
Error Propagation Profiling of Operating Systems

Andréas Johansson and Neeraj Suri
Department of Computer Science, Technische Universität Darmstadt

{aja,suri}@informatik.tu-darmstadt.de

Abstract

An Operating System (OS) constitutes a fundamental
software (SW) component of a computing system. The ro-
bustness of its operations, or lack thereof, strongly influ-
ences the robustness of the entire system. Targeting en-
hancement of robustness at the OS level via use of add-on
SW wrappers, this paper presents an error propagation pro-
filing framework that assists in a) systematic identification
and location of design and operational vulnerabilities, and
b) quantification of their potential impact. Focusing on data
(value) errors occurring in OS drivers, a set of measures is
presented that aids a designer to locate such vulnerabilities,
either on an OS service (system call) basis or a per driver
basis. A case study and associated experimental process,
using Windows CE .Net, is presented outlining the utility of
our proposed approach.

1. Introduction

The robustness of the OS, i.e., the ability to withstand
perturbations with continued service provision, directly af-
fects the robustness of the whole system. As applications
depend on the OS delivering correct and timely services, a
failure to do so will likely impact the system’s ability to de-
liver its services. In spite of the significant ongoing efforts
to enhance OS robustness, and advances in the underlying
SW development processes, OS’s still occasionally fail to
deliver stipulated services. One reason is the complexity
of OS level interactions with varied SW components in the
system that are often unknown at OS design time, e.g., ap-
plications, drivers, libraries. This “dynamic” nature of OS’s
makes it hard to design an OS to be comprehensively robust
against errors that can occur in its operational environment.

This paper focuses on delivering a methodology whereby
the OS platform can be profiled using experimental fault in-
jection (FI) and data error propagation path analysis. This
profiling characterizes the behavior of the OS when exposed
to perturbation in its interaction with other system compo-
nents. The targeted errors are errors occurring in device

drivers. Drivers are reported to be a significant source of OS
failures [5, 16, 19]. This arises as they are often not tested as
rigorously as the OS kernel; are often designed external to
the OS development team, lacking complete details of the
system; represent a significant part of the system in terms
of code size; and may also be directly affected by malfunc-
tioning hardware or external errors. Throughout this paper,
errors refer to data level errors, i.e., errors that affect the
value of some variable in a program.

The goal of this paper is to demonstrate a quantifiable
and repeatable method for assessing error propagation for
an OS, where no source code access is viable, as is the case
for most commercial OS’s. The lack of source code poses
two main obstacles: (a) no changes can be made internally
to the components, neither the OS nor its drivers, and (b) the
error propagation analysis must be based on observations
made only on the interface between components. Error
propagation information reveals which errors occurring in
the OS environment (device drivers) will “flow through” the
OS and ultimately affect applications. The non-dependency
on source code also makes it possible to target systems with-
out source code readily available. It also avoids the problem
of having the code bias the testing results, which sometimes
is a problem for white-box testing approaches.

To demonstrate the proposed profiling methodology a
case study is presented, using the Windows CE .Net operat-
ing system. The target was chosen for its OS representative-
ness and also as it offers a high degree of control and limited
complexity. The results from the case study are interpreted
using a set of measures, defined to capture the error propa-
gation properties of the OS. We study the relations between
individual OS services to services in drivers as well as com-
posite metrics describing the exposure of errors on OS ser-
vices and the diffusion of errors from specific drivers. Two
drivers are studied and the error diffusion properties of the
two drivers are compared. The main results of the study
conclude that many errors do not propagate, or propagate
in a robust manner, i.e., the effect of an error is visible at
the application level, but does not lead to a failure. How-
ever, a few significant error propagation paths are identified
which represent a serious threat to a highly robust design.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

To recap, the contributions found in this paper include:

- Development of OS error propagation measures.
- Quantifiable methods for assessing the aforemen-
tioned measures without source code availability.
- A case study to demonstrate the experimental as-
sessment process.

Paper Organization: Sec. 2 puts our work in context
by discussing related work. Sec. 3 presents the system and
error model used in this work. Sec. 4 develops and details
the measures used for profiling an OS for errors in drivers.
Sec. 5 and 6 present the case study and obtained results.
Analysis and discussion of the results and future research
directions are presented in Sec. 7. Sec. 8 presents conclu-
sions.

