Experiences Building PlanetLab

Larry Peterson, Andy Bavier, Marc E. Fiuczynski, and Steve Muir
Princeton University

UWCS OS Seminar Discussion
Andy Pavlo
06 November 2006
Outline

• Overview
• Implementation
• Resource Allocation
• Discussion
How to enable the development of new, potentially disruptive network technologies?
Overview

- Global network services testbed and deployment platform.
- Launched in 2002.
- Current status:
 - 694 nodes
 - 335 sites
 - 35 countries
- UWCS contributes two nodes.

Source: planet-lab.org
Overview

• Testbed:
 – Geographically distributed machines.
 – Real network behavior.
 – Realistic client workload.

• Deployment platform:
 – Easy to develop new services.
 – Provide users with access to these services.
Organizing Principles

• Distributed virtualization.
• Unbundled management.
• Preserve chain of responsibility.
• Decentralized control.
• Efficient resource sharing.
Implementation

• Component overview:
 – Nodes
 – Slices
 – Management services

• Design principles:
 – Trust assumptions
 – Delegation
 – Federation
Nodes

- Linux+VServer x86 nodes.
- Booted from immutable file system:
 - Boot manager.
 - Public key of the central manager.
 - Node-specific secret key.
- Nodes authenticate with the PlanetLab central manager before deploying the VMM.
- Sites that contribute more than the minimum can control access.
Slices

• Users request *slices* to run experiments:
 – A set of VMs, each running on a unique node.
 – Each individual VM contains no knowledge about other VMs.
 – Users given remote access to VMs.

• Short-term vs. long-running

• Direct vs. delegated
Management

• Management services deployed in slices with additional privileges:
 – Slice creation
 – Resource brokerage
 – Monitoring
 – Environment instantiation
 – Auditing
Trust Assumption

- PlanetLab Central acts as trusted intermediary that manages nodes.

- Trust relationship:
 - PLC expresses trust to user.
 - User trusts PLC to create slices on their behalf.
 - Node owner trusts PLC to manage slices.
 - PLC trusts owners to keep nodes physically secure.

- Implications?
Federation

• Need a well-defined API between central managers.
• Unique 'root' names for nodes & slices.
• Nodes can simultaneously belong to more than one PlanetLab pools.
Resource Allocation

• Over-allocation of resources

• Components:
 - CPU Scheduling
 - Memory
 - Network Bandwidth
 - Disk Usage
Workload

- No imposed limits to number of VMs.
- Gracefully degrade node performance.
- Monitoring has shown that nodes on average support up to 90 active VMs and 25 live VMs.
 - Active: Contains a process.
 - Live: Contains process that used at least 0.1% (300ms) of CPU in last 5 minutes.
Resource: CPU

- Deployed four different schedulers.
- Current version:
 - Token bucket filter on top of standard Linux CPU scheduler.
 - Reservations vs. Shares
 - Exploring techniques to overcome latency.
Resource: Memory

• Four possible design choices.
• Current version:
 – Dynamically allocate memory to slices on demand
 – Reset slices using the most physical memory when swap is filled.
Resource: Bandwidth

- Fair share using token bucket.
- Current version:
 - Slices are allocated a fixed amount of outbound traffic per day.
 - Once this limit is surpassed, the rate is capped until the end of the day.
 - No control of inbound traffic at this time.
Resource: Disk

- Nodes do not provide any permanent storage.
- Each slice is given a 5GB quota.
System Stability

• Overall strategies:
 – API changes only for management services.
 – Leverage existing software components.
 – Incremental updates.

<table>
<thead>
<tr>
<th>Stable nodes (up > 30 days)</th>
<th>Registered nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active in last 30 days</td>
<td></td>
</tr>
</tbody>
</table>
Unique Problem Space

• Shares characteristics and problems with three similar system domains:
 – ISPs
 – Hosting centers
 – The Grid
PlanetLab vs. Condor

- Testbed vs. Batch System
- Unreliable environment
- Virtual machine support
- Resource allocation
- Localized, monolithic pools
- Supports more OSes/Archs
Discussion

• PlanetLab a good platform?

• Pros:
 – Easy to deploy new services.

• Cons:
 – Difficult to perform accurate time measurement.
 – Lack of permanent storage.

• Comparison to other testbeds:
 – Internet2, Emulab, ABONE, XBONE