
Using Magpie for request extraction and workload modelling

Paul Barham, Austin Donnelly, Rebecca Isaacs and Richard Mortier
{pbar,austind,risaacs,mort}@microsoft.com

Microsoft Research, Cambridge, UK.

Abstract

Tools to understand complex system behaviour are es-
sential for many performance analysis and debugging
tasks, yet there are many open research problems in
their development. Magpie is a toolchain for auto-
matically extracting a system’s workload under realis-
tic operating conditions. Using low-overhead instru-
mentation, we monitor the system to record fine-grained
events generated by kernel, middleware and application
components. The Magpie request extraction tool uses
an application-specific event schema to correlate these
events, and hence precisely capture the control flow and
resource consumption of each and every request. By
removing scheduling artefacts, whilst preserving causal
dependencies, we obtain canonical request descriptions
from which we can construct concise workload models
suitable for performance prediction and change detec-
tion. In this paper we describe and evaluate the capa-
bility of Magpie to accurately extract requests and con-
struct representative models of system behaviour.

1 Introduction

Tools to understand complex system behaviour are es-
sential for many performance analysis and debugging
tasks, yet few exist and there are many open research
problems in their development. Magpie provides the
ability to capture the control path and resource demands
of application requests as they are serviced across com-
ponents and machines in a distributed system. Extracting
this per-request behaviour is useful in two ways. Firstly
it gives a detailed picture of how a request was serviced,
throwing light on questions such as what modules were
touched and where was the time spent? Did the request
cause a disk access or was data served from the cache?
How much network traffic did the request generate? Sec-
ondly, the per-request data can be analyzed to construct
concise workload models suitable for capacity planning,

���������

	�
�����

��������

	�
�����

����������������

�����

� � � � � � � �

� � � � � � � �

�

�

���
�

��
�� ��

�����������

������

�����

������

	�
����

�������

���� �������������

!��"����

�����

��#���

Figure 1: The Magpie toolchain: as requests move through the sys-
tem event traces are generated on each machine. These are then pro-
cessed to extract the control flow and resource usage by each individual
request and scheduling variations removed. Finally, the canonical re-
quests are clustered to construct models of the workload as a whole.

performance debugging and anomaly detection. These
models require the ability to measure a request’s resource
demands, discarding the scheduling artefacts due to OS
multitasking and timesharing. In effect, we obtain a pic-
ture of how the request could have been serviced (and
apply this information toward modelling the workload),
in addition to the data on how it actually was serviced
(which is useful for detailed analysis of individual re-
quest behaviour).

The contributions of our work can be summarized as
follows:

1. An unobtrusive and application-agnostic method

of extracting the resource consumption and con-
trol path of individual requests. Unlike other ap-
proaches to request tracking, for example [1, 8],
Magpie does not require a unique request identifier
to be propagated through the system, and it accu-
rately attributes actual usage of CPU, disk and net-
work to the appropriate request. This is achieved
by correlating the events that were generated while
the requests were live, using a schema to specify the
event relationships and carrying out a temporal join
over the event stream.

2. A mechanism for constructing a concise model of
the workload. Each request is first expressed in
a canonical form by abstracting away from the
scheduling artefacts present in the original event
trace. A representative set of request types is then
identified by clustering the canonical request forms.
This set of requests, together with their relative fre-
quencies, is a compact model of the workload that
can then be used for performance analysis purposes.

3. A validation of the accuracy of the extracted work-
load models using synthetic data, and an evaluation
of their performance against realistic workloads.

The Magpie request tracking technique is unique in
that it uses event logs collected in a realistic operating
environment. It handles the interleaving of many differ-
ent request types, it is impervious to unrelated activity
taking place at the same time, and it is able to attribute
resource usage to individual requests even when many
are executing concurrently.

The request-oriented approach to understanding and
characterizing system behaviour complements existing
methods of performance modelling and analysis. Causes
of faults or performance problems are often revealed
simply by inspecting the Magpie trace of the individ-
ual request and comparing to the expected behaviour. In
contrast, the traditional approach to monitoring system
health is to log aggregate performance counters and raise
alarms when certain thresholds are exceeded. This is
effective for identifying some throughput problems, but
will not catch others such as poor response time or incor-
rect behaviour (“why was the item not added to my shop-
ping cart?”). Although straightforward programming er-
rors and hardware failures are likely to be at the root of
most problems, the effects are exacerbated and the causes
obscured by the interactions of multiple machines and
heterogeneous software components.

Even though performance modelling is of key impor-
tance for commercial enterprises such as data centers,
current methods for constructing workload models are
surprisingly unsophisticated. Without a tool like Magpie,
workload models for capacity planning and other perfor-

mance prediction tasks have to be derived from a care-
fully controlled measurement environment in which the
system input is contrived to stress each request type in
isolation. This requires manual configuration and expert
knowledge of the system behaviour, and compromises
accuracy because variables such as caching behaviour
are ignored. Workload models that are automatically de-
rived using Magpie are quicker and easier to produce,
and more accurately capture the resource demands of the
constituent requests.

Magpie is a preliminary step towards systems that are
robust, performance-aware and self-configuring (Auto-
nomic Computing [12] is a well known articulation of
this grand vision). We have previously discussed the ap-
plications and utility of Magpie’s workload models to
scenarios ranging from capacity planning to on-line la-
tency tuning [3, 11]. The emphasis in this paper is on a
thorough, bottom-up evaluation of its use in practical sit-
uations. We demonstrate that Magpie accurately extracts
individual requests under realistic operating conditions,
and that the aggregation of this data leads to representa-
tive workload models.

The following four sections describe the design and
implementation of the Magpie prototype toolchain. Then
in Section 6 we evaluate the Magpie approach using sim-
ple synthetic workloads where it is straightforward to as-
sess the results obtained, progressing to more complex
workloads in Section 7.

2 Design and implementation

The workload of a system is comprised of various cat-
egories of request that will often take different paths
through the system, exercising a different set of com-
ponents and consuming differing amounts of system re-
sources. A request is system-wide activity that takes
place in response to any external stimulus of the appli-
cation(s) being traced. For example, the stimulus of an
HTTP request may trigger the opening of a file locally
or the execution of multiple database queries on one or
more remote machines, all of which should be accounted
to the HTTP request. In other application scenarios, the
database queries may be considered requests in their own
right. Within Magpie both the functional progress of the
request and its resource consumption at every stage are
recorded. Thus a request is described by its path taken
through the system components (which may involve par-
allel branches) together with its usage of CPU, disk ac-
cesses and network bandwidth.

The Magpie prototype consists of a set of tools that
take event logs and eventually produce one or more
workload models. Figure 1 illustrates the process. The
intention when designing the tools has been to deploy an
online version of Magpie that monitors request behaviour

in a live system, constantly updating a model of the cur-
rent workload. Although Magpie operates both offline
and online, this goal has dictated our design choices in
many places.

Earlier versions of Magpie generated a unique iden-
tifier when a request arrived into the system and propa-
gated it from one component to another [3]. The same
technique is employed in other request tracking tech-
nologies such as Pinpoint [8]. Events were then logged
by each component annotated with this identifier. We
have since developed less invasive request extraction
techniques that we describe in more detail below. Es-
chewing a requirement for global identifiers avoids the
problems associated with guaranteeing unique identifier
allocation. It also avoids the need for complicated ad-
hoc state management or API modification to manage the
identifiers as they are propagated. Finally, it also ensures
that the instrumentation is kept independent of the defi-
nition of a “request”: it is not uncommon for two appli-
cations to share the same component, and it is desirable
if one set of instrumentation can support tracing of both
applications.

