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Abstract

Today’s architectures for intrusion detection force the
IDS designer to make a difficult choice. If the IDS re-
sides on the host, it has an excellent view of what is hap-
pening in that host’s software, but is highly susceptible to
attack. On the other hand, if the IDS resides in the net-
work, it is more resistant to attack, but has a poor view of
what is happening inside the host, making it more suscep-
tible to evasion. In this paper we present an architecture
that retains the visibility of a host-based IDS, but pulls the
IDS outside of the host for greater attack resistance. We
achieve this through the use of a virtual machine monitor.
Using this approach allows us to isolate the IDS from the
monitored host but still retain excellent visibility into the
host’s state. The VMM also offers us the unique ability
to completely mediate interactions between the host soft-
ware and the underlying hardware. We present a detailed
study of our architecture, including Livewire, a prototype
implementation. We demonstrate Livewire by implement-
ing a suite of simple intrusion detection policies and using
them to detect real attacks.

1 Introduction

Widespread study and deployment of intrusion detec-
tion systems has led to the development of increasingly
sophisticated approaches to defeating them. Intrusion de-
tection systems are defeated either through attack or eva-
sion. Evading an IDS is achieved by disguising malicious
activity so that the IDS fails to recognize it, while attack-
ing an IDS involves tampering with the IDS or compo-
nents it trusts to prevent it from detecting or reporting ma-
licious activity.

Countering these two approaches to defeating intrusion
detection has produced conflicting requirements. On one
hand, directly inspecting the state of monitored systems
provides better visibility. Visibility makes evasion more
difficult by increasing the range of analyzable events , de-

creasing the risk of having an incorrect view of system
state, and reducing the number of unmonitored avenues
of attack. On the other hand, increasing the visibility of
the target system to the IDS frequently comes at the cost
of weaker isolation between the IDS and attacker. This
increases the risk of a direct attack on the IDS. Nowhere
is this trade-off more evident than when comparing the
dominant IDS architectures: network-based intrusion de-
tection systems (NIDS) that offer high attack resistance
at the cost of visibility, and host-based intrusion detection
systems (HIDS) that offer high visibility but sacrifice at-
tack resistance.

In this paper we present a new architecture for building
intrusion detection systems that provides good visibility
into the state of the monitored host, while still providing
strong isolation for the IDS, thus lending significant resis-
tance to both evasion and attack.

Our approach leverages virtual machine monitor
(VMM) technology. This mechanism allows us to pull
our IDS “outside” of the host it is monitoring, into a com-
pletely different hardware protection domain, providing a
high-confidence barrier between the IDS and an attacker’s
malicious code. The VMM also provides the ability to
directly inspect the hardware state of the virtual machine
that a monitored host is running on. Consequently, we
can retain the visibility benefits provided by a host-based
intrusion detection system. Finally, the VMM provides
the ability to interpose at the architecture interface of the
monitored host, yielding even better visibility than nor-
mal OS-level mechanisms by enabling monitoring of both
hardware and software level events. This ability to inter-
pose at the hardware interface also allows us to mediate in-
teractions between the hardware and the host software, al-
lowing to us to perform both intrusion detection and hard-
ware access control. As we will discuss later, this addi-
tional control over the hardware lends our system further
attack resistance.

An IDS running outside of a virtual machine only
has access to hardware-level state (e.g. physical memory
pages and registers) and events (e.g. interrupts and mem-
ory accesses), generally not the level of abstraction where



we want to reason about IDS policies. We address this
problem by using our knowledge of the operating sys-
tem structures inside the virtual machine to interpret these
events in OS-level semantics. This allows us to write our
IDS policies as high-level statements about entities in the
OS, and thus retain the simplicity of a normal HIDS policy
model.

We call this approach of inspecting a virtual machine
from the outside for the purpose of analyzing the software
running inside itvirtual machine introspection(VMI). In
this paper we will provide a detailed examination of a
VMI-based architecture for intrusion detection. A key part
of our discussion is the presentation of Livewire, a proto-
type VMI-based intrusion detection system that we have
built and evaluated against a variety of real world attacks.
Using Livewire, we demonstrate that this architecture is
a practical and effective means of implementing intrusion
detection policies.

In Section 2 we motivate our work with a comparison of
its strengths and weaknesses to other intrusion detection
architectures. Section 3 discusses virtual machine moni-
tors, how they work, their security, and the criteria they
must fulfill in order to support our VMI IDS architecture.
Section 4 describes our architecture for a VMI-based in-
trusion detection systems and the design of Livewire, a
prototype VMI-based IDS that implements this architec-
ture. Section 5 describes the implementation of our proto-
type, while Section 6 describes sample intrusion detection
policies we implemented with our prototype. Section 7
describes our results applying Livewire and our sample
policies to detecting a selection of real world attacks. In
section 8 we explore some potential attacks on our archi-
tecture, and in Section 9 we discuss some related work not
touched on earlier in the paper. We present directions for
future work in 10. Section 11 presents our conclusions.

2 Motivation

Intrusion detection systems attempt to detect and report
whether a host has been compromised by monitoring the
host’s observable properties, such as internal state, state
transitions (events), and I/O activity. An architecture that
allows more properties to be observed offers better visi-
bility to the IDS. This allows an IDS’s policy to consider
more aspects of normative host behavior, making it more
difficult for a malicious party to mimic normal host be-
havior and evade the IDS.

A host-based intrusion detection system offers a high
degree of visibility as it is integrated into the host it is
monitoring, either as an application, or as part of the OS.
The excellent visibility afforded by host-based architec-
tures has led to the development of a variety of effective
techniques for detecting the influence of an attacker, from
complex system call trace analysis [19, 26, 50, 52], to in-

tegrity checking [22] and log file analysis, to the esoteric
methods employed by commercial anti-virus tools.

A VMI IDS directly observes hardware state and events
and uses this information to extrapolate the software state
of the host. This offers visibility comparable to that of-
fered by an HIDS. Directly observing hardware state of-
fers a more robust view of the system than that obtained
by an HIDS, which traditionally relies on the integrity of
the operating system. This view from below provided by a
VMI-based IDS allows it to maintain some visibility even
in the face of OS compromise.

Network-based intrusion detection systems offer signif-
icantly poorer visibility. They cannot monitor internal
host state or events, all the information they have must be
gleaned from network traffic to and from the host. Limited
visibility gives the attacker more room to maneuver out-
side the view of the IDS. An attacker can also purposefully
craft their network traffic to make it difficult or impossi-
ble to infer its impact on a host [35]. The NIDS has in its
favor that, like a VMI-based IDS, it retains visibility even
if the host has been compromised.

VMI and network-based intrusion detection systems are
strongly isolated from the host they are monitoring. This
gives them a high degree of attack resistance and allows
them to continue observing and reporting with integrity
even if the host has been corrupted. This property has
tremendous value for forensics and secure logging [10].
In contrast, a host-based IDS will often be compromised
along with the host OS because of the lack of isolation be-
tween the two. Once the HIDS is compromised, it is easily
blinded and may even start to report misleading data, or
provide the adversary with access to additional resources
to leverage for their attack.

