic solution starts with the standard calls
to access(2)followed by open(2). However, these two
calls are then followed byk strengthening rounds, where
k is a configurablestrengthening parameter. Each
strengthening round consists of an additional call toac-
cess(2)followed byopen(2), and then a check to verify
that the file that was opened was the same as had been
opened previously (by comparing inodes, etc.). When
k = 0, our solution degenerates into the standard, race-
vulnerableaccess(2)/open(2)sequence. Figure 1 shows
the code for our solution.

The probabilistic solution adds some overhead over the
simple, insecureaccess(2)/open(2)sequence. In partic-
ular, the runtime will grow linearly ink. How much
improvement in security do we get for this cost in run-
time?

Theorem 2 The attacker must win at least2k + 1 races
against the setuid program to break the security of our
solution, wherek is the strengthening parameter.

Proof: Returning to the notation from the previous
proof, our proposed solution is a stringσ consisting of
ao repeatedk + 1 times (once for the normal insecure
solution, followed byk rounds of strengthening). Every
call a to access(2)must be with a good file, or elseac-
cess(2)will deny permission. Similarly, every callo to
open(2)must be to the same bad file, or else the verifica-

Page 4 of 12



if (access("targetfile",R_OK)!=0) {
/* Return an error. */
...

}

fd = open("targetfile",O_RDONLY);
if (fd<0) {

/* Return an error. */
...

}

/* This is the strengthening. */

/*First, get the original inode. */
if (fstat(fd,&buffer)!=0) {

/* Return an error. */
...

}
orig_inode = buffer.st_ino;
orig_device = buffer.st_dev;

/* Now, repeat the race. */
/* File must be the same each time. */
for (i=0; i<k; i++) {

if (access("targetfile",R_OK)!=0) {
/* Return an error. */
...

}

rept_fd = open("targetfile",O_RDONLY);
if (rept_fd<0) {

/* Return an error. */
...

}

if (fstat(rept_fd,&buffer)!=0) {
/* Return an error. */
...

}
if (close(rept_fd)!=0) {

/* Return an error. */
...

}

if (orig_inode != buffer.st_ino)
/* Return an error... */;

if (orig_device != buffer.st_dev)
/* Return an error... */;

/* If generation numbers are
available, do a similar check
for buffer.st_gen. */

}

Figure 1: Probabilisticaccess(2)/open(2)Solution. For
clarity, error checking and reporting code has been re-
moved.

tion check that allopen(2)calls are for the same file will
fail. Therefore, between every pair of adjacent charac-
ters inσ, the attacker must win at least one race to swap
in the needed file. Sinceσ is2k+2 characters long, there
are2k + 1 places in between characters, each requiring
the attacker to win at least one race.

If we assume that each race is an independent random
event with probabilityp, then the attacker succeeds with
probability approximatelyp2k+1. (This analysis ignores
the attacks that win more than one race between charac-
ters inσ, because these will be much smaller terms for
reasonable values ofp.) Hence, the attacker must work
exponentially harder as we increasek linearly. This is
the same trade-off behind modern cryptology.

We note that our solution should generalize to other
TOCTTOU situations, provided the access check and
use are side-effect free.

The assumption that each race is an independent,
identically-distributed random variable is obviously not
realistic. Some amount of variation or dependences
in the winnability of each race does not fundamentally
change our analysis: the probability of a successful at-
tack will still be the product of2k + 1 probabilities of
winning individual races. The greatest threat is that an
attacker might manage to synchronize exactly to the se-
tuid program, so that it knows exactly when to insert its
actions to win each race, makingp ≈ 1. A simple way
to foil this threat is to add randomness to the delays be-
fore theaccess(2)andopen(2)calls. We can add calls
to a cryptographically strong random number generator
and insert random delays into our code before eachac-
cess(2)and open(2)call. The attacker would thereby
have no way of knowing for sure when to win each race.
On systems lacking theproc(5)file system, these delays
can be calls tonanosleep(2).4 With theproc(5)file sys-
tem, the attacker can quickly check whether the victim is
running or sleeping, so the victim must always be seen to
be running, even if it is only a delay loop. We note that
applications implemented with user-level threads can ex-
ecute code in another thread to accomplish useful work
(if available) rather than simply spinning in a delay loop.
Note that thestat(2)family of system calls returns time
values with 1 second granularity, too coarse to be use-
ful for the attacker. Nevertheless, despite our analysis,
the only way to be certain how our solution performs in
reality is to implement it and measure the results.