2.1 Instrumentation
The instrumentation framework must support accurate
accounting of resource usage between instrumentation
points to enable multiple requests sharing a single re-
source to be distinguished (e.g. threads sharing the CPU,
RPCs sharing a socket). One consequence of this is a re-
quirement for high precision timestamps. As events are
generated by components in both user-space and kernel
mode, the attribution of events to requests relies on them
being properly ordered. In Windows NT based operating
systems, a large proportion of kernel and device driver
activity occurs inside Deferred Procedure Calls (DPCs);
a form of software interrupt with a higher priority than all
normal threads. It is therefore often important to know
whether a particular event occurred inside a DPC or stan-
dard interrupt, or whether it occurred before or after a
context switch. In order to get the required precision we
use the processor cycle counter, which is strictly mono-
tonic, as the event timestamp.

Event Tracing for Windows (ETW) [17, 18] is a
low overhead event logging infrastructure built into re-
cent versions of the Windows operating system, and is
the technology underpinning the Magpie instrumenta-
tion. We make extensive use of pre-existing ETW event
providers and where necessary we have added custom
event tracing to components. The instrumented compo-
nents in an e-commerce site that we use for prototyping
are depicted in Figure 2. There are three main parts to
the instrumentation:

1. Kernel ETW tracing supports accounting of thread

���������

����	
�
 �����

������������

������������������������

����������

������

 ������

��� !" ����������

!����

���	#��

���������

�����

������������

������������������������

�$!�������

������

����%��

������

����%��

&���

�
��
�
�
�
�

������

������%��

�'������

��

�&(#��

�������

���

�������

���

�������

���

Figure 2: Instrumentation points for the web server and database
server in our test e-commerce site. Some components such as the
http.sys kernel module and the IIS process generate events for request
arrival, parsing, etc. Additional instrumentation inserted by Magpie
(shown in gray) also generates events; all these events are logged by
the Event Tracing for Windows subsystem.

CPU consumption and disk I/O to requests.

2. The WinPcap packet capture library[19], modified
to post ETW events, captures transmitted and re-
ceived packets at each machine.

3. Application and middleware instrumentation cov-
ers all points where resources can be multiplexed
or demultiplexed, and where the flow of control
can transfer between components. In the proto-
type both platform middleware components such
as WinSock2, and specific application-level com-
ponents such as the ASP.NET ISAPI filter (used to
generate active content), are instrumented in order
to track a request from end to end.

An ETW event consists of a timestamp, an event identi-
fier, and the values of zero or more typed attributes1. In
a typical system there will be multiple event providers,
and therefore event identifiers have the hierarchical form
Provider/EventName. A typical event from the log
has the form:

Time, Provider/EventName, Attr1=Value1, ...

Each ETW event provider produces an ordered stream of
timestamped events. However, at any given time there
will usually be a large number of requests present in
the system, each generating events from a variety of
components and subsystems as it is serviced. As a re-
sult the stream of events will invariably comprise a non-
deterministic interleaving of events from many active re-
quests. The first stage of workload extraction is to de-
multiplex this event stream, accounting resource con-
sumption to individual requests.

1All events with the same identifier have the same set of attributes.

2.2 Workload extraction pipeline
The toolchain consumes events generated by system
instrumentation, as described in Section 2.1. In the
sections following we present the workload extraction
pipeline in some detail. The request parser identifies
the events belonging to individual requests by applying
a form of temporal join over the event stream, according
to rules specified in an event schema. During this pro-
cess it preserves the causal ordering of events, allowing
a canonical form of each request to be inferred that cap-
tures its resource demands (as opposed to the service the
request received), and this is discussed further in Sec-
tion 4. From the canonical form, a request can be deter-
ministically serialized, leading to a representation suit-
able for behavioural clustering. In Section 5 we describe
how behavioural clustering builds workload models by
comparing requests to each other according to both con-
trol path and resource demands.

3 Request parser

The request parser is responsible for extracting individ-
ual requests from the interleaved event logs. By deter-
mining which events pertain to a specific request, the
parser builds up a description of the request that captures
its flow of control and its resource usage at each stage. It
is written to operate either online or offline, via the public
ETW consumer API [17].

The parser considers each event from the stream in
timestamp order and speculatively builds up sets of re-
lated events. It relies on an event schema to describe
event relationships for the particular application of in-
terest. For example, it may be the case that events occur-
ring in sequence on the same thread belong to the same
request, and this will be expressed in the schema by spec-
ifying those events related by thread id. The thread may
post the identical event sequence for any number of dif-
ferent requests. The idea of temporal joins ensures that
only those events that occur while the thread is work-
ing on the one request are joined together. Some of the
resulting event sets will eventually be identified as de-
scribing a complete request, others can be discarded. Be-
cause the way in which events are related is defined out-
of-band in an application-specific schema, the request
parser itself contains no builtin assumptions about appli-
cation or system behaviour.

3.1 Event schema
For every event type, the schema specifies which at-
tributes connect it to other events. As each event is pro-
cessed by the parser, its type is looked up in the schema
and the event is then added to the appropriate set of re-

IsapiId=87

W3Id=23

ThreadId=44

ThreadId=42

CpuId=0

time

Win32/Unblock

W3Server/Start

AspNetReq/Start AspNetReq/End

W3Server/EndWin32/Block

Figure 3: Illustration of how the parser joins a sequence of IIS events.
Each event is shown as a black vertical line that binds two or more
attribute-value pairs (represented as circles on the horizontal attribute-
value lines). The joining of events is depicted with transparent gray
lines, and valid-intervals are displayed with a vertical line to the left of
the BIND START and to the right of the BIND STOP join attributes.
This portion of the request does not show where the valid-interval for
W3Id=23 is opened, nor the opening or closing of the valid-interval
for ThreadId=44.

EVENT("W3Server", "Start");
ATTRIBUTE("TId", BIND_BASIC, 0);
ATTRIBUTE("W3Id", BIND_BASIC, 0);

EVENT("W3Server", "End");
ATTRIBUTE("TId", BIND_BASIC, 0);
ATTRIBUTE("W3Id", BIND_STOP, 0);

EVENT("AspNetReq", "Start");
ATTRIBUTE("TId", BIND_BASIC, 0);
ATTRIBUTE("IsapiId", BIND_BASIC, 0);

EVENT("AspNetReq", "End");
ATTRIBUTE("TId", BIND_BASIC, 0);
ATTRIBUTE("IsapiId", BIND_BASIC, 0);

EVENT("Win32", "Unblock");
ATTRIBUTE("TId", BIND_START, 0);
ATTRIBUTE("CpuId", BIND_START, 0);

EVENT("Win32", "Block");
ATTRIBUTE("CpuId", BIND_STOP, 0);
ATTRIBUTE("TId", BIND_STOP, 0);

Figure 4: Portion of the IIS schema used to perform the event
parsing illustrated in Figure 3. The binding types BIND START and
BIND STOP instruct the parser to open or close a valid-interval.

lated events—in other words, the event is joined to one
or more other events.