Host-based intrusion detection tools frequently operate
at user level. These systems are quite susceptible to attack
through a variety of techniques [18, 2] once an attacker
has gained privileged access to a system. Some systems
have sought to make user-level IDSes more attack resis-
tant through “stealth,” i.e. by hiding the IDS using tech-
niques similar to those used by attackers to hide their ex-
ploits, such as hiding IDS processes by modifying kernel
structures and masking the presence of IDS files through
the use of steganography and encryption [36]. Current
systems that rely on these techniques can be easily de-
feated.

Some intrusion detection tools have addressed this
problem by moving the IDS into the kernel [54, 47, 24].
This approach offers some resilience in the face of a com-
promise, but is not a panacea. Many OSes offer inter-
faces for direct kernel memory access from user level. If
these interfaces are not disabled, kernel code is no safer
from tampering by a privileged user than normal user-
level code. On Linux systems, for example, user code can



modify the kernel through loadable kernel modules [34],
/dev/kmem , [42, 40] and direct writes from I/O devices.
Disabling these interfaces results in a loss of functional-
ity, such as the inability to run programs, such as X11,
that rely on them. We must also contend with the issue of
exploitable bugs in the OS, a serious problem in our world
of complex operating systems written in unsafe languages,
where new buffer overflows are discovered with disturb-
ing frequency.

In a host-based IDS, an IDS crash will generally cause
the system to fail open. In a user-level IDS it is impossible
for all system activity to be suspended if the IDS does
crash, since the it relies on the operating system to resume
its operation. If the IDS is only monitoring a particular
application, it may be possible to suspend that application
while the IDS is restarted. A critical fault in a kernel-
based IDS will often similarly fail open. Since the IDS
runs in the same fault domain as the rest of the kernel, this
will often cause the entire system to crash or allow the
attacker to compromise the kernel [46].

Unfortunately, when NIDSes do fall prey to an attack
they often fail open as well. Consider a malfunction in an
NIDS that causes the IDS to crash or become overloaded
due to a large volume of traffic. This will virtually al-
ways cause the system to fail open until such time as the
NIDS restarts [35]. Failing closed in an NIDS is often
not an option as the network connection being monitored
is often shared among many hosts, and thus suspending
connectivity while the IDS restarted would amount to a
considerable denial-of-service risk.

In a VMI-based IDS the host can be trivially suspended
while the IDS restarts in case of a fault, providing an easy
model for fail-safe fault recovery. In addition, because
a VMI IDS offers complete mediation of access to hard-
ware, it can maintain the constraints imposed by the oper-
ating system on hardware access even if the OS has been
compromised, e.g. by disallowing the network card to be
placed into promiscuous mode.

3 VMMs and VMI

The mechanism that facilitates the construction of a
VMI IDS is the virtual machine monitor, the software re-
sponsible for virtualizing the hardware of a single physi-
cal machine and partitioning it into logically separate vir-
tual machines. In this section, we discuss virtual machine
monitors, what they do, how they are implemented and
their level of assurance. We will also discuss the essential
capabilities that a VMM must provide in order to support
our VMI IDS architecture: isolation, inspection, and in-
terposition.

3.1 Virtual Machine Monitors

A virtual machine monitor (VMM) is a thin layer of
software that runs directly on the hardware of a machine.
The VMM exports avirtual machineabstraction (VM)
that resembles the underlying hardware. This abstraction
models the hardware closely enough that software which
would run on the underlying hardware can also be run in a
virtual machine. VMMs virtualize all hardware resources,
allowing multiple virtual machines to transparently multi-
plex the resources of the physical machine[16]. The op-
erating system running inside of a VM is traditionally re-
ferred to as the guest OS, and applications running on the
guest OS are similarly referred to as guest applications.

Traditionally, the VMM is the only privileged code run-
ning on the system. It is essentially a small operating
system. This style of VMM has been a standard part of
mainframe computers for 30 years, and recently has found
its way onto commodityx86 PCs. Hosted VMMs like
VMware [49, 45] have emerged that run a VMM concur-
rently with a commodity “host OS” such as Windows or
Linux. In this setting, the virtual machine appears as sim-
ply another program running on the host operating system.
Despite a radical difference from the users perspective,
traditional and hosted VMMs differ little in implementa-
tion. In a hosted architecture the VMM merely leverages a
third-party host OS to provide drivers, bootstrapping code,
and other functionality common to VMMs and traditional
operating systems, instead of being forced to implement
all of its functionality from scratch.

VMMs have traditionally been used for logical server
partitioning, and are supported for a wide range of
architectures; for example, the IBM xSeries (x86
servers), pSeries (Unix), zSeries (mainframes), and iS-
eries (AS/400) all have VMMs available. Recently, as
hosted VMMs have appeared on the desktop, they have
begun to find other applications such as cross-platform de-
velopment and testing.

3.2 VMM Implementation

Although the specifics of a VMM’s implementation
are architecture-dependent, VMMs tend to rely on simi-
lar implementation techniques. Among these techniques
is configuring the real machine so that virtual machines
can safely and directly execute using the machine’s CPU
and memory. By doing this, VMMs can efficiently run
software in the virtual machines at speeds close to that
achieved by running them on the bare hardware [45].
VMMs can also fully isolate the software running in a vir-
tual machine from other virtual machines, and from the
virtual machine monitor.

A common way to virtualize the CPU is to run the
VMM in the most privileged mode of the processor, while
running virtual machines in less privileged modes. All



traps and interrupts that occur while a virtual machine is
running transfer control to the VMM. Attempts by the vir-
tual machines to access privileged operations trap into the
VMM; the VMM emulates privileged operations for the
VM. In this architecture, the VMM can always control the
virtual machine regardless of what the software in the vir-
tual machine does.

Memory is commonly virtualized by keeping a virtual
MMU for each virtual machine that reflects the VM’s
view of its address space. The VMM retains control of
the real MMU, and maps each VM’s physical memory in
such a way that VMs do not share physical memory with
each other, or with the VMM. Through this technique the
VMM is able to create the illusion that each VM has its
own address space that it fully controls. This also allows
the VMM to isolate the VMs from one another and pre-
vents them from accessing the memory of the VMM.

In addition to virtualizing the CPU and memory, the
VMM intercepts all input/output requests from VMs to
virtual devices and maps them to the correct physical I/O
device. For memory-mapped I/O, the VMM only allows
a virtual machine to see and access the particular I/O de-
vices it is permitted to use.

3.3 VMM Assurance

Our argument for the security of a VMI IDS rests on
the assumption that a VMM is difficult for an attacker to
compromise. We base this assumption on the claim that
a VMM is a simple-enough mechanism that we can rea-
sonably hope to implement it correctly. We have several
reasons for this claim. First, the interface to a VMM is
significantly simpler, more constrained and well specified
than that of a typically modern operating system. While
the VMM is responsible for virtualizing all of the archi-
tecture, many portions, such as virtualization of the CPU,
require little participation on the part of the VMM, since
most instructions are unprivileged. Second, the protection
model of a VMM is significantly simpler than that of a
modern operating system. Everything inside the VMM
is completely unprivileged with respect to the VMM, and
the VMM has only to provide isolation, with no concerns
about providing controlled sharing. Finally, although a
VMM is an operating system, it is significantly simpler
than standard modern operating systems. VMM’s such
as Disco [5] and Denali [53], which have both virtualized
very complex architectures, have been built in on the order
of 30K lines of code. This simplicity is attributable to the
lack of a filesystem, network stack, and often, even a full
fledged virtual memory system.1 Some will point out that
the small size and simplicity of a VMM do to its lack of

1This also applies to hosted VMMs as components such as the net-
work stacks will not be utilized, and need not even be included in the
host OS.

a filesystem and network stack is misleading, since these
facilities must ultimately be available to perform admin-
istrative functions such as logging and remote administra-
tion. However, this overlooks the fact that these activities
are not part of the core VMM, but run in a completely
different protection domain, typically in an administrative
VM that is strongly isolated both from other VM’s and
from the secure kernel of the VMM. While there is a risk
that this administrative VM(s) could be compromised, the
compartmentalization provided by a VMM does a great
deal to limit the extent of a compromise.

