
Are Virtual Machine Monitors Microkernels Done Right?

Steven Hand, Andrew Warfield, Keir Fraser,
Evangelos Kotsovinos, Dan Magenheimer†

University of Cambridge Computer Laboratory
† HP Labs, Fort Collins, USA

1 Introduction

At the last HotOS, Mendel Rosenblum gave an ‘out-
rageous’ opinion that the academic obsession with
microkernels during the past two decades produced
many publications but little impact. He argued that
virtual machine monitors (VMMs) had had consider-
ably more practical uptake, despite—or perhaps due
to—being principally developed by industry.

In this paper, we investigate this claim in light of our
experiences in developing the Xen [1] virtual machine
monitor. We argue that modern VMMs present a prac-
tical platform which allows the development and de-
ployment of innovative systems research: in essence,
VMMs are microkernels done right.

We first compare and contrast the architectural purity
of microkernels with the pragmatic design of VMMs.
In Section 3, we discuss several technical characteris-
tics of microkernels that have proven, in our experi-
ence, to be incompatible with effective VMM design.

Rob Pike has irreverently suggested that “systems
software research is irrelevant”, implying that aca-
demic systems research has negligible impact outside
the university. In Section 4, we claim that VMMs
provide a platform on which innovative systems re-
search ideas can be developed and deployed. We be-
lieve that providing a common framework for hosting
novel systems will increase the penetration and rele-
vance of systems research.

2 Motivation and µHistory

Microkernels and virtual machine monitors are both
well explored areas of operating systems research dat-

ing back more than twenty years. Both areas have fo-
cused on a refactoring of systems into isolated com-
ponents that communicate across well-defined, typi-
cally narrow interfaces. Despite considerable struc-
tural similarities, the two research areas are remark-
able in their differences: Microkernels received con-
siderable attention from academic researchers through
the eighties and nineties, while VMM research has
largely been the bailiwick of industrial research.

2.1 Microkernels: Noble Idealism

The most prolific academic microkernel ever devel-
oped was probably Mach [2]. A major research
project at CMU, Mach’s beginnings were in the
Rochester Intelligent Gateway (RIG) [3] followed by
the Accent kernel [4]. The key motivation to all of
these systems was that the OS be “communication
oriented”; that they have rigid, message-based inter-
faces between system components. Many of the ab-
stractions used in Mach and later systems appeared
initially in the RIG, including that of the port. How-
ever, the communications orientation of these systems
originally intended to allow the distribution of system
components across a set of dissimilar physical hosts.

The term “microkernel” was coined in response to
the predominant monolithic kernels at the time. Mi-
crokernel advocates claimed that a smaller OS core
would be easier to maintain, validate, and port to new
architectures. A common theme throughout much of
the microkernel work is that microkernels were archi-
tecturally better than monolithic kernels; from a re-
search perspective they certainly are, as it is consider-
ably easier to work on a single system component if
that component is not entangled with other code.

1



Mach is hardly unique as an example of innovative
microkernel projects. In the heyday of microkernels,
many interesting systems were constructed including
Chorus [5], Amoeba [6], and L3/L4 [7, 8]. Several of
these evolved to show that microkernels, which were
often criticized for poor performance, could match
and even outperform commercial unix variants.

2.2 VMMs: Rough Pragmatism

Early work on Virtual Machines [9, 10] was motivated
by the need to improve hardware utilisation by facili-
tating the secure time-sharing of machines. Typically,
VMs in IBM’s model are identical “copies” of the un-
derlying hardware where each instance runs its own
operating system. Multiple VMs can be created and
managed via interfaces exported by the Virtual Ma-
chine Monitor (VMM), a component running on the
physical hardware.

As virtual machines may be owned by multiple, com-
peting users, strong resource isolation mechanisms
are required in the VMM. Another important facility
provided by VMMs is that of sharing the hardware —
securely multiplexing several virtual machines over a
single set of physical resources.

The use of a VMM presents an additional layer of in-
direction between the hardware and the user, and it
is necessary that this does not result in a noticeable
performance degradation. For that reason, a signifi-
cant amount of research effort in VMMs has been di-
rected towards maintaining a low performance over-
head, with considerable success [1].

Although VMM architectures differ in the degree of
modification required to the guest operating systems
they host, these modifications typically range from
very small to none at all. Xen and Denali [11] host
slightly modified guestOSes for improved system per-
formance while VMware1 provides full hardware vir-
tualization so that no guestOS changes are needed.

An important characteristic of most VMMs is their
ability to support the execution of out-of-the-box ap-
plications; users can run code that is executable on
their regular desktop machines.