For example, an IIS web server schema spec-
ifies that one of the join attributes for both the
W3Server/Start and the W3Server/End events is
W3Id. This means that if two such events occur, both
with W3Id=23, for example, they will be joined to-
gether. Figure 3 contains a graphical representation of
this process. The same schema states that ThreadId is
also a join attribute for those events. This allows dif-
ferent attributes posted by other event types to be transi-
tively joined to the request for which W3Id=23. Thus,
as shown in the diagram, if ASPNetReq/Start with
IsapiId=87 is posted by the same ThreadId=42 as
W3Server/Start, then the two events will be joined

via the shared ThreadId attribute. In turn, the IsapiId

join attribute causes other events also with IsapiId=87
to be added to this set of related events. In this way, the
set of events belonging to each request is incrementally
built up as the parser processes the event stream.

In addition to identifying which attributes cause events
to be joined, the schema indicates the nature of these
joins. In the example description above, there is noth-
ing to stop two W3Server/Start events posted by
the same thread but with different W3Id values being
joined together. A mechanism is needed to prevent all
the requests being merged into one, and this is captured
by the notion of temporal joins.

3.2 Temporal joins

As a request progresses, relationships between attribute
values are broken as well as created. For example, a
worker from a thread pool may be re-tasked from one
request to another, or an HTTP/1.1 connection may be
reused for more than one request. In the above ex-
ample ThreadId=42 is a worker thread that posts a
W3Server/Start event on behalf of each request be-
fore handing the request processing off to another thread.
The period during which we know that ThreadId=42
is working exclusively on one request defines a valid-
interval for the attribute-value pair (ThreadId,42).

This terminology is borrowed from the temporal
database community [10], where it is used to denote the
time range during which a row of a table was present in
the database. In such databases, arbitrary SQL queries
can be executed against the database as if at a particular
time. Theoretically it should be possible to implement
the Magpie parser as queries against a temporal database
in which each table holds the events of a given type.
Finding all the events relating to a request would be an n-
way relational join, where n is the number of event types
involved in the request.

During a valid-interval, events are joined together as
usual. However once the valid-interval is closed for a
particular attribute-value pair, no more events can be
added to the same event set via that pair. Therefore
the IIS schema specifies that the event Win32/Block
closes the valid-interval for the ThreadId attribute of
that event, and likewise the Win32/Unblock event
opens the valid-interval. In the example above, a new
valid-interval for ThreadId=42 is opened for each re-
quest, thus preventing the merging of disjoint requests.

The opening and closing of valid-intervals is con-
trolled in the schema by the use of binding types for the
join specifications. A BIND START begins a new valid-
interval for an attribute-value pair and a BIND STOP
terminates the current valid-interval. An attribute that
joins an event without affecting the valid-interval has

ConnHash=12

Socket=98

ThreadId=44

CpuId=0

time

Win32/Unblock

WinSock/Connect

WinSock/Send PerfInfo/DpcStart

WinPCap/PktTxWin32/Block

Figure 5: Transitive joins enable packet bandwidth and CPU con-
sumption by the network stack to be correctly attributed, even though
the thread that issues the send request is swapped out at the time the
packet is transmitted. The diagonal pair of lines crossing the horizontal
lines indicate the passing of an arbitrary amount of time.

a BIND BASIC binding type. In the theoretical im-
plementation using a temporal database, when a valid-
interval is closed by an attribute-value pair, all the cor-
responding events would be deleted from the relevant ta-
ble2.

A fragment of the IIS schema matching the exam-
ple discussed above is shown in Figure 4. In our pro-
totype parser implementation, the schema is written as
C macros. The EVENT macro takes the name of the
provider and the event. Each join attribute is listed using
the ATTRIBUTE macro, together with its binding type
and any flags.

3.3 Resource accounting
Certain event types are associated with the consumption
of physical resources. Specifically, context switch events
give the number of CPU cycles used by a thread dur-
ing its timeslice, disk read and write events are posted
with the number of bytes read or written, and likewise
packet events with the packet’s size. When these event
types are added to a request, it indicates that the relevant
resource was consumed on behalf of that request. Fig-
ure 5 shows an example in which CPU consumption is
associated with the request both while ThreadId=44 is
running, and also during the network stack DPC (when
some other thread is nominally swapped in on that CPU).
The WinPCap/PktTx event also associates the net-
work bandwidth used by that packet with the request.
The user mode WinSock/Connect and kernel mode
WinPCap/PktTx events are joined via their shared
source and destination address attributes, represented in
the diagram as ConnHash=12.

Figure 6 shows an annotated screenshot from a visual-
ization tool that we developed to debug the parser. The
highlighted sub-graph contains events from an HTTP re-
quest for the URL shortspin.aspx, which generates

2Hence the n-way relational join to find all events in a request would
have to span multiple valid-intervals over multiple tables.

Incoming HTTP
request packet

IIS workerNetwork stack
runs in DPC

HTTP response
packet and ACK

http.sys
ASP.NET worker

Figure 6: Annotated screenshot of parser visualization of a single request. Each of the event attribute-value pairs that is active during the displayed
time period is depicted with a horizontal timeline. Events are shown as binding to one or more of these timelines, and when the binding is of type
STOP or START, this is indicated with a small vertical barrier. The portions of each timeline that belong to the request are emphasized, showing
that the parser is in effect doing a flood-fill of the graph formed by the join attributes of events. To make it easy to see which threads are actually
running at any time, this is highlighted with a pale rectangle.

a very small amount of dynamic content that is returned
in a single HTTP response packet. It also spins the CPU
for approximately 15ms by executing a tight loop. This
particular request is an example of a type B request as
used in the experimental evaluation presented in Sec-
tion 6.

3.4 Implementation
The design of the parser was severely constrained by the
necessity for minimal CPU overhead and memory foot-
print, as it is intended to run online on production servers.
Additionally, it must process trace events in the order
they are delivered, since there is no way for it to seek
ahead in the trace log, and this creates still more com-
plexity.

In online mode, the kernel logger batches events
from different subsystems for efficiency and delivers one
buffer at a time. For example, context switch events from
each CPU are delivered in separate buffers. Whilst indi-
vidual buffers contain events in timestamp order, events
from different buffers must be interleaved before pro-
cessing. These reorderings are performed using a pri-
ority queue, and add approximately 1 second of pipeline
delay to the parser.

The reorder queue is also used for some events that are
posted at the end of the operation, such as those for disk
I/O, which contain the start time of the I/O as an event

�

�

�

�����

	
����
�

���
��

���

����������
�

����������
����������
�

	�
����

�������
��������������
�

�����

!�����

����"#

!$��

%�&��'

	�
���

����#

Figure 7: Parser data structures. Hash table entries represent the
current valid-intervals and are known as live sectors. An event (shown
as a black circle) is added to zero or more live sector lists according to
the values of its binding attributes. Non-live sector lists, representing
closed valid-intervals, are not reachable from the live sector hash table.

parameter. The parser creates a synthetic “Start” event
with the correct timestamp and inserts it into the event
stream in the correct place.

Figure 7 depicts the data structures used by the parser.
Temporal joins are implemented by appending events
to one or more time-ordered lists, each of which repre-
sents the current valid-interval for an attribute. The most
recent (“live”) valid-interval for each attribute is main-
tained in a hash table and requests are gradually built up
using event attribute bindings to connect lists together. In
the example from the previous section, the parser would
enter the W3Server/Start event onto the current list
containing all events with W3Id=23 and onto the cur-
rent list containing all events with ThreadId=42. The

presence of the same event in both lists causes them to
be joined together, forming a larger sub-graph.