The small size and critical functionality of VMMs has
led to a significant investment in their testing, validation,
etc. Notable projects that have made strong claims for the
security of VMMs include the Vax security monitor [21]
and the NSA with their Nettop [29] system. Nettop also
relies on VMware Workstation for its VMM. Ultimately,
since VMware is a closed-source product, it is impossible
to verify this claim through open review.

3.4 Leveraging the VMM

Our VMI IDS leverages three properties of VMMs:

Isolation Software running in a virtual machine cannot
access or modify the software running in the VMM
or in a separate VM. Isolation ensures that even if
an intruder has completely subverted the monitored
host, he still cannot tamper with the IDS.

Inspection The VMM has access to all the state of a vir-
tual machine: CPU state (e.g. registers), all memory,
and all I/O device state such as the contents of storage
devices and register state of I/O controllers. Being
able to directly inspect the virtual machine makes it
particularly difficult to evade a VMI IDS since there
is no state in the monitored system that the IDS can-
not see.

Interposition Fundamentally, VMMs need to interpose
on certain virtual machine operations (e.g. executing
privileged instructions). A VMI IDS can leverage
this functionality for its own purposes. For exam-
ple, with only minimal modification to the VMM, a
VMI IDS can be notified if the code running in the
VM attempts to modify a given register.

VMMs offer other properties that are quite useful in a
VMI IDS. For example, VMMs completely encapsulate
the state of a virtual machine in software. This allows us
to easily take acheckpointof the virtual machine. Using
this capability we can compare the state of a VM under
observation to a suspended VM in a known good state,
easily perform analysis off-line, or capture the entire state
of a compromised machine for forensic purposes.



4 Design

In this section we present an architecture for a VMI IDS
system (shown in Fig. 1). First, we present the threat
model. Next, we discuss the major components of our
architecture and the design issues associated with these
components. In the next section we will delve into the
particulars of Livewire, a prototype VMI IDS system that
implements this architecture.

4.1 Threat Model

Ideally, the guest OS will not be compromised, as we
make some assumptions about the structure of the guest
OS kernel in order to infer its state. If the guest OS is com-
promised this may result in some loss of visibility assum-
ing the attacker modifies the guest OS in a way that mis-
leads the VMI IDS about the true state of the host. How-
ever, even in this case some visibility will be maintained,
and the VMI IDS will still be able to perform checks that
make fewer assumptions about memory structure (such as
naive signature scans) as well as maintaining access con-
trols on devices, sensitive memory areas, etc.

We assume that the code running inside a monitored
host may be totally malicious. We believe this model is
quite timely as attackers are increasingly masking their ac-
tivities and subverting intrusion detection systems through
tampering with the OS kernel [18], shared libraries, and
applications that are used to report and audit system
state [23] (e.g.tripwire , netstat ). We can only as-
sume that if VMI-based IDSes sees wide spread deploy-
ment attackers will attempt to develop similar counter-
measures.

All information that the IDS obtains from the moni-
tored host must be considered “tainted,” that is, containing
potentially misleading or even damaging data (e.g. incor-
rectly formatted data that could induce a buffer overflow).

The VMI IDS may make assumptions about the struc-
ture of the guest OS in order to implement some IDS poli-
cies. This reliance should only imply that if OS structures
are maliciously modified, it may be possible to evade poli-
cies that rely upon those structures, but should not affect
the security of the IDS in any other way.

4.2 The Virtual Machine Monitor

As explained in section 3, the VMM virtualizes the
hardware it runs on and provides the essential properties
of isolation, inspection, and interposition. VMMs provide
isolation by default; however, providing inspection and in-
terposition for a VMI IDS requires some modification of
the VMM. When adding these capabilities there are some
important design trade-offs to consider:

• Adding VMI functionality vs. Maintaining VMM sim-
plicity. We would like to minimize the changes re-

quired to the VMM in order to support a VMI IDS.
Implementation bugs in the VMM can compromise
its ability to provide secure isolation, and modify-
ing the VMM presents the risk of introducing bugs.
However, adding functionality to the VMM can pro-
vide significant benefits for the VMI IDS system as
well. The ability to efficiently interpose on the MMU
and CPU can allow the VMI IDS to monitor events
that would otherwise be inaccessible. In confronting
this issue in our prototype system, we provided ad-
ditional functionality by leveraging existing VMM
mechanisms. This strategy allowed us to expose a
great deal of functionality to the VMI IDS, while
minimizing changes to the VMM.

• Expressiveness vs. Efficiency. A VMM can allow a
VMI IDS to monitor many types of machine events.
Some types of events can be monitored with little
or no overhead, while others can exact a signifi-
cant performance penalty. Accessing hardware state
typically does not incur any performance penalty in
the VMM, so efficiently providing this functional-
ity is purely a matter of making state available to
the IDS with minimal copying. Trapping hardware
events, such as interrupts and memory accesses can
be quite costly because of their frequency. In our
prototype system we sought to manage this overhead
by only trapping events that would imply definite
misuse (e.g. modification of sensitive memory that
should never change at runtime). The overhead in-
curred for monitoring a particular type of event heav-
ily depends on the particular VMM one is using.

A final issue to consider is VMM exposure. The VMI
IDS has greater access to the VMM than the code run-
ning in a monitored VM. However, since we grant the IDS
access to the internal state of the VM we are potentially
exposing the IDS, and by transitivity the VMM to attack.
For this reason, it is important to minimize the VMM’s ex-
posure to the IDS. For example, communicating with the
VMM through an IPC mechanism should be preferred to
exporting internal hooks in the VMM and loading the IDS
as a shared library. By isolating the IDS from the VMM,
we reduce the risk of an IDS compromise leading to a
compromise of the VMM. Compromising the IDS should
at worst constitute a denial-of-service attack on the mon-
itored VM. A compromise of the VMM is a catastrophic
failure in a VMI IDS architecture.

4.2.1 The VMM Interface

The VMM must provide an interface for communication
with the VMI IDS. The VMI IDS can send commands to
the VMM over this interface, and the VMM will reply in
turn. In our architecture, commands are of three types:
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Figure 1. A High-Level View of our VMI-Based IDS Architecture: On the right is the virtual machine (VM) that
runs the host being monitored. On the left is the VMI-based IDS with its major components: the OS interface
library that provides an OS-level view of the VM by interpreting the hardware state exported by the VMM, the policy
engine consisting of a common framework for building policies, and policy modules that implement specific intrusion
detection policies. The virtual machine monitor provides a substrate that isolates the IDS from the monitored VM and
allows the IDS to inspect the state of the VM. The VMM also allows the IDS to interpose on interactions between the
guest OS/guest applications and the virtual hardware.