2. Related Work

Robustness studies of large SW systems have been con-
ducted for many years. In [8] the robustness of C-libraries
was evaluated and enhanced using wrappers. POSIX in-
terfaces are the targets in [14], where OS’s are compared
using failure mode analysis. The techniques used in [14]
correspond, in part, to ours (injection strategy, error model,
etc), but with applications instead of drivers as the source of
errors. The effects of driver errors on the Linux kernel were
studied in [1]. The main difference with our approach is
that we focus on error propagation measures, as a facilitator
for wrapper placement. The work presented herein comple-
ments [1] in this respect, as the approaches and error models
are similar. In [2] an extensive failure mode analysis was
performed, using code mutations in drivers with the pur-
pose of building a dependability benchmark. Micro-kernels
have also been targets for studies [3], where bit-flips in ei-
ther kernel API’s or memory are used to simulate hardware
(HW) as well as SW faults. The main contribution of our
work, with respect to the other studies, are again that we fo-
cus on quantifiable measures of error propagation. Also, we
focus specifically on data level errors, whereas other studies
have used other error models such as bit-flips [3] and code
mutations [2].

In our prior work, the EPIC framework (Exposure, Per-
meability, Impact and Criticality), together with the sup-
porting experimental tool PROPANE [11, 12], profiles sta-
tic, modular software (fixed set of modules that interact in a
predefined manner) for error propagation to ascertain effec-
tive placement of wrappers. The framework focuses on pro-
filing the signals used in the interaction between modules
using both error propagation and effect profiles. Using the
permeability, and exposure metrics, propagation profiles re-
veal information on where errors propagate through the sys-
tem and which modules/signals are more exposed to propa-
gating errors. In our current OS-themed work, the emphasis

is on dynamic software interactions as the set of applications
is not generally known in advance. Thus, all possible inter-
action paths (and consequently error propagation paths) are
not known a priori.

Tools have also been developed with the specific purpose
to protect a system from malfunctioning drivers. In [19]
drivers are wrapped to track erroneous memory accesses,
which is a major problem in device drivers. One issue raised
in [19] was that some data level errors cannot automatically
be traced. We believe that our approach complements [19]
to this end. In [18] an Interface Definition Specification is
used to improve driver robustness. In the Microsoft SLAM
project [4] a static verification technique is used to verify
that device drivers adhere to a given interface. This project
effectively has the same goal as ours, with the difference
that we use no source code knowledge or formal specifica-
tion of the interfaces. Both approaches are promising and
will likely coexist for different scenarios.

3. System and Error Model

Given the diversity of OS implementations, we target
a simple system model that comprises four major layers;
hardware, drivers, OS and applications, see Figure 1. This
model is generic enough to be representative and applica-
ble to most modern OS’s, e.g., Windows, GNU/Linux and
UNIX. Each system layer supplies a set of services to its
neighboring layers. For us, a service is typically a function
call, e.g., function entry points in drivers and OS system
calls. We say that a set of services constitutes an interface,
for instance the OS-driver interface.

...

Operating System
... ...

APP
...

D1 D2 DN

APP
...

...

...

... ...

...
... ...

OS Layer

Application layer

Driver Layer

Hardware Layer Hardware Platform

... ...

[OS-Application inteface]

}si

}dsx.z

}osx.y[OS-Driver interface]

Figure 1. Generalized system model.

The driver layer is responsible for handling interactions
between the hardware and the OS. Direct interactions with-
out the involvement of a driver are indeed possible, how-
ever, we focus only on the general case of interactions with

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

driver involvement. We have chosen to treat drivers as com-
ponents of the system and not as a subcomponent of the OS.
One may argue that drivers are actually an intrinsic part of
the OS, but our view facilitates fuller representation of com-
ponent interactions.

The system has a number of drivers enumerated as
{D1, D2, · · · , DN}. Each driver both imports (for instance
via system calls) and exports services to the OS (provided
by the driver) and we consider each category of driver-OS
interactions separately. Each driver exports a set of services.
These can be enumerated as {dsx.1, dsx.2, · · · , dsx.M},
where dsx.y is the yth service exported by driver Dx.