The schema identifies a seed event that occurs only
and always within a request, for example a web server
HTTP request start event. As events are processed in
timestamp order, every so often some of the sub-graphs
will become unreachable because all their valid-intervals
have been closed. If a sub-graph contains a request seed
event, then all the connected events can be output as a
complete request, otherwise it will be garbage collected.
Note that there will be many lists (or graphs) that turn out
not to represent any request, but instead contain events
generated by other applications and background system
activities. An additional timeout is used to bound the
resources consumed by such activities.

Ideally a request schema should be written by some-
one with an in-depth knowledge of the synchronization
mechanisms and resource usage idioms of the applica-
tion in question, and this would preferably be done at
the same time as the application is instrumented. It is
much harder to retrofit a schema and instrumentation to
an existing application without this knowledge (but not
impossible, as we have in fact done this for all the ap-
plications mentioned in this paper). An area for future
work is to explore extensions to the expressiveness of the
schema. Currently an event can only affect the timelines
of its own attributes: one useful enhancement would be
the ability to transitively start or stop the valid-intervals
on other timelines.

3.4.1 Performance evaluation

We assessed the performance impact of Magpie event
tracing and parsing by running a web stress-test bench-
mark. The number of HTTP requests served over a two-
minute interval was recorded for a CPU-bound workload
that generated active HTML content and saturated the
CPU. Measurements were repeatable to within +/- 10 re-
quests.

With no instrumentation the server was able to com-
plete 16720 requests, i.e. 139 requests/second. When
logging was turned on in real-time mode, with no
event consumer, there was no discernible difference in
throughput. A dummy event consumer, which immedi-
ately discarded every event, reduced the throughput to
136 requests/second. Running the Magpie parser to ex-
tract requests online resulted in a throughput of 134 re-
quests/second, giving a performance overhead of approx-
imately 4%, around half of which can be attributed to the
ETW infrastructure. During these experiments the aver-
age CPU consumption of the parser was 3.5%, the peak
memory footprint 8MB and some 1.2 million events were
parsed. Since the web server was CPU-bound during the
course of the experiments, this directly accounts for the

SYNC("TcpIp/Recv", "ConnHash", "HttpRequest/Start");

SYNC("HttpRequest/Deliver", "W3Id", "Win32/Unblock");

SYNC("AspNetReq/Start", "IsapiId", "Thread/Unblock");

SYNC("Thread/Exit", "TId", "Thread/Join");

WAIT("Win32/Block");

Figure 8: Example statements from the IIS schema used to add ex-
plicit thread synchronization points to parsed HTTP requests. Each
SYNC statement specifies (s, a, d) where s and d are the source and
destination events, and are (transitively) joined by shared attribute
a. An event pattern matching a SYNC specification will result in a
Signal event being inserted on the source thread and a Resume event
on the destination thread. A WAIT event type generates an additional
synthetic Wait event.

observed drop in HTTP throughput.
When the ETW logging was enabled to write events to

file (instead of operating in real-time mode), the server
throughput was 138 requests/second, indicating that the
impact of the ETW infrastructure in offline mode is neg-
ligible. For the same workload, of 2 minutes duration,
a total of around 100MB of binary log file was pro-
duced. The parser extracted the correct number of re-
quests in 5.6s, with a peak working set size of approxi-
mately 10MB. The average number of events attributed
to each request was 36.

3.5 Synchronization and causal ordering
At the lowest level, all events are totally ordered by
timestamp, leading to a trace of the execution and re-
source consumption that may vary depending on how the
threads acting in a request happen to be scheduled. To
extract a meaningful workload model we need to recover
the threading structure within a request: for example, de-
termining when one thread causes itself to block or an-
other to unblock. This inter-thread causality tells us how
much leeway the scheduler has to re-order the processing
of the various stages of a request, and it also allows us to
infer how portions of a request might parallelize, which
is clearly of interest in multi-processor deployments.

In the web server example used for Figure 6, a ker-
nel TcpIP/Recv event unblocks an IIS thread that
parses HTTP requests, then unblocks an ISAPI filter
thread, which eventually unblocks a third thread to run
the ASP.NET active content generator. This last thread
blocks after sending the HTTP response back to the
client. Since these threads typically come from a thread
pool, we occasionally observe the same thread process-
ing multiple of these logically distinct segments of a re-
quest, so it is important to be aware of these synchroniza-
tion points even if they are not apparent in all requests.

Many such synchronization points are implicit from
the OS primitives being invoked (e.g. send and receive).
In other places, thread synchronization can be performed
using mechanisms for which there is no instrumentation,

Figure 9: A canonical version of an HTTP request is produced by
eliding all scheduling behaviour and retaining only thread synchroniza-
tion points. The top window shows the request as scheduled in an ex-
periment with 5 concurrent clients, and the lower window the canonical
version.

e.g. in a user-level scheduler. For this reason, we provide
a mechanism to explicitly insert causal dependencies into
the parsed event graphs. This allows us to annotate a re-
quest with additional thread synchronization points using
known semantics of the application domain.

We define three synthetic events to be inserted into
parsed requests: Signal, Wait and Resume. There
is an explicit causality between related Signal and
Resume events, and so these will be connected by some
shared attribute-value. This is expressed in the schema
using a 3-tuple (s, a, d), where s is the name of the
source event executed by thread A at time tA, d is the
name of the destination event in thread B at time tB , and
a is the join attribute, shared by events s and d. Attribute
a is not necessarily a parameter of both event types, but
may be transitively shared through other joined events on
the same thread. Events from thread A with timestamps
less than tA must always happen before thread B events
with timestamps greater than tB , under any scheduling
discipline. Figure 8 shows some example synchroniza-
tion statements from the IIS schema, and in Figure 6 the
synchronization events inserted by the parser can be seen
in amongst the original request events.

4 Canonicalization

When the system is more heavily loaded, requests tend
to be scheduled in a highly interleaved fashion, as shown
in Figure 9. Although the request URL is identical to
that of Figure 6, the way in which the request is serviced
differs due to multiple clients competing for system re-
sources. In Figure 6, the thread completes its work in a
single quantum of CPU time, whereas in the top window
of Figure 9 it is frequently preempted and its activity is
interspersed with threads servicing other connections.

A detailed per-request view of system activity is un-

doubtedly useful for determining the path taken by a re-
quest, and how it consumed resources along the way.
However, for constructing workload models for perfor-
mance prediction or debugging purposes we would rather
represent requests as a canonical sequence of absolute
resource demands and ignore all the information about
how the request was actually serviced.

Using the causal ordering annotations discussed in the
previous section, we produce a canonical version of each
request, in effect by concatenating all resource demands
between synchronization points, and then scheduling this
as though on a machine with an unlimited number of
CPUs. The lower window of Figure 9 shows the result
of this processing stage when applied to the request in
the upper window. The canonical version is clearly more
useful for modelling purposes.

4.1 Cross-machine activity

When requests cause activity on multiple machines it
is necessary to “stitch” together the events collected on
each computer. Since every machine in the system has
a separate clock domain for its timestamps, the request
parser is run once for each machine, either online or of-
fline (we believe it ought to be straightforward to extend
the parser to deal with multiple clock domains but this
is not a current priority). The request fragments from
each machine are canonicalized as described previously.
We then run an offline tool that combines canonical re-
quest fragments by connecting synchronization events
from transmitted packets to received packets.