Because of the above properties of allowing users to
securely share hardware on machines at a low perfor-
mance cost, improving machine utilization, and not

1http://www.vmware.com

requiring modifications to the applications, VMMs
have always presented a very appealing platform for
practical deployment.

Previous research has combined microkernel and VM
concepts to provide recursive VMs running on a
microkernel-based OS [12]. User-mode Linux [13]
achieves software-level virtualization by running a
VMM as an application inside a host Linux sys-
tem. Additionally, several research systems do not fall
cleanly into either the VMM or microkernel camps;
for example both Exokernel [14] and Nemesis [15]
provide low-level interfaces and resource protection
above a small trusted kernel, but without the fine-
grained modularization of microkernels or the OS-
granularity multiplexing of VMMs.

3 Architectural Lessons

While both microkernels and VMMs share rich his-
tories of innovation, it is increasingly obvious that
VMMs have achieved predominance in modern sys-
tems. In Section 4 we will revisit how many of the
goals of microkernels remain relevant today. We first
discuss some technical characteristics that consumed
the research efforts of the microkernel community, but
which have proven in our experience to be inconse-
quential in the development of modern VMMs.

We note that VMMs and microkernels bear a great
deal of architectural similarity. The Denali team has
re-titled their VMM µDenali in reference to its ex-
plicit restructuring as a microkernel, while there has
recently been an effort to develop VMM functionality
on top of the L4 microkernel. In this section, however,
we focus on what we perceive to be the important dif-
ferences between the two approaches.

3.1 Avoid Liability Inversion

One of the fundamental properties of microkernels is
the division of a system into isolated user-space com-
ponents. While the resulting kernel is smaller, this
functional reduction relaxes the dependability bound-
aries within the system: applications must depend on
other user-level components in order to run. More im-
portantly, the microkernel itself depends on applica-
tion level components, such as pagers, to make for-
ward progress.

2



External pagers are an excellent example of this phe-
nomenon: the failure conditions associated with them
are one of the earliest and most recurrent problems
discussed in microkernel-related literature [16]. Rel-
egating a critical system-wide component to user-
space, the kernel can be left waiting on the pager to
evict a page before it can proceed. Various inele-
gant timeout and fallback mechanisms were required
to avoid deadlock. By depending on arbitrary user-
level components in order to continue execution, the
kernel abdicates its liability for system liveness. We
refer to this as liability inversion.

One of the principal design guidelines in Xen has been
to avoid exactly these situations. Xen’s memory man-
agement system, for instance, has no notion of pag-
ing whatsoever; rather it strictly partitions memory
between VMs and allows limited facilities for shar-
ing. VMs are themselves responsible for any paging
within these allocations. The point here is perhaps a
subtle one: decisions such as this are engineered to
ensure that VM failure is isolated and cannot degrade
the stability of the system as a whole.

3.2 Make IPC Performance Irrelevant

IPC performance is arguably the most revered hall-
mark of microkernel research. As message-based
communication between system components is cru-
cial to the operation of any microkernel, the literature
is saturated with papers measuring IPC performance,
improving IPC performance, and even questioning the
relevance of IPC performance. However in our expe-
rience fast IPC is not a critical design concern in the
construction of high-performance VMMs.

There are a number of reasons why we can avoid rely-
ing on fast, typically synchronous, IPC mechanisms.
First, since VMMs hold isolation to be a key goal, IPC
between virtual machines is considerably less com-
mon in general. This is a natural consequence of
VMM design considering entire operating systems to
be the unit of scheduling and protection; hence syn-
chronization and protected control transfer are only
necessary when two virtual machines wish to explic-
itly communicate.

Secondly, we have determined that a clear separa-
tion between control and data path operations allows
us to optimize for the common case. In particular,
we observe that by explicitly setting up communi-

cation channels, we can perform potentially expen-
sive permission and safety checks at initialization time
and then elide validation during more frequent data
path operations. This decoupling furthermore allows
higher-level communcation mechanisms great free-
dom in how they are implemented.

A particular example of this is seen in the implementa-
tion of control- and device-channels within Xen. Both
of these are built upon a simple asynchronous uni-
directional event mechanism which is the only com-
munications primitive provided by Xen. However by
combining pairs of events with shared memory, we
can build both synchronous IPC for control operations
and asynchronous producer-consumer rings for bulk,
batched, data transfer. Even these latter allow con-
siderable flexibility in use: by determining how often
notifications are generated or waited upon, one can
explicitly trade-off throughput and latency.