In the OS layer, we include shared libraries existing in
the system, reflecting the viewpoint of a programmer, i.e.,
libraries support functionalities that programs need. For this
layer we define two primary sets of interfaces where inter-
action takes place. First, through the OS-Application in-
terface, the OS provides a set of services {s1, s2, · · · , sS},
through which applications interact with the OS. The sec-
ond interface contains the interactions between the OS and
the drivers (through the OS-Driver interface). For a specific
driver Dx, the set of services it imports from the OS is de-
noted {osx.1, osx.2 · · · osx.K}. Using the same notation as
for driver services, osx.q is the qth imported OS service by
Dx. Note that the same services can be used by both drivers
and applications.

Applications running on the system utilize services pro-
vided by the OS to, in turn, provide services to the users
of the system. Thus, as different OS services have different
robustness properties, the way applications make use of OS
services will impact the robustness of their operations.

Throughout this paper we use a black-box software
model, i.e., no source code level knowledge is assumed
about the components, only their interface specifications.
This system view corresponds to the view of developers us-
ing the system for a particular design. The specification
can be textual, like a reference manual, but also header files
needed for compiling a program are considered to be part of
the specification. Components are supplied in binary form.
We assume that we have access, and possibilities to inspect
and modify the binary image of the driver and the possi-
bility of inspecting and modifying them such that that the
interaction between the layers can be monitored and modi-
fied. Note that this does not require source code access!

3.1. Error Model

Our error model is transient data level errors, which are
the result of implementation defects in the driver as well
as value faults related to malfunctioning HW. This error
model, when used for error injection, has three basic com-
ponents: a) the type, or nature of the error, b) the location of
the error, and c) the timing of the injection. In the following

paragraphs we define each of these properties.
Error Types: For this study we chose data level er-

rors, based on the C-type of each parameter, i.e., the data
type used for the parameter. We use C-types as the OS-
Driver interface for this target is defined using the C lan-
guage. We find data errors of high interest as they are hard
to detect with general error detection techniques (like track-
ing of memory accesses) and may still lead to severe fail-
ures. They also allow for flexible insertion using a black-
box view of the system. Sec. 2 discusses other error models
found in literature.

Error C-Type #Cases

int 7
unsigned int 5
long 7

Integers unsigned long 5
short 7
unsigned short 5
LARGE INTEGER 7

Void * void 3
Characters char 7

unsigned char 5
wchar t 5

Boolean bool 1
Enums multiple cases #identifiers
Structs multiple cases 1

Table 1. The error types used in this study.

We have currently implemented this error model for 27
different C-types, both basic and user defined (here the
“user” refers to the OS). Table 1 shows an overview of the
types needed to perform the case study presented later in
Sec. 5, and shows the number of test cases defined for
each type. For each C-type, different data values are cho-
sen as test cases, including offset values, common values
and boundary values. The values are chosen to both cover
equivalent classes of values and boundary values. As an ex-
ample, table 2 shows the errors for type int. Note that
Cases 1 and 2 allow for under/overflow to happen.

Case # New value

1 (Previous value) - 1
2 (Previous value) + 1
3 1
4 0
5 -1
6 INT MIN
7 INT MAX

Table 2. Error cases for type int.

Error Location: As already mentioned, we focus on
data errors in the OS-driver interface. By introducing errors
in the parameters used in this interface we simulate errors

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

occurring within the driver in question. An example of an
OS service in this interface is shown below:

LONG RegQueryValueEx([in] HKEY hKey,
[in] LPCWSTR lpValueName,
[in] LPDWORD lpReserved,
[out] LPDWORD lpType,
[out] LPBYTE lpData,
[in/out] LPDWORD lpcbData);

For each service, the input/output parameters are identi-
fied (using the documentation). Each output parameter of a
driver service dsx.y is targeted for injection as well as each
input parameter for the OS-driver services osx.q, see Sec. 3.
An error is injected after a call to/from a driver is made by
changing the value of a parameter and then continuing the
execution with the corrupted value.

Error Timing: Each error is injected once, thus sim-
ulating transient service corruption. We do not consider
permanent errors, occurring every time a function is called,
as these are easier to detect using normal functional testing
techniques. Transient errors better represent the rare cases
that are not easily detectable with normal testing techniques.

Each error is injected on first occurrence, meaning that
the first call made to the service in question will be the tar-
get for the injection. Previous studies on OS’s indicate that
“first occurrence” injection provides comparably effective
results to other injection instances [20].

