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Abstract

File systems were originally designed for hosts with
only one disk. Over the past 20 years, a number of in-
creasingly complicated changes have optimized the per-
formance of file systems on a single disk. Over the
same time, storage systems have advanced on their own,
separated from file systems by the narrow block inter-
face. Storage systems have increasingly employed par-
allelism and virtualization. Parallelism seeks to increase
throughput and strengthen fault-tolerance. Virtualization
employs additional levels of data addressing indirection
to improve system flexibility and lower administration
costs. Do the optimizations of file systems make sense
for current storage systems? In this paper, I show that
the performance of a current advanced local file system
is sensitive to the virtualization parameters of its storage
system. Sometimes random block layout outperforms
smart file system layout. In addition, Random block lay-
out stabilizes performance across several virtualization
parameters. This approach has the advantage of immu-
nizing file systems to changes in their underlying storage
systems.

1 File Systems

The first popular file systems used local hard disks for
persistent storage. Today there are often several hops
of networking between a host and its persistent storage.
Most often, that final destination is still a hard disk. Disk
geometry has played a central role in the past 20 years of
file system development. The first file system to make al-
location decisions based on disk geometry was the BSD
Fast File System (FFS) [5]. FFS improved file system
throughput over the earlier UNIX file system by clus-
tering sequentially accessed data, colocating file inodes
with their data, and increasing the block size, while pro-
viding a smaller block size, called a fragment, for small
files. FFS introduced the concept of the cylinder group,

a three-dimensional structure consisting of consecutive
disk cylinders, and the basis for managing locality to im-
prove performance. After FFS, several other advances
further optimized file system layout and access for sin-
gle disks.

Log-structured file systems [7] [8] take a fundamen-
tally different approach to data modification that is more
like databases than traditional file systems. An LFS up-
dates copy-on-write rather than update-in-place. While
an LFS looks very different, its design is motivated by
the same assumption as the FFS optimizations. That is,
sequential operations have the best performance. Advo-
cates of LFS argued that reads would become insignifi-
cant with large buffer caches. Using copy-on-write ne-
cessitates a cleaner thread to read and compact log seg-
ments. The behavior of log-structured file systems is still
incompletely understood and the subject of ongoing re-
search.

Journaling [3] is less radical than log-structuring and
is predicated on the same assumption that sequential disk
operations are the most efficient. In a log-structured file
system, a single log stores all data and metadata. Jour-
naling stores only metadata intent records in the log and
seeks to improve performance by transforming metadata
update commits into sequential intent writes, allowing
the actual in-place update to be delayed. The on-disk
data structures are not changed and there is no cleaner
thread. Soft updates [2] is a different approach that aims
to solve the same problem. Soft updates adds complexity
to the buffer cache code so that it can carefully delay and
order metatadata operations.

These advances have been predicated on the efficiency
of sequential operations in a block address space. Does
this hold for current storage systems?

2 Storage Systems

File systems use a simple, narrow, and stable abstract in-
terface to storage. While the underlying system imple-



menting this interface has changed from IDE to SCSI to
Fibre Channel and others, file systems have continued
to use the put and get block interface abstraction. File
and storage system innovation have progressed indepen-
dently on the two sides of this narrow interface. While
file systems have developed more and more optimiza-
tions for the single disk model of storage, storage sys-
tems have evolved on their own, and have evolved sub-
stantially from that single disk.

The first big change was disk arrays and, in particular,
arrays known as Redundant Arrays of Inexpensive Disks
(RAID). A paper by Patterson and Gibson [6] popular-
ized RAID and outlined the beginnings of an imperfect
but useful taxonomy called RAID levels. RAID level 0 is
simply the parallel use of disks with no redundancy. Ar-
rays employ disks in parallel to increase system through-
put. They typically stripe the block address space across
their component disks. For large stripes, blocks that are
together in the numerical block address space will most
likely be located together on the same disk. However, a
file system that locates blocks that are accessed together
on the same disk will prohibit the storage system from
physically operating on those blocks in parallel. For a
file system that translates temporal locality to numeri-
cal block address space proximity two opposing forces
are in struggle. First, an increasing stripe unit will clus-
ter blocks together and improve single disk performance.
Second, an increasing stripe unit will move blocks that
are accessed together onto the same storage device, re-
ducing the opportunity for mechanical parallelism.