4For our purposes,nanosleep(2)can be implemented (on systems
where it is not natively available) by callingselect(2)with the smallest,
non-zero timeout, and empty sets of file descriptors to watch.

Page 5 of 12



5 Experimental Results

We performed our experiments on the following ma-
chine configurations, where “Ultra-60” is a dual-
processor Sun Ultra-60, and “SS2” is a Sun SPARCsta-
tion 2.

CPU/Clock Speed OS Compiler
Pentium III/500 MHz Linux 2.4.18 GCC 2.95.3
Pentium III/500 MHz FreeBSD 4.7 GCC 2.95.4
Ultra-60/2×300 Mhz Solaris 8 GCC 3.2
SS2/40 MHz SunOS 4.1.4 Sun /bin/cc

For convenience, we will refer to the machines by op-
erating system name, as these are unique. We will use
the traditional terminology, where SunOS means SunOS
4.1.4, and Solaris means Solaris 8 (aka SunOS 5.8).

We developed an attack program that repeatedly forks
off a copy of a victim setuid program using our strength-
ening, and then attempts the attack with2k + 1 races.
Figure 2 shows the core code of our attack program.

5.1 Baseline Uniprocessor Results

As a basis for comparison, our first task was to measure
how hard the classicaccess(2)/open(2)race is to win,
in the absence of strengthening. Running on Linux and
FreeBSD uniprocessors, and attacking files on the local
disk, we were surprised by how hard the attack is to win.
In fact, we did not observe any successful attacks in our
initial experiments.5

Eventually, after careful tuning to match the attacker’s
delays to the victim as best as we could, and after ex-
tended experiments, we were able to observe some suc-
cessful attacks against thek = 0 unstrengthenedac-
cess(2)/open(2)race: 14 successes out of one million
trials on the 500Mhz FreeBSD box (∼13hrs real time),
1 success out of 500,000 trials on the 500Mhz Linux
box, and subsequently 0 successes out of an additional
one million trials on the 500Mhz Linux box (∼22hrs).

Some reflection suggested a possible explanation. The

5 We did run some limited experiments attacking files across NFS
and observed substantial numbers of successes. We chose not to con-
tinue these experiments, however, because NFS-accessed files are usu-
ally not the most security-critical, root privileges typically don’t ex-
tend across NFS, the data displayed enormous variance depending on
network and fileserver load, and both authors felt that continuously
attacking their respective fileservers for days on end wouldbe consid-
ered anti-social by our colleagues.

for (i=0; i<attackcount; i++) {
/* Precondition of Attack */
link("safefile", "bogofile");
rename("bogofile", "targetfile");

childpid = fork();
if (childpid==0) {

/* Child: Run the victim. */
nice(40);
execl("victim4","victim4",kstring,

NULL);
/* No return */
/* ... */

}

/* Parent: Run the attack. */

for (delay=0; delay<DELAY1; delay++)
getpid();

link("unsafefile", "bogofile");
rename("bogofile", "targetfile");

/* Repeatedly swap to foil victim. */
for (j=0; j<k; j++) {

/* Wait for open to happen. */
for (delay=0; delay<DELAY2; delay++)

getpid();

link("safefile", "bogofile");
rename("bogofile", "targetfile");

/* Wait for access to happen. */
for (delay=0; delay<DELAY3; delay++)

getpid();

link("unsafefile", "bogofile");
rename("bogofile", "targetfile");

}

/* OK, see what happened. */
wait(&returncode);

/* Record statistics... */
}

Figure 2: Attack Program Used to Measure Success
Rates. We are showing only the core code, and omit-
ting the bookkeeping and statistics-gathering. Running
on the Suns required moving the DELAY1 loop to the
child side of the fork.