4. Error Propagation Measures

Based on the initial discussion presented in [13], we have
defined a set of quantifiable measures that guide the location
of vulnerabilities. An effective placement of wrappers is
where errors are likely to occur (high probability of error
propagation) and where the impact of errors is highest [12]
(the consequences of errors are system failures). Therefore,
these are the objectives for our measures:

(a) Measure for degree of error porosity of an OS ser-
vice: Service Error Permeability

(b) Measure for error exposure of an OS service: OS
Service Error Exposure

(c) Measure of driver error co-relation with service set:
Driver Error Diffusion

It is important to note that the measures presented below
implicitly use a uniform distribution of errors. This is a con-
sequence of the fact that no “profile” exists describing how
the system is used in a real scenario. A longer discussion
on this aspect can be found in Sec. 7.

4.1. Service Error Permeability

We define two measures for error permeability, one for
a driver’s export of services (PDS) and one for its im-
port of OS services (POS). For a driver Dx, the set of

export services (dsx.1 · · · dsx.N) and the import services
(osx.1 · · · osx.M), see Sec. 3. The Service Error Permeabil-
ities, for export (PDSi

x.y) and import (POSi
x.z) of services,

relate one driver service to one OS service. The Service Er-
ror Permeability is the conditional probability that an error
in a specific driver service (dsx.y) or in the use of OS-driver
service (osx.z) will propagate to a specific OS service (si).
For an OS service si and a driver Dx:

PDSi
x.y = Pr (error in si|error in dsx.y) (1)

POSi
x.z = Pr (error in si|error in use of osx.z) (2)

The Service Error Permeability (PDS for exported and
POS for imported services of a driver) gives an indication
of the permeability of the particular OS service, i.e., how
easily does the service let errors in the driver propagate to
applications using it. A higher probability naturally means
that either a) a wrapper needs to be designed to protect the
OS from driver errors, or b) applications using the affected
services needs to take precautions when using them. Note
that Equation 2 allows us to compare the same OS service
used by different drivers. The impact of the context induced
by different drivers can thus be studied.

4.2. OS Service Error Exposure

To ascertain which OS service is the more exposed to
errors propagating through the OS, the full set of drivers
needs to be considered. We use the measure Service Error
Permeability, to compose the OS Service Error Exposure
for an OS service si, namely Ei:

Ei =
∑
Dx

∑
osx.j

POSi
x.j +

∑
Dx

∑
dsx.j

PDSi
x.j (3)

For Ei we consider all drivers. The OS Service Error
Exposure gives an ordering across OS services which or-
ders services based on their susceptibility to errors passing
through the OS. Note that this expression implies aggregat-
ing all imported and exported Service Error Permeabilities
(1 & 2 above). The OS Service Error Exposure indicates
which services are more exposed to propagating errors; its
use is thus mainly to direct placement of wrappers on the
OS-application level.

4.3. Driver Error Diffusion

The measure Driver Error Diffusion identifies drivers,
that when being erroneous are more likely to spread errors,
by considering one particular driver’s relation to many ser-
vices. Driver Error Diffusion is a measure of how a driver

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

can impact OS services (at the OS-Application interface).
The more services, and the higher the impact (permeabil-
ity) a driver has, the higher the value. For a driver Dx and a
set of services, the Driver Error Diffusion, Dx is:

Dx =
∑
si

∑
osx.j

POSi
x.j +

∑
si

∑
dsx.j

PDSi
x.j (4)

The Driver Error Diffusion ranks the drivers according
to their potential for spreading errors in the system. Analo-
gous to the OS service exposure, the driver diffusion aggre-
gates Service Error Permeabilities. This gives the system
designer hints on where wrappers should be placed, i.e.,
where adding driver wrappers makes sense. Note that we
do not try to test the drivers per se, so this measure only
tells us which drivers may corrupt the system by spreading
errors. Also, we emphasize that the intent of these measures
is not for absolute values, but to obtain relative rankings.

Once a ranking across drivers is achieved, the driver(s)
with the highest Driver Error Diffusion value should be the
first targets. Details on specific error paths can now be used
(i.e., Service Error Permeability values) to guide the com-
position and exact placement of wrappers.

4.4. Error Exposure vs Error Impact

The purpose of error propagation profiling is to reveal
prominent error propagation paths as well as to identify
those that can have a severe impact on the whole system.
The measures described in the previous subsections aid in
identifying the common error paths. However, the impact
can range from no effect at all to the whole system being
rendered unusable (e.g., crashed or hung). Thus, it is im-
portant to not only measure if a failure occurred, but also
what type of failure it was. Failure mode analysis is an ap-
proach that accomplishes just this. A set of failure modes
are defined and the outcome of each experiment is classified
as belonging to one of them. The classes used in this study
follow the classes established in [3, 6, 10]:

Class NF: When no visible effect can be seen as an
outcome of an experiment, the No Failure class is
used. This indicates that the error was either not ac-
tivated or was masked by the OS.