INSPECTION COMMANDSare used to directly examine
VM state such as memory and register contents, and I/O
devices’ flags.

MONITOR COMMANDS are used to sense when certain
machine events occur and request notification through an
event delivery mechanism. For example, it is possible for
a VMI to get notified when a certain range of memory
changes, a privileged register changes, or a device state
change occurs (e.g. Ethernet interface address is changed).

ADMINISTRATIVE COMMANDS allow the VMI IDS to
control the execution of a VM. This interface allows the
VMI IDS to suspend a VM’s execution, resume a sus-
pended VM, checkpoint the VM, and reboot the VM.
These commands are primarily useful for bootstrapping
the system and for automating response to a compromise.
A VMI IDS is only given administrative control over the
VM that it is monitoring.

The VMM can reply to commands synchronously
(e.g. when the value of a register is queried) or asyn-
chronously (e.g. to notify the VMI IDS that there has been
a change to a portion of memory).

4.3 The VMI IDS

The VMI IDS is responsible for implementing intrusion
detection policies by analyzing machine state and ma-

chine events through the VMM interface. The VMI IDS
is divided into two parts, theOS interface libraryand the
policy engine. The OS interface library’s job is to provide
an OS-level view of the virtual machine’s state in order
to facilitate easy policy development and implementation.
The policy engine’s job is purely to execute IDS policies
by using the OS interface library and the VMM interface.

4.3.1 The OS Interface Library

VMMs manage state strictly at the hardware level, but
prefer to reason about intrusion detection in terms of OS-
level semantics. Consider a situation where we want to
detect tampering with oursshd process by periodically
performing integrity checks on its code segment. A VMM
can provide us access to any page of physical memory or
disk block in a virtual machine, but discovering the con-
tents ofsshd ’s code segment requires answering queries
about machine state in the context of the OS running in
the VM: “where in virtual memory doessshd ’s code seg-
ment reside?”, “what part of the code segment is in mem-
ory?”, and “what part is out on disk?”

We need to provide some means of interpreting low-
level machine state from the VMM in terms of the higher-
level OS structures. We would like to write the code to
do this once and provide a common interface to it, instead



of having to re implement this functionality for each new
policy in our IDS. Our solution must also take into ac-
count variations in OS structure such as differences in OS
versions, configurations, etc.

The OS interface library solves this problem by using
knowledge about the guest OS implementation to interpret
the VM’s machine state, which is exported by the VMM.
The policy engine is provided with an interface for mak-
ing high-level queries about the OS of the monitored host.
The OS interface library must be matched with the guest
OS; different guest OSes will have different OS interface
libraries.

Some examples of the type of queries that the OS inter-
face library facilitates are: “give me a list of all the pro-
cesses currently running on the system,” or “tell me all the
processes which are currently holding raw sockets.” The
OS interface library also facilitates queries at the level of
kernel code, similar to the queries that one might give to
gdb like “show me the contents of virtual memory from
x to y in the context of the login process,” or “display the
contents of task structure for the process with PID 231.”

4.3.2 The Policy Engine

At the heart of any intrusion detection system is the policy
engine. This component interprets system state and events
from the VMM interface and OS interface library, and de-
cides whether or not the system has been compromised.
If the system has been compromised, the policy engine is
responsible for responding in an appropriate manner. For
example, in case of a break-in, the policy engine can sus-
pend or reboot the virtual machine, and report the break-
in. Since the focus of our work has been studying VMI
as a platform for IDS, we have focused on implementing
variations on mainstream HIDS style policies [37] such as
burglar alarms, misuse detectors and integrity checkers. A
policy engine implementing complex anomaly detection
and other, more exotic techniques can also be supported
in this architecture.

5 Implementation

To better understand the implementation difficulties,
performance overhead, usability, and practical effective-
ness of our VMI architecture, we built Livewire, a proto-
type VMI IDS. For our VMM we used a modified ver-
sion of VMware Workstation [49] for Linuxx86. Our
OS library was built by modifying Mission Critical’s
crash [30] program. Our policy engine consists of a
framework and modules written in the Python program-
ming language [17]. Each of these components runs in its
own process in Linux, our host OS.

5.1 VMM

We used a modified version of VMware Workstation for
Linux to provide us with a virtual machine monitor capa-
ble of running commonx86-based operating systems. In
order to support VMI, we added hooks to VMware to al-
low inspection of memory, registers, and device state. We
also added hooks to allow interposition on certain events,
such as interrupts and updates to device and memory state.

The virtual machine monitor supports virtual I/O de-
vices that are capable of doing direct memory access
(DMA). These virtual devices can use DMA to read any
memory location in the virtual machine. We used this vir-
tual DMA capability to support direct physical memory
access in the VMM interface. We accomplished this with
minimal changes to the VMM.

As part of this virtualization process, the VMM shad-
ows the page tables of the physical machine, allowing the
monitor to enforce more restrictive protection of certain
memory pages. An example of how this functionality can
be applied is the copy-on-write page sharing of the Disco
virtual machine monitor [5]. We used this mechanism to
write protect pages and provide notification if the VM at-
tempted to modify a protected page.

Interactions with virtual I/O devices such as Ethernet
interfaces are intercepted by the VMM and mapped actual
hardware devices in the course of normal VMM opera-
tion. We easily added hooks to notify us when the VM
attempted to change this state. Hooks to inspect the state
of virtual devices such as the virtual Ethernet card were
also added.

Adding anything to a VMM is worrisome as it means
changing low-level code that is critical to both the correct-
ness and performance of the system. However, we found
we could support the required interposition and inspection
hooks with only minor changes to VMware by leverag-
ing functionality required to support basic virtualization.
The functionality that we leveraged is common to most
VMMs, thus, we believe that adding interposition support
to other VMMs should be straightforward.

5.2 VMM Interface

The VMM interface provides a channel for the VMI
IDS processes to communicate with the VMware VMM
process. This interface is composed of two parts: first,
a Unix domain socket that allows the VMI IDS to send
commands to, and receive responses and event notifica-
tions from, the VMM; and second, a memory-mapped file
that supports efficient access to the physical memory of
the monitored VM.

In Livewire, when an event occurs, the VM’s execution
is suspended until the VMI IDS responds with an admin-
istrative command to continue. We opted for this model



of event notification as our policies only use monitor com-
mands for notification of definite misuse, which we handle
by halting as a matter of policy. For other policies, such
as monitoring interrupts to do system call pattern-based
anomaly detection [26], an event delivery model where
the VM does not suspend could also be supported.

5.3 OS Interface Library

Our OS interface library was built by modifying the
Linux crash dump examination toolcrash [30] to in-
terpret the machine state exported by the VMM inter-
face. The critical intuition here is that in practice there
is very little difference between examining a running ker-
nel through/dev/kmem with a crash dump analysis tool
from within a guest OS, and running the same tool outside
the guest OS. The VMM exports an interface similar to
/dev/kmem that provides access to the monitored host’s
memory in the form of a flat file.

Information about the specifics of the kernel being an-
alyzed (the symbol table, data types, etc.) are all derived
from the debugging information of the kernel binary by
crash or readelf . All other problems related to deal-
ing with differences in kernel versions were dealt with by
crash .