4.2 Request comparison

Thread synchronization can be used to overlay a bi-
nary tree structure onto what would otherwise be a lin-
ear timestamp-ordered event stream. When two threads
synchronize, perhaps by sending a message, we cre-
ate a logical fork in the event tree where the original
(source) thread continues whilst also enabling the des-
tination thread to execute in parallel. When a thread
blocks, perhaps to receive a message, this is treated as
a leaf node. The results of applying this procedure to a
contrived RPC-style interaction is shown in Figure 10.

������

���	��

���

���

��������

���	

�����

��������

���

�����

��������

� ���

�����

���	

���

��������

����

���

�

� �

��

�

�

����

���

!"�����

�����

Figure 10: Binary tree structure overlaid onto RPC-style thread in-
teractions. This tree would be deterministically serialized in the order
shown.

By deterministically flattening this tree representa-
tion using standard depth-first traversal, we can clus-
ter requests using a simple string-edit-distance metric
rather than requiring elaborate and traditionally expen-
sive graph-edit-distance metrics. Although this has pro-
duced reasonable results in our prototype, losing the tree
structure before comparing requests seems likely to limit
the usefulness of this approach in larger distributed sys-
tems where requests have more complex structure. Re-
cent work has developed more suitably efficient algo-
rithms for tree- and graph-edit-distance and also investi-
gated graph-clustering [5]. Applying some of these tech-
niques to improve our workload extraction process is cur-
rently under investigation.

5 Behavioural clustering

The clustering stage of the toolchain groups together re-
quests with similar behaviour, from the perspective of
both event ordering and resource consumption. Since we
require that the processing pipeline functions online, we
use a simple incremental clustering algorithm. The re-
sulting clusters are the basis of a workload model which
expresses that requests occur as typified by each cluster’s
representative, and they occur in proportion to their clus-
ter’s size.

The clusterer maintains a set of active workload clus-
ters. For each cluster, we record a representative request
(sometimes referred to as the centroid of the cluster), a
cluster diameter, and the set of requests that are consid-
ered members of the cluster. Additionally, the algorithm
keeps track of the average cluster diameter, and the aver-
age inter-cluster distance.

When a new request is presented to the clusterer, it
computes the string-edit-distance between its serialized
representation and that of each cluster centroid. The dis-
tance metric is a function of both the character edit cost
(as in the traditional form of string-edit-distance) and
also of the resource usage deltas associated with the the
two events. So for example, the comparison of two char-
acters where both represent a disk read will give an edit
cost proportional to the difference in how many bytes
were actually read. The request is normally added to the
cluster with the smallest edit distance, unless that edit
distance exceeds a trigger threshold, in which case a new
cluster is created.

6 Validation

To support our claim that Magpie is able to extract in-
dividual requests and construct representative workload
models, we attempt to examine our techniques in isola-
tion. In this section we present the results, which include

Type URL Resource
A longspin.aspx 1 thread spins CPU 30ms
B shortspin.aspx 1 thread spins CPU 15ms
C small.gif Retrieve static image 12Kb
D tiny.gif Retrieve static image 5Kb
E parspin.aspx 2 threads spin CPU 15ms concurrently
F rpcspin.aspx 1st thread spins CPU 7.5ms, signal

other thread and wait, spin CPU 7.25ms
2nd thread spins CPU 15ms

Table 1: Request types and consumptions of primary resources.

an assessment of the quality of the clusters obtained, as
well as checks that our resource accounting is accurate.

In all experiments, events are generated using the in-
strumentation described in Section 2.1 and the event
streams are parsed as discussed in Section 3. Flattened
representations of the requests are then clustered into
similar groups using the behavioural clustering technique
presented in Section 5. The machines used are all dual-
processor 2.6GHz Intel P4, running Windows Server
2003, and IIS or SQL Server 2000. In all experiments we
used Application Center Test [16] for the stress client.

We first evaluate the accuracy of Magpie’s workload
models using traces taken with a synthetic workload. In
contrast to the more realistic operating conditions of Sec-
tions 7.1 and 7.2, the web site behaviour is calibrated to
check that we extract the same workload as was injected.
These experiments are intended to investigate the effec-
tiveness of the request canonicalization mechanism, to-
gether with the behavioural clustering algorithm, to sep-
arate requests with different resource consumption.

The experiments were performed against a minimal
ASP.NET website written in C#. Each URL consumes
resources as depicted in Table 1. CPU is consumed
within a tight loop of a fixed number of iterations, and
network bandwidth is used by retrieving fixed size im-
ages.

6.1 Resource consumption
The string-edit-distance metric used by the clustering al-
gorithm treats events annotated with their resource usage
as points in a multi-dimensional space. To allow a more
intuitive explanation of the resulting clusters, we first
present results where resource consumption changes in
only a single dimension. Concurrency is a complicating
factor, and so we examine how well the request extrac-
tion and modelling tools perform, both under concurrent
request invocations and when concurrent operations take
place within a single request.

6.1.1 Processor time

We used the type A and type B requests of Table 1 (which
differ only in their consumption of CPU cycles) to pro-
duce both single-varietal workloads and mixtures, using

CPU Resource Consumption
Si

ng
le

C
on

c.
M

ix
ed

Exp Workload /
No #Clients

1.1 500A x1

1.2 500B x1
1.3 500A x5

1.4 500B x5
1.5 500(A/B) x1

1.6 500(A/B) x5

Accntd
CPU %

96.6%

94.0%
96.6%

94.6%
95.9%

95.9%

Clusters Dia. Min. Model
Found Sep. Error

499 0.6 130 2.4%
1 † 0.0 130
500 0.4 0.0 2.1%
498 1.2 21.7
1 0.0 21.7 3.2%
1 † 0.0 13.1
500 1.2 0.0 2.8%
266A 1.1 8.5 0.9%
234B 1.7 8.5
244A 1.2 8.0
254B 1.2 8.0 2.0%
1A 0.0 33.2
1B † 0.0 103

Table 2: Clusters produced from single and mixed request type work-
loads consuming CPU only, for both concurrent and serialized request
invocations. Accntd CPU % is the fraction of CPU consumed by the
relevant process that was accounted to individual requests. The Clus-
ters Found column gives the number of requests found in each cluster
(from a total of 500 requests). Dia. and Min. Sep. are the average clus-
ter diameter and the distance to the centroid of the nearest other cluster,
respectively. Model Error refers to the difference in resource consump-
tion between the derived workload model and the parsed requests.

either serialized requests from a single client, or con-
current requests from 5 clients. This gives a total of 6
different workloads, as listed in the left-hand columns
of Table 2. Note that even these trivial requests exhibit
fairly complex interactions between the kernel and mul-
tiple worker threads—this is apparent in Figure 6, which
depicts a type B request.

Table 2 records the clusters found from each of the
workloads. It also shows the average distance from the
cluster centroid of each request in the cluster (Dia.) and
the distance to the centroid of the nearest other clus-
ter (Min. Sep.). In experiments 1.1 and 1.2, 500 re-
quests of type A (longspin.aspx) and 500 requests
of type B (shortspin.aspx) each produced a large
cluster. Repeating these experiments with 5 concurrent
stress clients produced very similar results. The clusters
produced under a concurrent workload generally have a
larger internal diameter than those for the serial work-
load. Examining the distributions of total CPU con-
sumed by the individual requests shows that, as pre-
dicted by the clusters, the concurrent workloads exhibit
slightly larger spreads, probably due to cache effects and
scheduling overheads.