Page 6 of 12



typical scheduling quantum on mainstream operating
systems has not changed much over the past decades:
on the order of tens of milliseconds. Barring any other
events that cause a process to yield the CPU, a pro-
cess on a uniprocessor will execute for that long quasi-
atomically. However, processor speeds have increased
by a few orders of magnitude over the same period, so
the number of instructions that execute during a schedul-
ing quantum from a single process has gone up accord-
ingly. This implies that code on a uniprocessor should
behave far more “atomically” than before and that race
conditions should be far harder to win. Conversely, dur-
ing the 1980s, when theaccess(2)/open(2)race entered
the folklore, it was likely much easier to win.

To test this hypothesis, we obtained the oldest Unix-
running machine we were able to resurrect sufficiently
to run our experiments, a Sun SPARCstation 2 from the
early 1990s. Other than conversion of function proto-
types to Kernighan and Ritchie C, the code compiled
and ran unmodified. On an experiment of one million
attempts (∼56hrs), we observed 1316 successful attacks.

The good news, then, is that on a modern uniproces-
sor, even the unstrengthenedaccess(2)/open(2)race is
extremely hard to win. Given the low success rate and
the difficulty of tuning the attacker fork > 0, we were
never able to observe a successful attack withk = 1.

Uniprocessor Baseline Results Summary
Machine k Attempts Successes

Linux 0 1,500,000 1
FreeBSD 0 1,000,000 14
SunOS 0 1,000,000 1,316

5.2 Baseline Multiprocessor Results

The scheduling quantum argument does not apply, of
course, to multiprocessors, so theaccess(2)/open(2)race
should be as easy to win as ever on a multiprocessor.
To test this hypothesis, we experimented with our dual-
processor Solaris machine.

Against the classick = 0 access(2)/open(2)race, we ob-
served 117573 successful attacks out of one million at-
tempts. Clearly, theaccess(2)/open(2)race is still a ma-
jor threat for multiprocessors. With the widespread in-
troduction of multi-/hyper-threaded CPUs, this risk may
exist even on “uniprocessor” machines.

Even with the>10% success rate withk = 0, we did
not feel we were able to tune the attacker fork = 1
accurately. Intuitively, the difficulty is that we derive in-

formation for adjusting theDELAY2andDELAY3con-
stants in the attacker (Figure 2) only in the cases when
the k = 0 attack would have succeeded, so little data
is available for tuning. This data is swamped by other
interleavings that produce indistinguishable behavior by
the victim program. Out of hundreds of thousands of at-
tempts with presumably imperfect delay tunings, there
were no successful attacks withk = 1.

Multiprocessor Baseline Results Summary
Machine k Attempts Successes

Solaris 0 1,000,000 117,573

5.3 Measuring Strengthening

So far, we have seen that without strengthening, theac-
cess(2)/open(2)race is very hard to win on a modern
uniprocessor, but easy to win on a multiprocessor. How-
ever, in either case, with even one round of strengthen-
ing, the attack success rate (observed to be 0%) is too
low for us to make meaningful statements. To measure
the effect of the strengthening, therefore, we need a more
sensitive experiment, in which races are easier to win.

Returning to our Linux and FreeBSD uniprocessors, we
inserted calls tonanosleep(2), specifying a delay of 1ns,
into the setuid program. These calls have the effect of
yielding the CPU at that point in the program, making
the races easily winnable.