Storage virtualization is just a level of indirection. A
translation layer does not come for free. Why are storage
systems becoming increasingly virtualized? What prob-
lem is this solving? Virtualization abstracts the block
address space to hide failures and facilitate transparent
reconfiguration. By hiding failures, the system can use
more components to achieve higher throughput, as with
arrays. By allowing for transparent reconfiguration, the
system can both reduce administration costs and increase
reliability by allowing administrators to upgrade systems
without notifying applications. Administrators can in-
stall new storage subsystems, expand capacity, or reallo-
cate partitions without affecting file system service. The
indirection of virtualization is great for storage system
scalability and administration, but it completely disrupts
the assumption that there is a strong link between prox-
imity in the block address space and lower sequential ac-
cess times through efficient mechanical motion.

From the outside, a storage system’s virtualization
looks like one monolithic map. On closer inspection, it is
a layering of mappings that compose to take an address
from the file system down to where it actually represents
a location in physical reality. At each translation level,
logical addresses are exported up and physical addresses

disk:
paddr = tbl[baddr / chunk_sz]

+ baddr % chunk_sz
array:
(diskno, paddr) =
fun(stripe_unit, numdisks, baddr)

volume:
(diskno, paddr) =
fun(stripe_unit, numdisks,

tbl[baddr / chunk_sz]
+ baddr % chunk_sz)

Figure 1: The virtualization models
This figure shows pseudocode for the disk, array, and volume
virtualization models. These models map the block addresses
used by the file system to the physical addresses used internally
by the storage system.

are sent down.
Virtualization is present in SCSI drives, where

firmware remaps faulty blocks. However, at least in
young and middle-aged drives, this remapping is not be-
lieved to be significant enough to meaningfully disrupt
the assumptions of local file systems. One set of exper-
iments in this paper investigates how a particular model
of disk remapping affects performance. On a scale larger
than single disks, virtualization is used to provide at least
one level of address translation between the file and stor-
age systems. Arrays remap addresses for striping and
volumes further remap partitions across devices.

Figure 1 shows the model of virtualization used in
this paper. The baddr is the block address used by
the file system and the paddr and diskno are, re-
spectively, the physical sector address and disk num-
ber used within the storage system. The virtualization
layer maps file system block addresses to storage sys-
tem physical sector addresses. The chunk sz is the
size of the virtualization chunk, in sectors. Chunks are
remapped between virtual and physical address spaces
maintaining the ordering of their internal sectors. Like-
wise, the stripe unit is the size of the stripe and
stripes are remapped maintaining their internal sector or-
dering. Chunking of volumes requires memory to store
the individual mappings. Here this is represented as a
table, tbl. The table is indexed into using integer divi-
sion on block addresses to number chunks from base 0.
The physical addresses in the table represent the base of
the chunk. The block address modulo the chunk size is
added to this base for the physical sector address. The de-
terministic remapping of striping can be computed with
a function, shown here as fun. This function takes the
stripe unit, the size of the array, numdisks, and the
block address and outputs the sector and disk index.



3 Experimental Methodology

This paper is motivated by the question: how do file sys-
tems optimizations affect their performance on virtual-
ized storage systems?

To answer this question, I traced two applications
(macrobenchmarks) on Ext3 to generate two sets of
block traces; the actual and the actual with locality op-
timizations destroyed but meaning preserved. Ext3 is
a contemporary file system that incorporates advances
such as journaling, clustering, and metadata grouping.
I ran both sets of traces on a storage system simula-
tor, varying system scale and the virtualization param-
eters. Sequential and random microbenchmark exper-
iments give insight into how a randomized access pat-
tern can outperform sequential and also stabilize perfor-
mance.