As a validation check, the total amount of CPU time
accounted to requests by the parser was summed and
compared against the aggregate CPU times consumed by
processes and the kernel during the course of each exper-
iment. In Table 2, the column entitled Accntd CPU % in-
dicates the fraction of “relevant” CPU that was accounted
as request activity. Relevant CPU excludes that used by
background processes and the idle thread, but includes
most kernel mode activity and all user mode processing
by the web server threads (this information is directly

Network Resource Consumption

Si
ng

le
C

on
c.

M
ix

ed

Exp Workload /
No #Clients

2.1 500C x1
2.2 500D x1
2.3 500C x5

2.4 500D x5

2.5 500(C/D) x1

2.6 500(C/D) x5

Accntd
CPU %

91.4%
73.6%
86.6%

76.1%

81.5%

83.6%

Clusters Dia. Min. Model
Found Sep. Error

500 0.1 0.0 12%
500 0.1 0.0 8.3%
498 0.9 15.3 20%
2 † 2.1 15.3
498 0.9 9.8 14%
1 † 0.0 9.8
246C 0.1 6.9 19%
254D 0.1 6.9
267C 1.0 4.4 18%
223D 0.7 6.9
10C 1.7 4.4

Table 3: Clusters produced from single and mixed request type work-
loads differing primarily in consumption of network bandwidth, for
both concurrent and serialized request invocations. See the Table 2
caption for explanation of the column headings.

available from the ETW event logs.) The reported figures
are less than 100% due to non-request related web server
activity such as health monitoring and garbage collec-
tion, and also the difficulty of attributing all kernel mode
CPU usage correctly with the current kernel instrumen-
tation.

The final column in Table 2 labelled “Model Error”,
records how the resource consumption of the constructed
model differs from that actually measured. This figure is
computed as the percentage difference in resource con-
sumption between the requests as parsed, and a synthetic
workload generated by mixing the cluster representatives
in proportion to their cluster sizes. In all cases, the cluster
sizes and representatives can be used to concisely repre-
sent the experimental workload to within 3.2%.

As a useful cross-check, from experiment 1.1 we have
a centroid that represents the resource usage and control
flow of requests of type A, measured in isolation; from
experiment 1.2 we have a similar centroid for requests
of type B. Table 2 shows that experiment 1.5 contains
requests with a 266/234 mix of type A and B requests, so
we can compare the CPU time consumed by all requests
in experiment 1.5, and the CPU time predicted by 266
type A centroids added to 234 type B centroids. The
prediction falls short of the observed value by just 3.5%,
presumably due to worse cache locality. Repeating this
computation for experiment 1.6, the deficit is 3.4%.

6.1.2 Network activity

Table 3 shows the results obtained using workloads based
on request types C and D, which differ in consumption
of network bandwidth. The Accntd CPU % figures are
noticeably lower for these experiments. However this is
not surprising since it is common when load increases
for multiple incoming network packets to be processed in
the same deferred procedure call. Although 100% of the
network packets are correctly ascribed to requests, there

Internal concurrency (1)
Si

ng
le

M
ix

ed
Exp Workload /
No #Clients

3.1 500E x1
3.2 500E x5

3.3 500(B/E) x1

3.4 500(B/E) x5

3.5 500 x1
(A/B/E)

3.6 500 x5
(A/B/E)

Accntd
CPU %

96.6%
97.1%

95.8%

95.8%

96.1%

96.2%

Clusters Dia. Min. Model
Found Sep. Error

500 0.7 0.0 1.2%
493 0.9 7.7 0.6%
2 0.3 8.5
2 † 0.7 130
1 0.0 101
1 0.0 7.7
267E 0.5 8.7 0.6%
232B 0.4 8.8
1E 0.0 34.7
249B 0.7 8.8 0.4%
244E 1.0 6.3
1E † 0.0 30.5
1E 0.0 7.3
2E 0.7 6.7
3E 1.9 6.3
172E 0.5 8.9 3.0%
168A 0.6 8.1
160B 0.5 8.1
187E 0.9 0.0 0.3%
152B 0.6 8.6
160A 1.2 8.6
1A † 0.0 130

Table 4: Clusters produced from single and mixed request type work-
loads consuming CPU only, where the request contains internal concur-
rency, for both concurrent and serialized request invocations. See the
Table 2 caption for explanation of the column headings.

are places where insufficient instrumentation is present
to safely account computation to an individual request.
In these cases, the parser errs on the conservative side.

6.2 Concurrency and internal structure

Figure 11 shows canonical versions of the four compute
bound requests of Table 1 with very different internal
structure. The first two requests (A and B) perform se-
quential computations of different lengths, the third (E)
performs the same amount of work as B, but in two par-
allel threads. The fourth request (F) also consumes the
same amount of resource as B, but this time using a
synchronous RPC-style interaction with a second worker
thread.

Whilst three of these requests consume exactly the
same amount of CPU resource, they would have signif-
icantly different behaviour on a multiprocessor machine
from a response time or latency perspective. When ex-
tracting workload models, we believe it is important to
capture these differences in concurrency structure.

Tables 4 and 5 show the clustering results of a suite of
experiments constructed using various combinations of
the requests described above. From the tables, it is clear
that our distance metric and clustering algorithm are ca-
pable of separating requests that differ only in internal
concurrency structure. Note in particular, experiment 4.8
of Table 5, where the 4 request types fall into 4 well sep-
arated clusters, with just 2 outliers.

Internal concurrency (2)

Si
ng

le
M

ix
ed

Exp Workload /
No #Clients

4.1 500F x1

4.2 500F x5

4.3 500(A/F) x1

4.4 500(A/F) x5

4.5 500 x1
(A/E/F)

4.6 500 x5
(A/E/F)

4.7 500 x1
(A/B/E/F)

4.8 500 x5
(A/B/E/F)

Accntd
CPU %

96.8%

96.5%

96.7%

96.6%

96.8%

96.6%

96.3%

96.3%

Clusters Dia. Min. Model
Found Sep. Error

499 1.7 7.3 4.1%
1 0.0 7.3
496 1.3 6.4 1.2%
2 0.6 6.4
1 0.0 9.3
1 † 0.0 133
248F 1.6 19.2 .01%
252A 0.4 19.2
236F 1.3 9.4 0.4%
262A 0.7 16.9
1F † 0.0 131
1F 0.0 9.4
192F 1.8 7.9 0.2%
169A 0.9 17.6
139E 0.5 8.1
195F 1.3 6.9 0.9%
144E 1.2 9.1
155A 0.7 9.2
3F † 1.2 131
1E 0.0 9.2
2F 2.0 6.9
133F 1.9 5.5 1.9%
129A 0.8 7.4
120E 0.9 7.8
117B 0.1 7.4
1F 0.0 5.5
132B 1.2 7.7 4.2%
131F 1.2 8.0
119A 0.5 8.0
116E 0.4 5.5
1A 0.0 5.5
1F 0.0 8.3

Table 5: Clusters produced from single and mixed request type work-
loads consuming CPU only, where the request contains internal concur-
rency and blocking, for both concurrent and serialized request invoca-
tions. See the Table 2 caption for explanation of the column headings.

6.3 An anomaly detection example

In several of the above experiments, we noticed occa-
sional unexpected outlier requests, which were always
placed in a cluster on their own (marked with a † in re-
sult tables). Examination of these individual requests re-
vealed that in every case a 100ms chunk of CPU was
being consumed inside a DPC. Using sampling profiler
events logged by ETW during the offending intervals the
problem was tracked down to a 3Com miniport Ethernet
driver calling KeDelayExecution(100000)3 from its
transmit callback function!