As a sanity check, we first inserted a singlenanosleep(2)
call after eachaccess(2)andopen(2)call in the setuid
program. We then tuned the attacker withnanosleep(2)
calls as well, and observed that we could attain near
100% success rates even for moderately large values of
k. This corresponds to the case where an attacker is able
to synchronize perfectly to the victim, making the prob-
ability of winning racesp ≈ 1.

Next, we randomized the delays, as described in Sec-
tion 4, by changing the delay code to the following:

nanosleep(&onenano,NULL);
if (random() & 01)

nanosleep(&onenano,NULL);

Note that we are using a less randomized delay than rec-
ommended in Section 4: we always have at least one
nanosleep, to ensure that every race is winnable on our
uniprocessors.

The table below summarizes the results for these exper-

Page 7 of 12



iments, and Figure 3 plots the data versus the theoretical
model.

Strengthening with Randomized Nanosleeps
Machine k Attempts Successes

Linux 0 100,000 99,992
Linux 1 100,000 43,479
Linux 2 100,000 16,479
Linux 3 100,000 5,931
Linux 4 100,000 1,773
Linux 5 100,000 550
FreeBSD 0 100,000 99,962
FreeBSD 1 100,000 43,495
FreeBSD 2 100,000 16,766
FreeBSD 3 100,000 5,598
FreeBSD 4 100,000 1,786
FreeBSD 5 100,000 548

Several features immediately stand out from the data.
First, the almost identical numbers from Linux versus
FreeBSD show that our modified code has made the
probability of winning races dependent on the random-
ized delays, rather than on details of the respective oper-
ating systems and machines. Second, thek = 0 numbers
show that the first race is almost 100% winnable. This is
because our randomized delay is at least one nanosleep
long, so the attacker knows it can wait one nanosleep
and always win the first race (except for rare instances
when the two processes start up extremely out of sync).
Finally, ask grows, the ratio of successive success rates
is dropping slightly. This occurs because the attacker
was tuned for smaller values ofk, and ask grows, the
attacker gradually slips out of phase from the victim.

As we can see, even in this extreme case, where the un-
strengthenedaccess(2)/open(2)race is almost 100% in-
secure and all races are constructed to be easy-to-win,
each successive round of strengthening provides a mul-
tiplicative improvement in security, as predicted by the
theoretical model.

Practical Guidance for Choosingk: From a practical
perspective, with realistic victim programs (that don’t go
to sleep to wait for attackers), we have observedp to be
on the order of10−6 to 10−1. This suggests that for
k = 7, the probability of a successful attack should be
below 10−15. Given that running one million attacks
takes on the order of tens of hours, a successful attack
probability of 10−15 should provide adequate security
in most situations. As there are 8760 hours in a year, it
is unlikely that even a cluster of 100 machines would re-
main running long enough to expect to see a successful
attack. We note that the speed of this attack appears to

be scaling with disk speed, rather than CPU speed.6 The
relatively long duration of a trial, especially as compared
to the evaluation of a hash function or block cipher, mean
that we can allow a somewhat higher probability of at-
tack than would be acceptable in other settings.

5.4 Strengthening Strengthening

Implementation details, as always, are critical to the se-
curity of a system using our algorithm. So far, we have
presented a highly portable design. If one is willing
to trade off portability for stronger security, a number
of improvements can be made. These improvements
will generally serve to decrease the possible number of
context switches that could occur in the critical section,
thereby decreasing worst case (real) execution time, and
thereby narrowing the attacker’s window. We will dis-
cuss these optimizations from most portable to least
portable.

First, if the setuid program (victim) is running as root,
it should raise its scheduling priority with anice(2)or
setpriority(2)call with a negative argument. This opti-
mization appears to be completely portable.

Second, the virtual memory page(s) containing the code
to implement our algorithm should be pinned into real
memory. Themlock(2)call is a portable way of accom-
plishing this across all the operating systems discussed
in this paper, although one needs to be careful to balance
mlock(2)andmunlock(2)calls correctly, as different op-
erating systems have different semantics for nested calls.
This optimization will prevent a page fault from occur-
ring and giving the attacker’s process a chance to run.