The IDS communicates with the OS interface library
over a full-duplex pipe, using it both to send and receive
their responses. The command set and responses were
simply those exported bycrash .

5.4 Policy Engine

The policy engine consists of two pieces: thepol-
icy framework, a common API for writing security poli-
cies, and thepolicy modulesthat implement actual secu-
rity policies. The policy engine was built entirely using
Python.

5.4.1 Policy Framework

The policy framework allows the policy implementer to
interact with the major components of the system with
minimal hassle by encapsulating them in simple high level
APIs. The policy framework provides the following inter-
faces:

OS INTERFACE L IBRARY: The OS interface library
presents a simple request/response to the module writer
for sending commands to the OS interface library, and re-
ceiving responses that have been marshaled in native data
formats. Tables containing key-value pairs that provide in-
formation about the current kernel (e.g. the kernel’s sym-
bol table) are also provided.

VMM I NTERFACE: The VMM interface provides di-
rect access to the VM’s physical address space and reg-
ister state. Physical memory space is accessed as a single

large array. This provides an easy way for the programmer
to search the VM’s memory, or to calculate secure hashes
of portions of memory for performing integrity checks.

Monitor commands are used by registering callbacks
for events that a policy module wants to be notified of,
e.g. a write to a range of memory, or modification of the
NIC’s MAC address. Callbacks can also be registered for
VM-level events, such as the VM rebooting or powering
down. Finally, the VM interface exports administrative
commands that allow policy modules to suspend, restart,
and checkpoint the VM.

L IVEWIRE FRONT END: The front end code is respon-
sible for bootstrapping the system, starting the OS inter-
face library process, loading policy modules, and running
policy modules in concert. Interfaces are provided for
obtaining configuration information, reporting intrusions,
and registering policy modules with a common controller.

5.4.2 Policy Modules

We have implemented six sample security policy modules
in Livewire. Four modules arepolling modules, modules
that run periodically and check for signs of an intrusion.
The other two areevent-driven modulesthat are triggered
by a specific event, such as an attempt to write to sensitive
memory.

Each policy module is an individual Python module
(i.e. a single file) that leverages the policy framework.
Policy modules can be run stand-alone or in concert with
other policy modules.

We found writing modules using the Livewire policy
framework a modest task. Most of the polling modules
were written in less than 50 lines of Python, including
comments. Only the user program integrity detector (see
Section 6.1.2) required more code than this, at 130 lines of
Python. The event-driven modules were also quite simple,
each one requiring roughly 30 lines of code.

A detailed discussion of the policy modules we imple-
mented is given in the next section.

6 Example Policy Modules

In this section we present a variety of policy modules
that we have implemented in Livewire. Our goal with
these policies was not to provide a complete intrusion de-
tection package, nor was it to experiment with novel pol-
icy design. Instead we chose policies as simple exam-
ples that illustrate more general paradigms of policy de-
sign that can be supported by this architecture.

6.1 Polling Policy Modules

Polling modules periodically check the system for signs
of malicious activity. All of our polling modules possess



close HIDS analogues, as they only leverage the VMM
for isolation and inspection. The former is not essential
to their function, and the latter can be provided by normal
OS mechanisms for accessing low-level system state. In
fact, we initially developed some of our polling checkers
by running Livewire on the guest OS it was monitoring
and inspecting system state through/dev/kmem .

6.1.1 Lie Detector

Attackers often achieve stealth by modifying the OS ker-
nel, shared libraries, or user-level services to mask their
activities. For example, suppose an intruder wants to mod-
ify the system to hide malicious processes. The attacker
can modifyps , modify shared libraries, or modify the
/proc interface thatps uses to find out about currently
running processes. These modification can lead to incon-
sistencies between the kernel, or hardware view of the sys-
tem, and the view provided by user-level programs. A va-
riety of HIDS programs detect intruders by noting these
inconsistencies [28].

The lie detector module works by directly inspecting
hardware and kernel state, and by querying the host sys-
tem through user-level programs (e.g.ps , ifconfig ,
netstat ) via a remote shell. If it detects conflicts be-
tween these two views (i.e. the system is lying), it reports
the presence of malicious tampering. This technique has
the nice property that it does not matter what part of the
system the intruder modified in order to elicit the mali-
cious behavior. One concern we had when building this
checker was ensuring that the views we compared were
from the same point in time. In practice, we did not en-
counter any problems with skew that led to false positives.

6.1.2 User Program Integrity Detector

Checking the integrity of a program binary on disk (ala.
tripwire [22]) does not ensure that the corresponding
in memory image of that program has not been modified
(e.g. viaptrace [1]). Our integrity checker attempts to
detect if a running user-level program has been tampered
with by periodically taking a secure hash of the immutable
sections (.text , etc.) of a running program, and com-
paring it to a known good hash. This approach is particu-
larly well suited to securing long running programs such
as sshd , inetd , andsyslogd that are continuously
present in memory.

One complication we encountered while implementing
this checker was is that portions of large programs may
be paged out to disk, or simply never demand-paged into
memory in the first place. Our current implementation
deals with this issue by taking per-page hashes and only
examining the portion of a program that is in memory.

6.1.3 Signature Detector

Scanning the file system for the presence of known ma-
licious program based on a known “signature” substring
of the program is a popular intrusion detection technique.
It is employed by anti-virus tools as well as root-kit de-
tection tools likechkrootkit [31].These tools leverage
the fact that most attackers do not write their own tools,
but instead rely on a relatively small number of publicly
available rootkits, backdoors, Trojan horses and other at-
tack tools. Popular examples include “subseven,” “back-
orifice,” and “netbus” Trojan horses for Windows, or the
“adore” and “knark” kernel backdoors under Linux. Most
Unix HIDS systems that look for signature strings only
scan a few selected files for signatures. Our signature de-
tector performs a scan of all of host memory for attack sig-
natures. This more aggressive approach requires a more
careful selection of signatures to avoid false positives. It
also means that malicious programs that have not yet been
installed may also be detected, e.g. in the filesystem buffer
cache.

6.1.4 Raw Socket Detector

Raw sockets have legitimate applications in certain net-
work diagnostic tools, but they are also used by a variety
of “stealth” backdoors, tools for ARP-spoofing, and other
malicious applications that require low-level network ac-
cess. The raw socket detector is a “burglar alarm” [37]
style policy module for detecting the use of raw sockets
by user-level programs for the purpose of catching such
malicious applications. This is accomplished by query-
ing the kernel about the type of all sockets held by user
processes.

6.2 Event Driven Policy Modules

Event-driven checkers run when the VMM detects
changes to hardware state, such as a write to a sensitive
location in memory. At startup, each event-driven checker
registers all of the events it would like to be notified of
with the policy framework. At runtime, when one of these
events occurs, the VMM relays a message to the policy
framework. The policy framework runs the checker(s)
which have registered to receive the event. In a purely
intrusion-detection role, event-driven checkers can sim-
ply report the event that has occurred according to their
policy, and allow the virtual machine to continue to run.
The VMM can also be directed to suspend on events, thus
allowing the policy module to also serve as a reference
monitor that regulates access to sensitive hardware.