All the trace generation experiments were run on the
same Linux 2.6.11 system. Throughout the tracing, the
configuration of the system was unchanged, consisting
of 32K L1 cache, 256K L2 cache, a single 1GHz Intel
Pentium III microprocessor, 768MB DRAM, and 3 8GB
SCSI disks. The disks are all Seagate ST318405LW and
share the same bus. One of the disks was dedicated to
benchmarking, storing no other data and used by no other
processes. A separate disk was used for trace logging.

I wrote in-kernel code to trace the sector number, size,
and I/O type of block operations. Trace records are
stored in a circular kernel buffer. A user-level utility
polls the buffer, extracting records and appending them
to a file on an untraced device. I traced two benchmarks;
postmark and build.

Postmark [4] is a synthetic benchmark designed to use
the file system as an email server does, generating many
metadata operations on small files. Postmark was run
with file sizes distributed uniformly betwen 512B and
16K, reads and writes of 512B, 2000 transactions, and
20000 subdirectories.

Build is a build of the kernel and modules of a pre-
configured Linux 2.6.11. It is a real workload, not a syn-
thetic benchmark. Both postmark and build start with a
mount so that the buffer cache is cold.

The original postmark and build traces were gener-
ated from running their benchmarks on an Ext3 file sys-
tem. I refer to these two original traces as the smarty-
pants traces because Ext3 is quite clever about laying out
blocks on disk.

I generated stupid traces by applying a random per-
mutation of the block address space to the smartypants
traces. This maintains the meaning of blocks while de-
stroying the careful spatial locality of a smartypants file
system.

Figure 2 shows the breakdown of the block traces.
One result of this paper is that the stupid traces can have
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Figure 2: Breakdown of Trace I/Os
This figure shows the total number of I/Os for the 4 traces used
in this paper. The figure breaks these totals down into their read
and write categories. All stupid I/Os are done in file system
blocks of 8 sector units.

competitive or even better performance. This is surpris-
ing when we look at this figure and contemplate just
how deeply I brutalized smartypants to generate stupid.
Not only are the I/Os of stupid scattered all over the
place with absolutely no regard for interblock locality,
but there are many more of them. There are many more
of them because stupid only does I/O in units equal to
the file system block size of 8 sectors. The workloads
are dominated by writes at the block level. The read to
write ratio here does not represent the ratio issued by the
application because the buffer cache absorbs reads and
writes.

Throughout this paper, a sector is 512B and a file sys-
tem block is 8 sectors (4KB). The ratio of a particular
I/O type’s stupid to smartypants bar height represents the
average I/O size of that smartypants I/O type measured
in file system blocks. This is because stupid issues I/Os
only in the size of file system blocks. For example, smar-
typants postmark reads are on average approximately
equal to the size of a file system block, while smarty-
pants build reads average over two file system blocks.

All experimental approaches to evaluating computer
systems have their strengths and weaknesses. Trace-
driven simulation is one kind of trace-driven evaluation.
The central weakness of trace-driven evaluation is that
the workload dows not vary depending on the behavior
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Figure 3: sequential and random reads

of the system. On the other hand, its central strength is
that it represents something meaningful. A recent report
by Zhu et al. discusses these issues [9].

I built a simulator to evaluate the performace of these
workloads on a variety of storage systems. The simu-
lator simulates arrays and uses a disk simulator, CMU
DiskSim [1], as a slave to simulate disks. CMU DiskSim
is distributed with several experimentally validated disk
models. The experimental results reported in this paper
were generated using the validated 16GB Cheetah 9LP
SCSI disk model.

I used a storage simulator for two reasons. First, it
allowed me to experiment with systems larger than those
in our laboratory. Second, it eased the exploration of the
virtualization parameter space.

The simulator implements a simple operating system
for queueing I/Os. It sends the trace requests to the stor-
age system as fast as it can, but with a window of 200
I/Os. A window size of 1 would allow no parallelism
while an infinite window would neglect all interblock de-
pendencies. Using a window size between 1 and infinity
allows some I/O asynchrony without tracing interblock
dependencies and without wildly overstating the oppor-
tunities for parallelism.