Third, on Linux and other systems that imple-
ment POSIX process scheduling, one can use the
schedsetscheduler(2)call to elevate the process priority
above what can be accomplished withnice(2)or setpri-
ority(2). If the setuid program is running as root, it can
useSCHEDFIFO with an appropriate priority to make
sure that it will run whenever it is runnable.

These optimizations further reduce the probability of at-
tack by making it harder for an attacker to win races.
While the first and third optimizations would be redun-
dant, using one of them depending on portability consid-
erations is highly recommended. The second optimiza-
tion is fairly portable, and is recommended wherever it
applies.

6We heard disk drives grinding away during our experiments.

Page 8 of 12



0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Linux
FreeBSD

Theoretical w/ p=0.65
Theoretical w/ p=0.60
Theoretical w/ p=0.55

Figure 3: Strengthening with Randomized Nanosleeps. The theoretical curve has been refined fromp2k+1 to p0p
2k,

with p0 = 1, because the attacker in these experiments can almost always win the first race.

Page 9 of 12



5.5 A Note on Kernel Issues

In general, and for multiprocessor machines in particu-
lar, the probabilistic security we have achieved appears
to be all that is possible: another CPU can alter the file
system concurrently with the victim program’s actions.
However, on a uniprocessor system, we are aware of
only five ways for a process to yield the CPU on most
Unix-like operating systems:

• Be traced (either withptrace(2) or through the
proc(5)file system)

• Perform I/O

• Have the timer interrupt go off

• Take a page fault

• Receive a signal

We address these in order. Our discussion here is limited
to the context of a setuid program running concurrently
with a non-setuid program attempting to exploit theac-
cess(2)/open(2)race. This analysis explicates some of
the details that are hidden by the probabilistic abstrac-
tion we have used so far.

Tracing Either theptrace(2)system call or theproc(5)
file system provide a means to trace a process, typically
for debugging purposes. One cannot trace a setuid pro-
cess, as this would lead to obvious security vulnerabili-
ties.7 Hence, we need not consider tracing any further.

I/O A process yields the CPU when it needs to per-
form I/O operations,e.g., disk reads or writes that miss
in the file system buffer cache. While the victim pro-
gram is making manyaccess(2)andopen(2)calls, be-
cause of the file system buffer cache, it will be very dif-
ficult, if not impossible, for other processes to cause the
inodes traversed in theaccess(2)call to be flushed from
the buffer cache before they are traversed again by the
open(2)call. In order for this to happen, another pro-
cess would have to be doing I/O, which would imply
that said process itself is put to sleep. One could per-
haps imagine enough cooperating attack processes allo-
cating and using lots of memory, while also all doing

7At least in theory. Various vulnerabilities in this area have been
found over the years in different kernels. However, such kernel vul-
nerabilities directly lead to machine compromise regardless of the ac-
cess(2)/open(2)race.

I/O at the same time in order to make the race condi-
tion be winnable more than once, but this would appear
to be a rather difficult attack to pull off. Basically, we
expect (with very high probability) that theopen(2)call
will never go to disk, because everything was loaded into
the buffer cache by the previousaccess(2)call. We ob-
serve that many modern systems (e.g., FreeBSD) have
unified their file system buffer caches with their virtual
memory allocation. In such systems, we observe that
it would be most useful to have a guaranteed minimum
file system buffer cache size, so that directory entries
and inodes won’t be discarded from the cache to satisfy
user processes’ requests for memory. While many sys-
tems provide limits for number of processes per user and
memory use per process, these controls are typically too
coarse to be effective for bounding memory use.

Timer Interrupt Unix-like operating systems gener-
ally implement preemptive multitasking via a timer in-
terrupt. The frequency of the timer interrupt is gen-
erally in the range of 50–1000Hz. This frequency has
not changed dramatically as CPU clock speeds have in-
creased. We believe that this is due to the fact that human
perception hasn’t changed, either: if the human users are
satisfied with the system’s interactive latencies, it makes
sense to reduce the overhead as much as possible by
keeping the frequency of the timer interrupt low.