Class 1: Error propagated, but still satisfied the OS
service specification as defined in the documenta-
tion. Examples of Class 1 outcomes are when an
error code or exception is returned that is a member
of the set of allowed codes for this call or if a data
value was corrupted and propagated to the service,
but did not violate the specification.

Class 2: Error propagated and violated the service
specification. For example, returning an unspeci-

fied error code or if the call directly causes the ap-
plication to hang or crash but other applications in
the system remain unharmed, result in this category.
Note that not properly handling a return value within
the specification does not end up in this class!

Class 3: The OS hung or crashed due to the error. If
the OS hangs or crashes, no progress is possible.
For a crashed OS, this state must be detected by an
outside monitor unless this state is automatically de-
tected internally and the machine is rebooted. Again
note that not handling Class 1 failures resulting in an
eventual crash is not treated as a Class 3 failure.

Using this severity scale, further analysis of the results
can be done. Starting with the most severe class (Class 3:
crash/hung) one can study the exposure to these errors sep-
arately, then progressively go downwards in the scale.

5. Case Study: Windows CE .Net

We present a case study to demonstrate the utility of the
measures defined in Sec. 4. A commercial OS (Windows
CE .Net), together with two drivers, is the target for this
study. By use of error injection, the measures defined in
Sec. 4 are estimated. Experiments are conducted in rounds,
with one error being injected in each round. To assure a
consistent system state for each experiment the system is
rebooted between rounds.

The rest of this Section contains a description of the tar-
get system followed by a description of the experimental
setup used, its modules and their roles. Subsequently, de-
tails on the experimental process and the estimation of mea-
sures are presented.

5.1. Target System

The target of the case study is Windows CE .Net 4.2.
The OS runs on a HW reference platform using the Intel
PXA255 XScale board (similar to what is found on modern
PDAs). The configuration has a 400 MHz processor, with
32 MB flash and 64 MB SDRAM memory, and is equipped
with serial ports as well as Ethernet connections. Four sep-
arate boards were used to achieve reproducibility of results
as well as for expediting the injection processes.

For all experiments, the OS image is configured to use a
minimum set of components to facilitate repeatability. Thus
components relating to unused HW (Keyboards, mice, etc)
and graphical components as well as possible services (web
servers, etc) are excluded.

We target two drivers, an Ethernet driver,
91C111.Dll, and a serial port driver,
cerfio serial.Dll. Both are shipped with the
hardware platform as binaries. These drivers are chosen as

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

they a) represent functionality present in many products,
and b) are supplied by third party vendors, which prohibit
source code access, thus demonstrating the utility of our
black-box approach.

5.2. Experimental Setup

In order to estimate the Service Error Permeability, we
inject errors in the OS-driver interface and study their ef-
fects on the application-OS interface. We use a special
driver “wrapper”, termed Interceptor, which bypasses the
normal driver-OS interactions and provides the means for
injecting errors at this interface.

The entire setup consists of four main modules, (apart
from the target OS); a) the aforementioned interceptor; b)
test applications, c) an experiment manager application; and
d) a host computer, see Figure 2.

Operating System

Driver xDriver x Target
driver

Interceptor

Test
Applications

Host
Computer

Experiment
Manager

- Exp. Setup
- Exp Synch.
- Logging
- Restarting

Figure 2. The experimental setup - dotted
boxes indicate add-on modules to the setup.

Interceptor: Two methods are used to intercept OS-
driver interactions, a) the changing of function table entries
in the binary of the driver, and b) re-configuration of the
Windows registry. Changes made to the binaries are made
before the driver is loaded in the system. By reconfiguring
the loading of drivers (in the registry) the interceptor mod-
ule can be loaded instead of the driver, and thus act as a
driver for the OS.

Test Applications: The purpose of the test applications
is to exercise the OS services. Ideally real applications
should be used. However, the use of custom test applica-
tions simplifies the task of exercising specific parts of the
OS and detection of propagating errors. Sec. 7 contains a
longer discussion on the use of real applications.