The above example gives some concrete proof that
Magpie can highlight apparently anomalous behaviour
using extracted requests. Other common causes of out-
lier requests include JIT compilation, loading shared li-
braries, cache misses and genuine performance anoma-
lies. Being able to identify and isolate these outliers is an
advantage for accurate workload modelling.

3This function is implemented as a busy wait and the documentation
clearly states it should not be used for delays of more than 100us.

DPCs, cpu0

CpuId,0

Thr eadI d, 42

Thr eadI d, 44

Thr eadI d, 23

30ms sequential compute (type A)
DPCs, cpu0

CpuId,0

Thr eadI d, 42

Thr eadI d, 44

Thr eadI d, 23

15ms sequential compute (type B)

DPCs, cpu0

CpuId,0

Thr eadI d, 42

Thr eadI d, 44

Thr eadI d, 23

Thr eadI d, 32

2 x 15ms parallel compute (type E)
DPCs, cpu0

CpuId,0

Thr eadI d, 42

Thr eadI d, 44

Thr eadI d, 23

Thr eadI d, 32

15ms compute with nested 15ms synchronous RPC (type F)

Figure 11: Canonical versions of four compute-bound HTTP requests with different internal concurrency structure.

7 Evaluation

We now turn to an evaluation of the toolchain with more
realistic scenarios: a small two-tier web site and an
enterprise-class database server.

7.1 Duwamish
In this section we extract requests from a distributed
system and look at the accuracy of the derived work-
load model. The experimental setup is a two machine
system running the Duwamish bookstore, a sample e-
commerce application that is distributed with Visual Stu-
dio. We augmented the Duwamish database and the im-
ages stored at the web server with auto-generated data in
accordance with the volume and size distributions man-
dated by TPC-W [21].

As in previous experiments, we first obtained results
when all requests have the same URL, and then looked at
the clusters produced from a mixed workload. Three dy-
namic HTML URLs were used, each with different char-
acteristics:

1. The book.aspx page invokes a single database query
to retrieve a book item and look up its associated
data such as author and publisher. An image of
the book cover may also be retrieved from the web
server file system.

2. The categories.aspx page retrieves the details asso-
ciated with the specified category by making three
RPCs to the database.

3. The logon.aspx URL runs only on the web server.

As described in Section 4, a stitcher matches packet
events within request fragments from individual ma-
chines to produce a single canonical form of the request
across multiple machines. Table 6 shows the results of
clustering on the WEB and SQL fragments alone, as well
as on the entire request. For clarity, we have reported
just the maximum cluster diameter and the minimum
inter-cluster separation of each set of clusters. Similar
to previous experiments, we report the fraction of rele-
vant CPU that was included in the extracted requests in
the “Accntd CPU%” column.

Two-tier e-commerce site

Si
ng

le
M

ix
ed

Exp Workload
No
5.1 Book(B)

5.2 Logon(L)
5.3 Categories

(C)

5.4 Mixed
(B/L/C)

Accntd
CPU %
82.8%
96.1%

-
86.5%
95.2%
97.3%

-
91.7%

96.7%

-

Clusters Max. Min.
Found Dia. Sep.
WEB: 404+92+4 0.8 3.6
SQL: 500 0.5 0.0
E2E: 408+92 1.2 5.1
WEB: 497+2+1 1.2 7.3
WEB: 445+26+29 2.3 14.9
SQL: 1499+1 1.3 16.4
E2E: 444+26+29+1 2.6 17.9
WEB: (138L+1B)+ 4.9 5.9
220B+61C+
31C+24C+
10*25C
SQL: (141C1+122C2 2.3 19.7
+141C3+221B)+
9C2+10C2

E2E: (138L+1B)+ 5.1 8.2
220B+55C+
47C+14C+
10*25C

Table 6: Clusters found from Duwamish requests, with both sin-
gle and mixed URL workloads. Results are shown from clustering the
workloads from individual machines (WEB and SQL) as well as “end-
to-end requests” across both (E2E).

Closer inspection of the resulting clusters reveals
that the book requests are primarily differentiated by
whether a disk read is performed on the web server
(to fetch an image of the book cover). On the cate-
gories page, the amount of network traffic varies be-
tween categories and hence one major and two minor
clusters are formed. The three stored procedures invoked
by categories.aspx—GetCategories(), GetBooksByCat-
egoryId() and GetDailyPickBooksByCategoryId()—are
identified in the table as C1, C2 and C3 respectively.
All of these database request fragments bar one for this
URL are put in the same cluster. According to the SQL
Server Query Analyzer tool, the stored procedures are all
of similar cost, so this is not surprising. The clusters for
the mixed workload show that the book and logon pages
form tighter clusters than the categories requests, which
are spread across several clusters. These results indi-
cate that a workload model based on per-URL measure-
ments will be less representative than one constructed by
grouping similar requests according to their observed be-
haviour.

TPC-C benchmark
Size Contents d(0) Dia. Min. Sep.
1 751 620B+100F+30D+1A 54.30 0.025 9.264
2 392 329A+56E+7D 105.05 0.119 14.393
3 302 266A+30D+3B+3E 29.16 0.116 9.264
4 30 30C 555.45 9.596 81.251
5 21 21C 111.03 4.870 78.080

Key: A neworder B payment C stocklevel
D orderstatus E delivery F version

Table 7: Clusters formed from TPC-C workload. The workload is a
constrained ratio mix of 6 different transaction types shown in the key.
The additional column d(0) shows the distance of each cluster centroid
from the null request and gives an indication of the amount of resource
consumption (largely disk I/O in this case).

7.2 TPC-C

The TPC-C benchmark [20] results presented in this sec-
tion were generated using the Microsoft TPC-C Bench-
mark Kit v4.51 configured with 10 simultaneous clients
and a single server. The resulting database would nor-
mally fit entirely in the memory of a modern machine.
We therefore ran SQL Server with restricted memory to
more accurately reflect the cache behaviour of a realisti-
cally dimensioned TPC-C environment.

The clustering algorithm created 5 clusters from 1496
requests. The clusters are quite tightly formed (they
have low intra-cluster distances, Dia.) and well separated
(they have high inter-cluster distances, Sep.). Although
clusters 4 and 5 have somewhat higher intra-cluster dis-
tances, they are so well separated from any other cluster
that this is unimportant.

Examining the make-up of the clusters reveals that the
amount of I/O performed is the dominant factor in decid-
ing the cluster for a request. Cluster 1 contains all ver-
sion transactions and 99% of payment transactions, none
of which have any I/O. Cluster 2 contains 95% of deliv-
ery transactions and 55% of neworder transactions: these
are the transactions with a small amount of I/O. Cluster
3 holds the remaining 45% of neworder transactions, all
of which have a moderate amount of I/O. The ordersta-
tus transactions are split 45%/10%/45% between clus-
ters 1–3 based on the I/O they contain. Finally, clusters 4
and 5 contain all the stocklevel transactions, predicted to
be nearly 3 orders of magnitude more expensive than the
next most expensive transaction by SQL Server Query
Analyzer.

7.2.1 Shared buffer cache resources

Although the above clusters represent a reasonable sum-
mary of the benchmark workload in the experimental
configuration, they also expose an area requiring fur-
ther attention. In many applications, and especially in
database servers, a shared buffer cache is the dominant
factor affecting performance. Our instrumentation does

not yet record cache and memory references, observing
only the disk I/O associated with cache misses and log
writes. Given the explicit SQL buffer cache API it would
be a simple matter to record the locality and sequence of
pages and tables referenced by each query. We believe
that this extra information will better distinguish between
transaction types and may allow us to predict miss rates
with different cache sizes as described in [15], but this
remains an area for future work.