6.2.1 Memory Access Enforcer

Modern computer architectures generally allow programs
running in ring 0 (i.e. the kernel) to render certain sec-
tions of memory read-only, such as their text segment and
read-only data, as a standard part of their the memory pro-
tection interface. However, they also allow anything else
running in ring 0 to disable these access controls. Thus,
while these mechanisms are useful for detecting acciden-
tal protection violations due to faulty code, they are rela-
tively useless for protecting the kernel from tampering by
other malicious code that is running in ring 0 (for example
a kernel backdoor).

Detecting tampering with an OS code segment can be
an useful mechanism for discovering the presence of ma-
licious code, and preventing its installation into the kernel
proper. Our kernel memory enforcer works by marking
the code section,sys call table , and other sensitive
portions of the kernel as read-only through the VMM. If
a malicious program, such as a kernel back door tries to
modify these sections of memory, the VM will be halted
and the kernel memory protection enforcer notified. Sev-
eral HIDS tools [47, 36] attempt to detect modifications to
thesys call table and system call code through the
use of integrity checking. However, this approach is far
less attractive due to its lack of immediacy (and inability
to prevent attacks) as well as the additional overhead it in-
curs. Sensitive registers like theidtr can also be locked
down.

6.2.2 NIC Access Enforcer

The NIC Access Enforcer prevents the Ethernet device
entering promiscuous mode, or being configured with a
MAC address which has not been pre-specified. Using
this module we can prevent variety of common misuses of
the NIC to be detected and prevented. In spite of its sim-
ple functionality the NIC module provides a useful policy
enforcement tool. It is more robust to attack than normal
host-based solutions, and not susceptible to evasion, as is
a problem with remote promiscuous mode detection solu-
tions [9].

7 Experimental Results

In this section we present an experimental evaluation
of our Livewire prototype. Our evaluation consists of
two parts. First, we test the effectiveness of our security
policies against some common attacks. This portion of
our evaluation was undertaken to ensure that our policies
worked in practice, and to gain experience with utilizing
Livewire against real attacks. The second part of our eval-
uation consisted of testing the performance overhead of
Livewire on several sample work loads.

Our target host consisted of virtual machine with a 256
MB allocation of physical memory and a 4 GB virtual
disk, running a relatively standard installation of Debian
GNU/Linux. The virtual machine monitor (a modified
version VMware Workstation for Linux version 3.1) was
run on a 1.8 GHz Pentium IV laptop with 1 GB of physical
memory, running Debian GNU/Linux as a host OS.

7.1 Sample Attacks

Our test suite of sample attacks consisted of kernel- and
user-level rootkits and backdoors [40, 11, 48, 7, 44] Trojan
horses [27], packet sniffers [43, 27], and a worm [8]. All
test attacks were obtained from public sources and were
modified only as necessary for configuration, or for adap-
tation to our kernel. A selection of nine attacks that we
feel provides a good representative cross-section has been
chosen for our discussion. A summary of the attacks and
our results is depicted in Table 7.

7.2 Detection Results

In order to collect our detection results we set up our
system under Livewire and then downloaded, installed,
and ran each attack. Once an attack had been tested the
system was rolled back to a clean state before another at-
tack was attempted.

Our Signature Scanner(“sig”) was able to detect all
of the attacks we provided signatures for. This was a pre-
dictable result; the only interesting surprise was that it of-
ten detected the presence of malicious code before it had
been run, based on the presence of the signature in the
buffer cache (when we examined them on disk), in the
memory ofssh (as they were being downloaded), or in
memory once activated. Initially, we encountered several
false positives due to overly general signatures. For exam-
ple, the string “adore” works fine as a signature for a file
system-based checker, such aschkrootkit , but is too
general a signature for a scanner looking at all of mem-
ory. OurRaw Socket Detector(“raw”) raw socket detec-
tor detected the presence ofcd00r and a similar stealth
backdoor we included in our test attack suite. OurLie De-
tector (“lie”) modules proved especially effective against
rootkits both at kernel and user level since they all pro-
vided functionality to hide processes. TheUser Program
Integrity Checker (“int”) was able to detect the presence
of t0rn and lrk5 based on their use of backdoored version
of inetd andsshd . We also found it also effective in
detecting backdoored versions ofsyslog . OurMemory
Protection Enforcer (“mem”) was able to detect and pre-
vent the installation of all of our kernel backdoors.knark
andadorewere stopped by blocking their attempt to mod-
ify sys call table. SUCKIT was stopped by blocking its
attempt to modify the interrupt dispatch table. OurNIC
access enforcer(“nic”) was trivially able to detect and



Name Description nic raw sig int lie mem

cdoor Stealth user level remote backdoor D
t0rn Precompiled user level rootkit D D

Ramen Linux Worm D
lrk5 Source based user level rootkit P D D D

knark-0.59 LKM based kernel backdoor/rootkit D D P
adore-0.42 LKM based kernel backdoor/rootkit D D P
dsniff 2.4 All-purpose packet sniffer for switched networks P
SUCKIT /dev/kmem patching based kernel backdoor D D P

Table 1. Results of Livewire policy modules against common attacks. Within the grid, “P” designates a prevented
attack and “D” a detected attack.

0 2 4 6 8

Polling Interval (seconds)

14

16

18

20

22

T
im

e 
(s

ec
on

ds
)

raw
int
lie
sig
baseline

Figure 2.Performance of Polling Policy Modules

prevent the packet sniffers in our test attack suite from
operating, based on their reliance on running the NIC in
promiscuous mode.

7.3 Performance

To evaluate the performance of our system we consid-
ered two sample work loads. First, we unzipped and un-
tarred the Linux 2.4.18 kernel to provide a CPU-intensive
task. Second, we copied the kernel from one directory to
another using thecp -r command to provide a more I/O
intensive task.

We used the first workload to evaluate the overhead of
running event-driven checkers in the common case when
they are not being triggered. As expected, no measurable
overhead was imposed on the system.

We used our second workload to evaluate the overhead
associated with running our checkers at different polling
intervals. The results are shown in figure 2. The baseline
measurement shows performance of the workload without
Livewire running. Our performance results were some-
what surprising to us. We had expected the time taken by
polling modules as a function of the total time to decrease

linearly as the cost of checking was amortized over the
total running time of the the workload. While this was
generally the trend, we found that as the polling interval
decreased the interactions with the workload became more
erratic.

8 Weaknesses and Attacks

In this section we present avenues for attacking and
evading VMI-based IDS architectures and explore ap-
proaches to addressing these problems. Some of the is-
sues that we present are unique to the problem of building
a VMI IDS; other are more general issues that arise in at-
tempts to build secure systems with VMMs.

8.1 Attacking the VMM

8.1.1 Indirect Attacks

VMMs may provide interfaces accessible from outside of
a VM that provide an avenue of attack. For example, a
hosted VMM might be running on a host OS with a re-
motely exploitable network stack, or application-level net-
work service. In a VMI IDS, the threat of indirect attacks
can be minimized by using a traditional VMM that pos-
sesses no network stack or by disabling the network stack
in a hosted environment.

8.1.2 Detecting the VMM

The first step in evading a VMI IDS is detecting its pres-
ence. A significant hint that a VMI IDS may be present is
the presence of a VMM. Unfortunately, masking the pres-
ence of a VMM is almost impossible due to differences
in the relative amount of time that I/O operations, device
access, virtualized instructions, and other processes take
as compared to a non-virtualized interface [16]. Hiding
these disparities is impractical and not worth the little bit
of additional stealth it would provide the IDS. Timing can
also leak information that could betray the presence of a
VMI IDS and its activities.