Four applications are used, that use the OS in different
ways. Three applications are dedicated to test a) the mem-
ory management subsystem; b) thread management and
synchronization primitives; and c) file system operations.
The fourth application is dedicated to the specific driver be-
ing tested. Driver-specific applications are simple echo ap-

plications that exchange data with a host server. Each appli-
cation is manually equipped with assertions, checking each
call to the OS for any irregularities. Assertions are based
on the imported OS services by an application. These are
matched to calls being made in the application using the
specification of the service.

Experiment Manager: The experiment manager reads
a configuration file from persistent memory and notifies the
interceptor of the error to be injected. During an experi-
ment the data entries in the configuration file are updated
such that after a reboot the manager can tell if the previous
experiment ended in a failure or not. The experiment man-
ager is also responsible for starting the test applications and
rebooting the device after each experiment. Log messages
are sent to the host machine, which stores them as text files.

Host Computer: Its role is to receive log messages from
the device (over serial communication or Ethernet) and log
them to files on the host machine. The host also runs the test
servers, used in communicating with the test applications.

5.3. Experiments: Procedures

The first application to start during boot-up is the exper-
iment manager. It reads the configuration files and sets up
communication with other modules and the host machine.
The manager also starts a timer, that will reboot the system
after a set time (currently three minutes), long enough for
all test applications to terminate during failure free scenar-
ios (> execution time + boot up time). The purpose of the
timer is to reboot the system if the experiment manager has
crashed as a result of an error. The interceptor is loaded
together with the target driver. The error is injected at the
first instance of the call to the function in question. After
the system has booted up, the experiment manager starts
the test applications and monitors their progress.

If no failure occurs, the test applications terminate suc-
cessfully; this is logged by the experiment manager. If the
error is activated (i.e., actually executed by the driver) this is
logged as well. After the test applications have terminated,
the result is logged.

If an error occurs, this is either registered by a test appli-
cation or by the experiment manager noticing that either the
driver/test application has crashed. Assertions in the test ap-
plications allow detection of propagated errors. Each time
an error code is returned from a call this is logged as a prop-
agation. Distinction between expected and unexpected er-
ror codes is made off-line. Assertions are also used to detect
deviations from “normal” behavior, e.g., to detect if the cor-
rect string was read from the network. The information on
“normal” behavior is hard-coded into the test applications.
To detect OS crashes/hangs, and to check if the previous
experiment exited normally or not, the experiment manager
reads the entries in the configuration file during boot up.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

5.4. Estimating Measures

The only measures that need to be experimentally es-
timated are the Service Error Permeabilities, PDSi

x.y and
POSi

x.z . The test applications together with the experiment
manager are responsible for detecting failures/propagations
in the system. Software assertions generally require well
defined specifications. In the case for Windows CE .Net,
we consider the help sections shipped with the tools, as well
as any other official documentation provided (e.g., msdn li-
brary) as the specification of a service. The specification of
a service generally includes syntax information, in/out rela-
tionships, and information on possible return values for the
parameters and functions. For some services, no entry was
found in the msdn database. For these, only a search in the
system header files found the specification of those services.
Unfortunately the header file does not include information
on return values etc. except for the C-type used. The header
files are included as part of the SDK for the target and ac-
cessing them does not violate our black-box approach.

The estimated Service Error Permeabilities P̂DS
i

x.y and

P̂OS
i

x.z are the ratios of detected errors, at the OS-service
level to the number of injected errors for each location. The
estimated values of OS Service Error Exposure (Êj) and
Driver Error Diffusion (D̂j) can be calculated using the es-
timated Service Error Permeabilities using Eqs. 3 and 4.

6. Error Propagation Results

Services Test Activated
Driver Imported Exported cases cases

Serial 50 10 411 43%
Ethernet 42 12 414 55%

Table 3. Overview of the target drivers.

Table 3 overviews the target drivers used in this study.
The two drivers have similar number of services in their in-
terfaces to the OS (60 and 54) which translates into a similar
number of test cases. The number of test cases depends on
the number of services, the number of parameters targeted
and the test cases defined for each type. The selection of er-
rors for each type is discussed in Sec. 3.1 and Table 1 & 2.
The drivers differ in the number of activated test cases, i.e.,
when an injected error is in fact executed, where the net-
work driver has a higher activation rate (55% against 43%).
The activation rate is simply a measure of how many ex-
periments actually execute the error. The time to execute
the experiment depends on the number of experiments per-
formed. Currently, using four separate boards in parallel,
the full experiment time is five to six hours including set-

up time. Not included is the time to develop driver specific
interceptors and the specific error models.