3.3 Treat the OS as a Component

The final important difference between Xen and a mi-
crokernel is that of the granularity of componenti-
zation. By positioning themselves as a response to
monolithic kernels, microkernels focused on dividing
the functional units of an OS into discrete parts. A
practical problem faced by microkernel developers is
that which faces any new OS effort: by changing the
API visible to applications, an OS forfeits the com-
plete set of software available to existing systems. As
such, most microkernel projects were left spending
considerable effort to implement emulation interface
layers for existing OSes.

VMMs differ significantly here in that their intention
is to support existing operating systems. Out-of-the-
box code, compiled to be executable on a range of
existing OSes, can be run on a guest operating sys-
tem on top of Xen. This reduces the cost of entry for
users and applications, makes virtualization attractive
and practical for a wider community, and addresses
one of the main problems of microkernel systems —
the difficulty in attracting a substantive user base, and
in keeping microkernel operating systems up to date
with the feature sets of existing OSes.

By supporting existing OSes, VMMs need only jus-
tify the potential performance overheads they incur in
order to be an attractive option. As shown in [1] and
independently verified in [17], the overhead imposed

3



by Xen is very limited.

Secondly, VMMs appeal to developers because they
present a familiar development environment. Using
existing OSes as fundamental blocks of componenti-
zation allows developers to continue using the same
tool set that they have on their existing system, free-
ing them to concentrate on more important issues.

Similar benefits accrue for the developers of the VMM
itself: for example, Xen makes extensive use of exist-
ing tools for network routing, disk management, and
configuration as part of the control software running
in the privileged management VM.

The size of components — i.e. guest OSes — run-
ning on a VMM can be adjusted, depending on the
functionality required from them. One example is
ttylinux, a minimalistic Linux distribution, providing
multi-tasking, multi-user, and networking capabilities
within less than 4 megabytes of operating system size.

4 The future for VMMs

Having illustrated what we feel are the key differences
between microkernel and VMM design, we now con-
sider how VMMs may be used to realize many of the
research benefits achieved by the microkernel com-
munity. These include narrow interfaces between sys-
tem components providing easy extensibility of de-
vice and OS functionality, a small code base that can
guarantee security more easily than monolithic ker-
nels, and strong isolation providing opportunities for
improved manageability.

Narrow interfaces between system components are
crucial in facilitating extensibility. The clean IPC in-
terfaces provided by microkernels allowed researchers
the ability to focus on specific system components
without becoming entangled in unrelated code. Sim-
ilarly, the narrow interfaces present in Xen allow de-
vices and OSes to be easily extended. Xen’s device
architecture has allowed device drivers to be isolated
in a separate VM for dependability [18], and permit-
ted low-level interfaces to be extended without neces-
sitating modification of the target OS or VMM [19].
Indeed, it seems very likely that the exploration of
how services and management will be structured in a
multi-OS VMM system will continue to present many
exciting research opportunities.

A further advantage of narrow interfaces, coupled
with a minimal privileged kernel, is the tractability
of achieving a high degree of confidence in the secu-
rity of a system. This has been explored in the micro-
kernel community by projects such as Flask [20] and
EROS [21]. Several groups have expressed interest in
developing these ideas for Xen, using concepts from
projects such as the Flask-derived SELinux.

A final avenue of innovation realized recently by
VMMs has been to explore less performance-centric
aspects of systems development. As with the ex-
amples above, VMMs are a promising platform be-
cause these so-called ‘ilities’ can be developed and
applied to existing systems. For example, live OS
migration [22] allows a running OS to be relocated
to a new physical host, empowering administrators
to better manage physical resources. The ability to
‘rewind’ a VM’s state has been used for intrusion de-
tection [23], debugging [24] and administration [25].

5 Conclusion

Despite having dissimilar motivations and origins, mi-
crokernels and VMMs share many architectural com-
monalities. In this paper we have attempted to il-
lustrate some of the technical separations between
the two classes of system that, in our opinion, have
favoured the success of VMMs in recent years. More
importantly though, we posit that – despite the decline
in microkernel research – modern VMMs, Xen in par-
ticular, are in fact a specific point in the microker-
nel design space; that VMMs are microkernels done
right. In light of this opinion, we observe that many
of the advantages realized through the structure of mi-
crokernel systems may be similarly developed above
a VMM. Moreover, because VMMs run commodity
operating systems and applications we claim that they
present a valuable platform for innovative systems re-
search to have impact outside the academic laboratory.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In Proc. 19th ACM
Symposium on Operating Systems Principles (SOSP),
pages 164–177, 2003.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young. Mach: A new

4



kernel foundation for UNIX development. In Proc.
Summer USENIX Conference, June 1986.