8.1.3 Directly Subverting the VMM

The VMM may expose the VMI IDS to direct attack in
two ways: flaws in the design of the VMM or flaws in
its implementation. The former problem can occur when
VMMs are not designed with malicious guest code in
mind. For example, virtual environments like User-Mode
Linux are sometimes designed with debugging or applica-
tion compatibility as their primary application and do not
provide secure isolation. The latter problem occurs when
there is an error in the VMM code, or code the VMM
relies upon. We conjecture that such errors would most
likely be found in device driver code leveraged by virtual
devices. While secure VMMs have been built with ma-
licious users in mind, device drivers are often less para-
noid about sanitizing their inputs, and thus can be subject
to attack [3]. The VMM can attempt to deal with this
issue defensively by judiciously checking and sanitizing
data flowing from virtual devices to device drivers. This
helps to minimize the risk of these inputs compromising
the device driver. All devices drivers used with a VMM
should be carefully screened.

8.1.4 Attacking the VMM through the IDS

The presence of the VMI IDS introduces another avenue
for attacking the VMM. Fortunately, the VMI IDS re-
quires minimal privilege beyond its ability to manipulate
the guest VM, so that the impact of an IDS compromise
on the VMM can be mitigated by running the IDS in its
own VM, or by isolating it from the VMM through some
other mechanism.

8.2 Attacking the IDS

8.2.1 Fooling the OS Interface Library

The OS interface library relies on meta-data gleaned from
a kernel binary or other sources in order to interpret the
structure of the OS. If an attacker can modify the structure
of the guest OS so that it is inconsistent with the meta-data
that the OS interface library possess, he can fool the OS
interface library about the true state of the system. This
style of attack is used against kernel modules that attempt
to detect tampering with thesys call table through
integrity checking [40]. In order to subvert these modules,
attackers modify the interrupt dispatch table so that the
kernel uses a different system call table altogether, while
the module continues to check a system call table that is
no longer in use. The problem of maintaining a consistent
view of the system is fundamental to the VMI-based IDS
approach. Livewire attempts to counter this type of attack
through the memory access enforcer by disabling the at-
tacker’s ability to modify memory locations and registers
that could allow sensitive kernel structures to be relocated,

thus fooling the OS interface library. There are many sen-
sitive mutable kernel data structures that we do not yet
protect that could present an avenue for attack. We have
simply tried to “raise the bar,” and prevent the most obvi-
ous of cases of this class of attack. Finding better meth-
ods for identifying and enforcing the static and dynamic
invariants that a VMI IDS relies upon seems an important
area for further study.

8.2.2 Compromising the OS Interface Library

The OS interface library is the VMI IDS’s point of great-
est exposure to potentially malicious inputs. Because of
this it is vital to carefully sanitize inputs, and treat all data
gleaned from the virtual machine by direct inspection as
tainted. The potential for problems in this part of the sys-
tem is especially apparent in our Livewire prototype. The
OS interface libraries are based on crash dump analysis
tools written in C, thus presenting an ideal opportunity for
a buffer overflow. Another means of attacking the OS in-
terface library is by modifying kernel data structures to
violate invariants that the OS interface library assumes.
For example, introducing a loop into a linked list in the
kernel that the OS interface library will read (e.g. a list of
file descriptors) could induce resource exhaustion, or sim-
ply cause the OS interface library to wedge in a loop. The
OS interface library must not assume any invariants about
the structure of its inputs that are not explicitly enforced
through the VMM. Given the potentially complex nature
of the OS interface library, it seems advisable to isolate it
from the policy engine and give it minimal privilege. In
Livewire, this is approximated by running the OS interface
library in a separate process, with only enough privilege to
inspect the memory and registers of the monitored VM. If
the OS interface library hangs, the policy engine can kill
and restart it.

8.2.3 Compromising the Policy Engine

The extent to which the policy engine is vulnerable to
compromise is dependent on the policies and implemen-
tation of the policy engine. We have taken several steps
in our Livewire prototype to reduce the risk of a policy
engine compromise:

• Sanitize Inputs: The need to carefully check and
sanitize inputs from the guest OS cannot be empha-
sized enough. Inputs that come from the VMM inter-
face and OS interface library should also have sanity
checks applied to them.

• A High-Level Policy Language: Building ID-
Ses that utilize a high-level policy language is a
proven technique for building flexible, extensible



NIDSes [33]. VMI IDSes also realize these bene-
fits with a high-level policy language. Additionally,
high-level policy languages also reduce the possibil-
ity of a total compromise due to memory safety prob-
lems. A high-level language like Python is especially
well suited for doing pattern matching, manipulating
complex data types, and other operations that are fre-
quently useful for introspection. This expressiveness
and ease of use allows policies to be written in a con-
cise and easy-to-understand manner that minimizes
errors.

• Failing Closed: In Livewire, the VMM can suspend
on the last synchronous event that occurred and will
not continue until explicitly instructed by the IDS.
This means that even if the policy engine crashes,
protected hardware interfaces will still not be ex-
posed. This type of fail-closed behavior is always
recommended when a VMI IDS is also being used as
a reference monitor.

• Event Flow Control: In the case when Livewire
cannot keep up with queued asynchronous events, the
VMM can suspend until Livewire can catch up. Un-
like an NIDS which cannot necessarily stem the flow
of traffic [33], it is easy to stem the flow of events to
the VMI IDS.

• Avoiding Wedging with Timers: In Livewire, the
polling module are run serially by a single thread of
control. This introduces the risk that a bug in one pol-
icy module could cause the entire IDS to hang. We
have tried to address this problem in two ways. First,
all of our policy modules are written defensively, at-
tempting to avoid operations that could hang indefi-
nitely, and using timers to break out of these opera-
tions when necessary. Second, each policy module is
only given a set amount of time to complete its task,
and will be interrupted if it exceeds that limit, so that
the next module can run.

9 Related Work

Classical operating system security issues such as con-
finement and protection have been studied extensively
in traditional VMMs. In previous years thorough stud-
ies of these problems have been presented for VM/370
[39, 14, 13, 12] and the Vax Security Kernel [21]. The
most recent implementation study of a security kernel can
be found in work on the Denali isolation kernel[53]. A re-
cent application of VMMs for pure isolation can be found
in the NSA’s nettop [29] architecture.

VMMs have also become a popular platform for build-
ing honey pots [41]. Often a network of virtual machines

on a single platform will be built to form a honey net, pro-
viding a low-cost laboratory for studying the behavior of
attackers.

The idea of collocating security services with the host
that they are monitoring, as we study in this work, has also
seen attention in the ReVirt [10] system, which facilitates
secure logging and replay by having the guest operating
system (the OS running inside the VM) instrumented to
work in conjunction with the VMM.

Chen et al. [6] proposed running code in a VM in or-
der to discover if it is malicious before proceeding with
its normal execution. This idea is similar to the applica-
tion of VMs to fault tolerance explored by Bressoud and
Schneider in their Hypervisor [4] work.