The prototypical victim program that we experimented
with has 15 instructions in user mode between the ac-
tual system calls (i.e., int 0x80 s) that implementac-
cess(2)andopen(2), when using GCC 2.95.3 and glibc
2.2.5. The time required to execute the 15 user mode in-
structions has, of course, decreased dramatically as CPU
speeds have increased. This helps prevent the exploita-
tion of the race in two ways: first, it gives the timer inter-
rupt an ever shrinking window of time to occur in, and
second, the victim program will be able to run at least
one round of the strengthening protocol without inter-
ference from the timer interrupt.

Page Faults If we assume that our algorithm is run-
ning as the superuser (e.g., a setuid root program), then
the program can callmlock(2)to pin the page containing
the code into memory, so it will never take a page fault.
Processes not running as root cannot take advantage of
page pinning on systems the authors are familiar with.

Signals The last way of causing a process to yield the
CPU is to have a signal delivered to it. Again, on all

Page 10 of 12



the Unix-like operating systems the authors are familiar
with, signal delivery is handled at the point that the oper-
ating system is about to return to user mode, either from
a system call, or an interrupt, such as the timer interrupt.
We note that on Linux 2.4.18, the code for posting a sig-
nal to a process includes logic that dequeues a pending
SIGCONT (and equivalents) if a SIGSTOP (or equiv-
alent) signal is being delivered, and vice versa. This
implies that the attacker cannot use signals to single-
step the victim through system calls. The attacker can
stop and restart the victim program at most once due to
the length of scheduling quanta. A similar result is true
of the timer interrupt: given the size of the scheduling
quantum, all of the code will execute as part of at most 2
scheduling quanta. So again, the attacker gets 1 chance
to change the file system around, but they need at least 3
changes to the file system to succeed against 1 round of
strengthening.

Observation In summary, it appears that Linux 2.4.18,
when running on modern uniprocessor machines, and
with the victim program having superuser privileges, can
provide more security than one would assume from the
model and experiments presented above. That is, with
one round of strengthening, the attacker must make three
sets of modifications to the file system to succeed with
an attack, but the timer interrupt will only give the at-
tacker one chance to run. Linux’s signal handling behav-
ior prevents the attacker from single-stepping the victim
at system call granularity.

This analysis appears to support a conjecture that on
Linux 2.4.18, running as root (and therefore able to
use SCHEDFIFO andmlock(2), uniprocessor machines
achieve deterministic security with only one round of
strengthening. While this analysis is intellectually inter-
esting, westrongly urge that it not be used,as it depends
on code never being run on a multiprocessor (very diffi-
cult to ensure as systems evolve over time), and undocu-
mented behavior of a particular kernel version, which is
always subject to change.

6 Conclusion

The race condition preventing the intended use of the
access(2)system call has existed since 1979. To date,
the only real advice on the matter has been “don’t use
access.” This is unfortunate, as it provides useful func-
tionality. We have presented an algorithm that gains
exponential advantage against the attacker while doing

only linear work. This is the same sort of security as
modern cryptology gives, although we use arguably sim-
pler assumptions. We note that either a probabilistic so-
lution as presented in this paper or dropping privilege
via setuid(2)are fundamentally the only viable solutions
if one is unwilling or unable to alter the kernel. The
way Linux handles pending SIGSTOP and SIGCONT
signals provides additional security against TOCTTOU
attacks. Other kernels should investigate adding simi-
lar code to their signal posting routines, although this is
not a completely general solution – multiprocessor ma-
chines inherently can achieve only a probabilistic guar-
antee. With appropriate parameter choices, this algo-
rithm, within its limitations regarding side effects, re-
stores theaccess(2)system call to the toolbox available
to the developer of setuid Unix programs.