8 Related work

The most closely related work to Magpie is Pinpoint [8].
Pinpoint collects end-to-end traces of client requests in
a J2EE environment by tagging each call with a request
ID. This is simpler than using event correlation to extract
requests, but requires propagation of a global request ID,
which is not always possible with heterogeneous soft-
ware components. The aim of Pinpoint is to diagnose
faults by applying statistical methods to identify compo-
nents that are highly correlated with failed requests. This
is in contrast to the Magpie goal of recording not only the
path of each request, but also its resource consumption,
and hence being able to understand and model system
performance.

Aguilera et al. [1] have proposed statistical methods
to derive causal paths in a distributed system from traces
of communications. Their approach is minimally inva-
sive, requiring no tracing support above the RPC layer.
However, by treating each machine as a black box, they
sacrifice the ability to separate out interleaved requests
on a single machine, and thus cannot attribute CPU and
disk usage accurately. The approach is aimed at exam-
ining statistically common causal paths to find sources
of high latency. Magpie’s request parsing on the other
hand captures all causal paths in a workload, including
relatively rare (but possibly anomalous) ones.

Distributed event-based monitors and debuggers [2, 4,
13] track event sequences across machines, but do not
monitor resource usage, which is essential for perfor-
mance analysis. Conversely, many systems track request
latency on a single system but do not address the dis-
tributed case. TIPME [9] tracked the latency of interac-
tive operations initiated by input to the X Window Sys-
tem. Whole Path Profiling [14] traces the control flow
patterns between basic blocks in a running program.

Similar approaches on different operating systems in-
clude the Linux Trace Toolkit [22], which tracks request
latency on a single machine. The Magpie toolchain could
easily be built to consume LTT events instead of ETW
events. A more sophisticatd instrumentation framework
is Solaris DTrace [6], which allows arbitrary predicates
and actions to be associated with instrumentation points.
DTrace provides an option for speculative tracing, which

could potentially be a lightweight mechanism for en-
abling request sampling.

Chen and Perkowitz [7] measure web application re-
sponse times by embedding JavaScript in the web pages
being fetched, i.e. by modifying the content being served
rather than instrumenting client or server code. The ag-
gregated data gives a view of client-side latency that
would complement the detailed server-side workload
characterisation obtained using Magpie.

9 Conclusion

In this paper we described the Magpie toolchain that
takes stand-alone events generated by operating sys-
tem, middleware and application components, correlates
related events to extract individual requests, expresses
those requests in a canonicalized form and then finally
clusters them to produce a workload model. We validated
our approach against traces of synthetic workloads, and
showed that our approach is promising for more compli-
cated applications.

We have shown that by using Magpie to isolate the re-
source demands and the path taken by requests, we can
construct stochastic models that give a good represen-
tation of a workload’s behaviour. A great advantage of
Magpie is that these request structures are learnt by ob-
serving the live system under a realistic workload. As
a consequence, the parsed event trace of each individual
request is recorded, giving a detailed picture of how re-
quests are actually being serviced within the system.

Acknowledgements

We gratefully acknowledge the encouragement and insight-
ful comments of our shepherd Eric Brewer, and many proof-
readers especially Steve Hand, Tim Harris and Andrew Her-
bert. Thanks also to Dushyanth Narayanan and James Bulpin
for past contributions to the Magpie project.

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance debugging for distributed sys-
tems of black boxes. In Proc. 19th ACM Symposium on Operating
Systems Principles (SOSP’03), pages 74–89, Oct. 2003.

[2] E. Al-Shaer, H. Abdel-Wahab, and K. Maly. HiFi: A new moni-
toring architecture for distributed systems management. In Proc.
IEEE 19th International Conference on Distributed Computing
Systems (ICDCS’99), pages 171–178, May 1999.

[3] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie: on-
line modelling and performance-aware systems. In 9th Workshop
on Hot Topics in Operating Systems (HotOS IX), pages 85–90,
May 2003.

[4] P. C. Bates. Debugging heterogeneous distributed systems using
event-based models of behavior. ACM Transactions on Computer
Systems (TOCS), 13(1):1–31, 1995.

[5] H. Bunke. Recent developments in graph matching. In Proc. 15th
International Conference on Pattern Recognition, pages 117–
124, 2000.

[6] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic
instrumentation of production systems. In Proc. USENIX Annual
Technical Conference, pages 15–28, June 2004.

[7] J. B. Chen and M. Perkowitz. Using end-user latency to man-
age internet infrastructure. In Proc. 2nd Workshop on Industrial
Experiences with Systems Software WIESS’02, Dec. 2002.

[8] M. Y. Chen, A. Accardi, E. Kıcıman, J. Lloyd, D. Patterson,
A. Fox, and E. Brewer. Path-based failure and evolution man-
agement. In Proc. 1st Symposium on Networked Systems Design
and Implementation (NSDI’04), pages 309–322, Mar. 2004.

[9] Y. Endo and M. Seltzer. Improving interactive performance using
TIPME. In Proc. ACM SIGMETRICS, June 2000.

[10] D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Join op-
erations in temporal databases. Technical Report TR-71, TIME-
CENTER, Oct. 2002.

[11] R. Isaacs, P. Barham, J. Bulpin, R. Mortier, and D. Narayanan.
Request extraction in Magpie: events, schemas and temporal
joins. In 11th ACM SIGOPS European Workshop, Sept. 2004.

[12] J.O.Kephart and D.M.Chess. The vision of autonomic comput-
ing. IEEE Computer, 36(1):41–50, Jan. 2003.

[13] J. Joyce, G. Lomow, K. Slind, and B. Unger. Monitoring
distributed systems. ACM Transactions on Computer Systems
(TOCS), 5(2):121–150, 1987.

[14] J. R. Larus. Whole program paths. In Proc. ACM conference
on Programming Language Design and Implementation (SIG-
PLAN’99), pages 259–269, June 1999.

[15] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation tech-
niques for storage hierarchies. IBM Systems Journal, 9(2):78–
117, 1970.

[16] Microsoft Application Center Test 1.0, Visual Studio .NET
Edition. http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/act/htm/
actml_main.asp, May 2004.

[17] Microsoft Corp. Event Tracing for Windows (ETW).
http://msdn.microsoft.com/library/en-us/
perfmon/base/event_tracing.asp, 2002.

[18] I. Park and M. K. Raghuraman. Server diagnosis using request
tracking. In 1st Workshop on the Design of Self-Managing Sys-
tems, held in conjunction with DSN 2003, June 2003.

[19] F. Risso and L. Degioanni. An architecture for high performance
network analysis. In Proc. 6th IEEE Symposium on Computers
and Communications, pages 686–693, July 2001.

[20] Transaction Processing Performance Council. TPC Benchmark C
(On-line Transaction Processing) Specification. http://www.
tpc.org/tpcc/.

[21] Transaction Processing Performance Council. TPC Benchmark
W (Web Commerce) Specification. http://www.tpc.org/
tpcw/.

[22] K. Yaghmour and M. R. Dagenais. Measuring and characteriz-
ing system behavior using kernel-level event logging. In Proc.
USENIX Annual Technical Conference, June 2000.