Goldberg’s work on architectural requirements for
VMMs [15] and his survey of VMM research up to 1974
[16] are the standard classic works on VMMs. More re-
cent noteworthy work on VMM architectural issues can
be found in Disco [5], and in work on virtualizing I/O [45]
and resource management [51] in VMware.

Also relevant to the topic of VM introspection is work
on whole-machine simulation in SimOS [38], which also
looked at the issues involved in instrumenting virtual hard-
ware and extrapolating guest operating system state from
hardware state.

10 Future Work

There are still many significant questions to be ad-
dressed about how VMI-based intrusion detection systems
can best be implemented and used.

Livewire has taken an extremely conservative approach
to introspection by primarily engaging in passive checks
that incur no visible impact on system performance. This
decision allowed Livewire to be implemented with only
minimal changes to the virtual machine monitor. How-
ever, the cost of this was that monitoring frequent asyn-
chronous events, e.g. all system calls, may be quite per-
formance intensive. Our current architecture could sup-
port frequent asynchronous checks, such as monitoring
and processing system call, and supporting lightweight
data watchpoints with relative efficiency via. hard coding
the functionality to log these events directly into the mon-
itor, then offloading the processing of these logs to the
policy engine. However, this approach seems somewhat
inflexible. We believe a more promising approach would
involve support for providing a small, safe and extensi-
ble mechanism for efficiently filtering architecture events
in the VMM, in much the same fashion that current OSes
provides this functionality for filtering packets via BPF.

In Livewire we made the choice to leverage thecrash
program in order to provide us with an OS interface li-
brary. This provided the functionality to experiment with
a wide range of policies while minimizing implementation



time. However, given the OS interface libraries exposure
to attack it would be desirable to have a dedicated OS in-
terface library of significantly smaller size, ideally written
in a safe language. Another factor deserving further study
in the OS interface library is that of concurrency. How
can system kernel state be safely observed in the presence
of constant updates to kernel state? How should the OS
interface library respect OS locking primitives?

Other IDS tools can benefit from the capability of a
VMM to allow secure collocation of monitoring on the
same machine as the host, even without the use of intro-
spection. HIDS techniques such as filesystem integrity
checking could easily be moved outside of the host for
better isolation. Conversely, NIDSes could be moved onto
the same platform as the host, thereby distributing the load
of performing packet analysis to end hosts, and potentially
facilitating the use of more complex policies. Finally, the
benefits of isolating protection mechanisms from the host
has received little attention. Moving distributed firewalls
as described by Ioniddis et. al . [20] outside of the host
seems like an obvious application for this mechanism.
An isolated keystore is another natural application of this
mechanism.

11 Conclusion

We propose the idea of virtual machine introspection, an
approach to intrusion detection which co-locates an IDS
on the same machine as the host it is monitoring and lever-
ages a virtual machine monitor to isolate the IDS from the
monitored host. The activity of the host is analyzed by
directly observing hardware state and inferring software
state based on a priori knowledge of its structure. This
approach allows the IDS to: maintain high visibility, pro-
vides high evasion resistance in the face of host compro-
mise, provides high attack resistance due to strong isola-
tion, and provides the unique capability to mediate access
to host hardware, allowing hardware access control poli-
cies to be enforced in the face of total host compromise.
We showed that implementing our architecture is practical
and feasible using current technology by implementing a
prototype VMI IDS and demonstrating its ability to de-
tect real attacks with acceptable performance. We believe
VMI IDS occupies a new and important point in the space
of intrusion detection architectures.
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A Sample Attacks

• cd00r is a user level, stealth remote backdoor [11]. It
monitors incoming traffic on a raw socket and looks
for a particular traffic pattern (for e.g. 3 SYN pack-
ets on ports 6667,6668, 6669) before “de-cloaking”
and opening normal socket to facilitate remote ac-
cess. This makes it impervious to remote detection
through techniques such as port scanning.

• dsniff is a popular packet sniffer [43]. It is often used
by attackers to glean unencrypted passwords from
network traffic.

• t0rn [48] and lrk5 [27] are popular representatives of
what might be called the “old school” of kernel back-
doors in that they are simply a collection of back-
doored binaries and log cleaning scripts that allow an
attacker with root privileges to hide their activities,
gain elevated permissions, sniff the network for pass-
words, and other common tasks. While these rootk-
its are detectable using file system integrity checkers
such astripwire or file signature checkers such as
chkrootkit , methods for subverting these secu-
rity measures are well known [18, 23], and the tools
implementing these methods widely available.



• LKM-based rootkits, like Adore [44] and Knark [7],
are popular representatives of the second genera-
tion of Linux kernel module (LKM) based back-
doors. Mechanism-wise they differ little from early
backdoors such asheroin.c ; their attack vector is
still direct installation into the kernel via the load-
able module interface and they modify the kernel
by directly patching thesys_call_table , which
makes them detectable throughsys_call_table
integrity checking tools such asStMichael and
Sanhaim . Unlike first-generation backdoors which
often performed only one task, these backdoors can
perform many tasks, such as hiding files, hiding pro-
cesses, permission elevation, hiding the state of the
promiscuous mode flag on the NIC, and a variety of
other tasks an attacker might desire. These modules
have ushered in a move away from user-level rootk-
its that are more easily detectable through integrity
checking programs liketripwire , long a mainstay
of HIDS, and toward entirely kernel-based rootkits
that are significantly harder to detect.

• Ramen [8] is a Linux worm in the tradition of UNIX
worms dating back to the original RTM work that
brought down the Internet in the 80s. It relies on
buffer overflows in common services to penetrate the
remote host. Once the host has been penetrated, it
installs itself and begins scanning for new targets to
infect. HIDS and NIDS tools typically attempt to de-
tect Ramen by looking for files namedramen.tgz
or looking for its signature in network traffic, respec-
tively.

• SUCKIT is a recently introduced “Swiss army”
kernel-based rootkit along same lines as adore and
knark. What makes SUCKIT particularly interest-
ing is that it has been built with the intent of in-
stallation it through the/dev/kmem interface in or-
der to allow subversion of systems where LKM sup-
port has been disabled. It also modifies theint
0x80 handler directly instead of tampering with the
sys_call_table , thereby allowing it to avoid
detection by kernel integrity checking based IDSes
such as StMichael. SUCKIT is also particularly im-
portant as an indicator of things to come. As HID-
Ses to detect kernel-based subversion become more
common and easy attack vectors for kernel subver-
sion are disabled (such as the LKM support), ker-
nel backdoors can be expected to evolve in response.
While SUCKIT currently contents itself with evad-
ing systems like StMichael or Sanhaim, there is no
particular reason it could not simply scan the ker-
nel for the presence of these systems and eviscerate
them directly. Furthermore, a host of points to in-

terpose in the kernel exist, which while not as trivial
to interpose upon as thesys_call_table inter-
face, are just as potent a mechanism for attack [25].
Given their number, these interposition points make
the overhead of polling based integrity checking that
current kernel IDS systems rely upon infeasible. Fi-
nally, the stealth of this class of malicious code could
clearly be greatly increased using common tech-
niques from the virus community. Thus, while this
class of attacks is still relatively easy to address with
existing HIDS mechanisms, we cannot expect that
this will hold true in the foreseeable future. A com-
plete description of SUCKIT as well as other non
LKM based kernel backdoors is presented in Phrack
[40, 32].