[3] E. Ball, J. Feldman, J. Low, R. Rashid, and
P. Rovner. RIG, Rochester’s Intelligent Gateway:
System overview. In Proc. 2nd International Con-
ference on Software Engineering, page 132, 1976.

[4] R. Rashid and G. Robertson. Accent: A commu-
nication oriented network operating system kernel.
In Proc. 8th ACM Symposium on Operating Systems
Principles (SOSP), pages 64–75, 1981.

[5] V. Abrossimov, M. Rozier, and M. Gien. Virtual
memory management in chorus. In Proc. European
Workshop on Process in Distributed Operating Sys-
tems and Distributed Systems Management, pages
45–59, 1990.

[6] S. Mullender, G. van Rossum, A. Tanenbaum, R. van
Renesse, and H. van Staveren. Amoeba: A distributed
operating system for the 1990s. IEEE Computer,
23(5):44–53, 1990.

[7] J. Liedtke. Improving IPC by kernel design. In Proc.
14th ACM Symposium on Operating Systems Princi-
ples (SOSP), December 1993.

[8] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and
J. Wolter. The Performance of µ-Kernel-Based Sys-
tems. In Proc. 16th ACM Symposium on Operating
Systems Principles (SOSP), October 1997.

[9] R. Adair, R. Bayles, L. Comeau, and R. Creasy. A
virtual machine system for the 360/40. Technical Re-
port 320-2007, IBM Corporation, Cambridge Scien-
tific Center, May 1966.

[10] R. Goldberg. Architectural principles for virtual com-
puter systems. PhD thesis, Harvard University, 1972.

[11] A. Whitaker, M. Shaw, and S. Gribble. Scale and per-
formance in the Denali isolation kernel. In Proc. 5th
Symposium on Operating System Design and Imple-
mentation (OSDI), December 2002.

[12] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back,
and S. Clawson. Microkernels meet recursive virtual
machines. In Proc. 2nd Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 137–
151, October 1996.

[13] J. Dike. User-mode Linux. In Proc. 5th Annual Linux
Showcase and Conference, November 2001.

[14] D. Engler, F. Kaashoek, and J. O’Toole Jr. Exokernel:
an operating system architecture for application-level
resource management. In Proc. 15th ACM Sympo-
sium on Operating Systems Principles (SOSP), De-
cember 1995.

[15] I. M. Leslie, D. McAuley, R. Black, T. Roscoe,
P. Barham, D. Evers, R. Fairbairns, and E. Hyden.
The design and implementation of an operating sys-
tem to support distributed multimedia applications.
14(7):1280–1297, September 1996.

[16] M. Young, A. Tevanian, R. F. Rashid, D. B. Golub,
J. L. Eppinger, J. Chew, W. J. Bolosky, D. L. Black,
and R. V. Baron. The duality of memory and com-
munication in the implementation of a multiprocessor
operating system. In Proc. 11th ACM Symposium on
Operating Systems Principles (SOSP), 1987.

[17] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Fin-
layson, J. Herne, and J. Matthews. Xen and the art of
repeated research. In Proc. USENIX Annual Techni-
cal Conference, June 2004.

[18] K. Fraser, S. Hand, R. Neugebauer, I. Pratt,
A. Warfield, and M. Williamson. Safe hardware ac-
cess with the Xen virtual machine monitor. In Proc.
ACM OASIS Workshop, 2004.

[19] A. Warfield, K. Fraser, S. Hand, and T. Deegan. Fa-
cilitating the development of soft devices. In Proc.
USENIX Annual Technical Conference, April 2005.

[20] R. Spencer, S. Smalley, P. Loscocco, M. Hibler,
D. Andersen, and J. Lepreau. The Flask security ar-
chitecture: System support for diverse security poli-
cies. In Proc. Eighth USENIX Security Symposium,
August 1999.

[21] J. Shapiro, J. Smith, and D.Farber. EROS: a fast ca-
pability system. In Symposium on Operating Systems
Principles, 1999.

[22] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migra-
tion of virtual machines. In Proc. USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI), 2005.

[23] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen.
Revirt: enabling intrusion analysis through virtual-
machine logging and replay. SIGOPS Oper. Syst.
Rev., 36(SI):211–224, 2002.

[24] S. King, G. Dunlap, and P. Chen. Debugging operat-
ing systems with time-traveling virtual machines. In
Proc. USENIX Annual Technical Conference, 2005.

[25] A. Whitaker, R. Cox, and S. Gribble. Configura-
tion debugging as search: Finding the needle in the
haystack. In Proc. 6th Symposium on Operating Sys-
tem Design and Implementation (OSDI), pages 77–
90, December 2004.

5