4 Experimental Results

The microbenchmarks are simple access patterns running
directly on top of the simulator. The macrobenchmarks
are all generated using the trace-driven simulation ap-
proach described in the previous section.

4.1 Microbenchmarks

The 4 microbenchmarks are read or write access with se-
quential or random patterns. These were run on RAID-
0 arrays of varying size. The sequential read and write
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Figure 4: sequential and random writes

benchmarks issue I/Os sequentially across the block ad-
dress space. The random read and write benchmarks is-
sue I/Os randomly across the block address space. In
every benchmark, I/Os are done to the storage system in
8 sector units. The microbenchmarks were run for dif-
ferent stripe units. Figures 3 and 4 show the results. The
numbers in the figure keys are the stripe units.

Consider the read results of figure 3. Sequential far
outperforms random for the smaller stripe unit of 16 sec-
tors. This is due to track caching on the disk. Sequen-
tial rotates across the disks. When it recycles, the blocks
are already waiting in the cache. For the smaller stripe
units, the track cache will be filled for more cycles. As
the stripe unit increases, the benefit of the track caching
becomes less and less of a component, bringing the se-
quential throughput down to the random throughput.

Now consider the write results of figure 4. Writes
do not benefit from track caching. Without the track
caching, sequential and random writes have similar per-
formance for small stripe units across array sizes. As
the stripe unit increases, sequential I/Os concentrate on
a smaller and smaller set of disks. Random performance
is resilient to the stripe unit in both microbenchmarks.
These results show how performance can be stabilized
across different levels of virtualization by removing spa-
tial locality from the I/O stream. Additionally, these re-
sults show that sometimes random access can outperform
sequential by balancing load and facilitating parallelism.

4.2 Macrobenchmarks

In this section, I will discuss the results of running the
traces on 3 systems; a single disk varying chunk size, an
array varying the number of disks and stripe unit, and a
volume varying the number of disks, the stripe unit, and
the chunk size.

Figure 5 shows the four traces on a single disk. The
y-axis is normalized time. The build results are normal-
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Figure 5: Build and postmark on a single disk
The time of postmark and build are normalized separately to
the time of their stupid run for a chunk size of 8 sectors. Stupid
postmark and build are indistinguishable (varying at most 1.7%
for build and 0.4% for postmark) and are shown with one line.

ized to the time of stupid with a chunk size of 8 sectors.
Similarly, the postmark results are normalized to their
stupid time with a chunk of 8. Both of the stupid lines do
not vary enough to appear independent on this chart, so
only one line is shown. As the chunk size gets smaller,
the granularity of the virtualization remapping becomes
finer, destroying the correspondence between locality in
the block address space and physical locality on the disk.
When the chunk is equal to the file system block size, the
stupid and smartypants traces perform the same. As the
chunk size increases, locality in the virtual address space
begins to correspond to locality on disk across larger and
larger extents. The assumptions of the smartypants op-
timizations begin to be true and the performance of the
smartypants traces both improve by over 60% by a chunk
size of 2048 sectors. This shows that all that work on im-
proving local file system performance was not for noth-
ing.

The stability of stupid is not limited to the single disk.
You will see this in the array and volume results. Here,
however, stupid is worse than smartypants. When a file
system is composed into a hierarchical system its stabil-
ity contributes to the total system stability. A system that
values stability over performance might even prefer the
stupid approach for a single disk.

Figure 6 shows the performance of the postmark traces
on a RAID-0 array varying the number of disks and the
stripe unit. The performance of stupid is stable across
the stripe units for all 3 array sizes. Stupid scales better
than smartypants. For the smaller array of 4 disks, smar-
typants beats stupid across all of the experimental stripe
unit values. By 32 disks, stupid is beating smartypants
for stripe units greater than 128 sectors. By 128 disks,
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Figure 6: Postmark on disk arrays
The stupid results are indistinguishable for a given array size
(varying at most 0.9%) and are shown with one line for each
array size. The 3 smartypants results are shown as lines with
points. The key shows their array sizes.

smartypants performs better only for the stripe units of 8
and 32 sectors.