Acknowledgments

We wish to thank Whitfield Diffie for access to old Sun
hardware. The staff (and stock) of Weird Stuff Electron-
ics8 was very helpful as well. We thank Steven Bellovin,
Brian Kernighan, Nancy Mintz, Dennis Ritchie, and
Jonathan Shapiro for historical information about theac-
cess(2)/open(2)race. We thank the anonymous refer-
ees for helpful feedback on an earlier draft of this paper.
Drew Dean wishes to acknowledge a conversation with
Dirk Balfanz, Ed Felten, and Dan Wallach on the beach
at SOSP ’99 that firmly planted this problem in his mind,
though the solution presented in this paper was still years
away.

References

[1] Aleph1. Smashing the stack for fun and profit.
Phrack #49, November 1996.http://www.
phrack.org/show.php?p=49&a=14 .

[2] Steven M. Bellovin. Shifting the odds:
Writing (more) secure software. http:
//www.research.att.com/˜smb/
talks/odds.pdf , December 1994.

[3] Sandeep Bhatkar, Daniel C. DuVarney, and
R. Sekar. Address obfuscation: An efficient ap-
proach to combat a broad range of memory error
exploits. InProceedings of the 12th USENIX Secu-
rity Symposium, pages 105–120, Washington, DC,
August 2003.

8http://www.weirdstuff.com

Page 11 of 12



[4] Matt Bishop. How to write a setuid program.;lo-
gin:, 12(1):5–11, 1987.

[5] Matt Bishop.Computer Security: Art and Science.
Addison-Wesley, 2003.

[6] Matt Bishop and Michael Dilger. Checking for race
conditions in file accesses.Computing Systems,
9(2):131–152, Spring 1996.

[7] CERT Coordination Center. xterm logging
vulnerability. CERT Advisory CA-1993-17,
October 1995. http://www.cert.org/
advisories/CA-1993-17.html .

[8] Hao Chen, David Wagner, and Drew Dean. Setuid
demystified. InProceedings of the Eleventh Usenix
Security Symposium, San Francisco, CA, 2002.

[9] Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, Qian Zhang, and Heather Hinton.
StackGuard: Automatic adaptive detection and
prevention of buffer-overflow attacks. InProc. 7th
USENIX Security Conference, pages 63–78, San
Antonio, Texas, January 1998.

[10] Crispin Cowan, Steve Beattie, Chris Wright, and
Greg Kroah-Hartman. RaceGuard: Kernel protec-
tion from temporary file race vulnerabilities. In
Proceedings of the 10th USENIX Security Sympo-
sium, Washington, DC, August 2001.

[11] W. S. McPhee. Operating system integrity in
OS/VS2. IBM Systems Journal, 13(3):230–252,
1974.

[12] Greg Morrisett, David Walker, Karl Crary, and
Neal Glew. From system F to typed assembly lan-
guage. ACM Transactions on Programming Lan-
guages and Systems, 21(3):527–568, May 1999.

[13] George C. Necula. Proof-carrying code. InPro-
ceedings of the 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
pages 106–119, January 1997.

[14] Thomas Toth and Christopher Kruegel. Accu-
rate buffer overflow detection via abstract payload
execution. In Andreas Wespi, Giovanni Vigna,
and Luca Deri, editors,Proceedings Fifth Sympo-
sium on Recent Advances in Intrusion Detection,
volume 2516 ofLNCS, pages 274–291, Zurich,
Switzerland, October 2002. Springer-Verlag.

[15] Eugene Tsyrklevich and Bennet Yee. Dynamic de-
tection and prevention of race conditions in file ac-
cesses. InProceedings of the 12th USENIX Secu-
rity Symposium, pages 243–256, Washington, DC,
August 2003.

[16] A. C. Yao. Theory and application of trapdoor
functions. InProc. 23rd IEEE Symp. on Foun-
dations of Comp. Science, pages 80–91, Chicago,
1982. IEEE.

Page 12 of 12