The down and up curve of 4 disk smartypants is seen
repeatedly in the array and volume experiments. As the
stripe unit increases, smartypants benefits from more ef-
ficient sequential I/O. As the stripe unit increases even
further, the locality clustering of smartypants creates
convoying from disk to disk as smartypants jumps from
one cluster to another, bottlenecked on the internal per-
formance of some overloaded disks, while some others
remain idle. I ran the same set of experiments with the
build traces and the result pattern similar.

Figure 7 shows the performance of build on a 128
disk volume that remaps chunks of a RAID-0 array us-
ing the volume model of figure 1. The experiments vary
the chunk size and stripe unit across 6 stripe units and
9 chunk sizes. The 54 stupid points form an approxi-
mate flat plane with stable performance. This plane is
shown here as a line. Stupid outperforms smartypants
for all those configurations with stripe unit and chunk
size strictly greater than 128 sectors. In this set of ex-
periments, smartypants curves down and up across both
chunk size and stripe unit. The curve breaks off into sta-
bility whenever the independent parameter exceeds the
fixed one. That is because the smaller virtualization
parameter dominates the remapping and neutralizes the
larger one. I ran the same set of experiments with the
postmark traces and the result pattern was similar.

Continuing to look at figure 7, consider the smart build
trace with stripe of 32 sectors and chunk of 512 sec-
tors. The system processes this trace at an average rate
of 115.98 IOPS per disk with that average computed
using a sampling period of 10ms. This average has a
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Figure 7: Build on a 128 disk volume
Each line varies the chunk size for a fixed stripe unit. Again,
the stupid results are indistinguishable across both stripe unit
and chunk size (varying 2% across all 54 points). This plane is
shown as a line. The 6 smartypants lines are shown with points
and the key shows the stripe unit for each.

standard deviation of 9.30% across the 128 disks. The
stupid trace on the same system runs at an average rate of
135.11 IOPS per disk with a standard deviation of 7.54%
across disks. As you know from figure 2, the stupid build
trace consists of over 100,000 more I/Os than the smar-
typants build trace. So the full trace takes longer even
though the stupid system is able to process marginally
more IOPS per disk and balance load more smoothly.
For both benchmarks, the average size of the stupid I/Os
is smaller than that of smartypants. Continuing to look
at figure 7, now consider the smart trace with stripe and
chunk of 4096 sectors. The system processes this trace
at an average crawl of 7.05 IOPS per disk with a mam-
moth standard deviation of 58.42% across disks. During
many sampling periods some disks were completely idle
while others were overloaded. The stupid trace on the
same system runs at an average rate of 133.82 IOPS per
disk with a standard deviation of 7.60%. In this case,
even though the stupid trace is much longer, it outper-
forms the smartypants trace. The large standard devia-
tion of smartypants shows how smartypants layout can
outsmart itself and defeat parallelism by creating over-
loaded hotspots.

5 Conclusions

The random permutation of the stupid traces scram-
ble and destroy the careful block proximity decisions
of smartypants. From the perspective of smartypants,
virtualization also acts as a destructive permutation,
though less throughly and with greater structure than

stupid. Storage virtualization facilitates scalability, fault-
tolerance, and reconfiguration, and is therefore unlikely
to go away. This paper gives you two take-away results.
First, I have shown that under some workloads and virtu-
alization parameters, random layout can outperform the
careful layout of a file system such as Ext3. In some
cases, random layout can help a system benefit from disk
parallelism by smoothly balancing load. The second and,
I believe, more interesting result is how differently stupid
and smartypants respond to varying virtualization param-
eters. In these experiments, stupid is always stoically sta-
ble while smartypants fluctuates hysterically. Data and
file system images can long outlive their storage system
homes. I propose random layout as a technique to immu-
nize file systems from the instabilities of storage system
configuration.
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