Fail. Class
OS Service Tests

NF 1 2 3

CreateThread 13 6 4 3 0
CreateEventW 6 4 0 2 0
InterruptInitialize 14 3 10 1 0
memcpy 11 7 3 1 0
Sleep 5 4 0 1 0
LeaveCriticalSection 1 0 0 1 0
LocalAlloc 9 4 5 0 0
EnterCriticalSection 1 0 1 0 0
InitializeCriticalSection 1 0 1 0 0
memset 15 14 1 0 0

Cumulative 76 42 25 9 0

Table 4. Serial driver service errors for
cerfio serial.Dll.

Fail. Class
OS Service Tests

NF 1 2 3

FreeLibrary 3 1 0 0 2
LoadLibraryW 3 2 0 0 1
NdisAllocateMemory 20 19 0 1 0
VirtualCopy 16 2 14 0 0
KernelIoControl 18 5 13 0 0
VirtualAlloc 18 7 11 0 0
memset 15 6 9 0 0
NdisMSetAttributesEx 16 10 6 0 0
NdisMSetAttributesEx 16 10 6 0 0
NdisMRegisterInterrupt 17 11 6 0 0
RegOpenKeyExW 17 12 5 0 0
NdisOpenConfiguration 3 0 3 0 0
memcpy 11 8 3 0 0
CreateMutexW 5 3 2 0 0
NKDbgPrintfW 3 2 1 0 0
GetProcAddressW 6 5 1 0 0

Cumulative 187 103 80 1 3

Table 5. Ethernet driver service errors for
91C111.Dll.

Following the error model of Sec. 3.1, Table 4 shows
the results of the experiments for the serial port driver
cerfio serial.Dll with respect to the OS services
used by the driver. We have selected only those services
which resulted in failures and indicated the number of er-
ror propagation observations, not their location. Table 5
shows the corresponding results for the Ethernet driver
91C111.Dll which has more services leading to errors
compared to cerfio serial.Dll. The rows in the ta-
bles are ordered according to the severity of the failures. For
cerfio serial.Dll we see that no service leads to a
crash of the system. For 91C111.Dll on the other hand,

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

FreeLibrary and LoadLibrary are both vulnerable services
(Table 5). 91C111.Dll does not have as many cumula-
tive Class 2 failures as cerfio serial.Dll (only one
compared to nine) which indicates that using a few wrap-
pers would remove all severe error propagation paths (Class
2 and Class 3 failures).

Looking from the OS service point of view, Tables 6 and
7 show the OS services tested, together with the results of
the experiments, i.e., the OS Service Error Exposure calcu-
lated using Equation 3. Alongside, the number of failures
for Class 1, we also include the number of No Failure obser-
vations (NF). The Class 2 (failure and specification viola-
tion) and Class 3 (crash/hung) affect each OS service listed
the same way. This effect is specific to the experiments con-
ducted and does not translate into a general statement of the
OS behavior. For Class 2 failures only the driver specific
test application was affected. Thus the OS Service Error
Exposures are calculated using only Class 1 failures. From
these tables, one can find the services that are more (on a
relative scale) exposed to errors propagating in the system.
For some services the number of propagated errors is zero,
indicating that the function was not affected by any of the
errors injected (from Class 1). On top of the OS services
tested (Table 6) we have also included the correctness as-
sertions, which detect whether the correct information was
received from the host computer. In this case Correctness 1
failed 27 times, which indicates that the first round of testing
done in the application failed, where as the second round
(Correctness 2) did not. This is not surprising given that
each error is injected once.

As can be seen in both tables, the results are grouped
in two categories. This shows how the results of the ex-
periments “cluster”, i.e., an error in one service implies
an error in another. This indicates dependencies across
services, as well as non-dependencies (or at least indica-
tion of weaker dependency). Some of these dependen-
cies are expected, for instance that CreateFile affects Read-
File and WriteFile (Table 6). Some (non-)dependencies are
more unexpected, for instance that SetCommState is not
affected by CreateFile. For both drivers, only one cluster
appears, with 27 cases for 7 services for the serial driver
cerfio serial.Dll and 85 cases for three services for
the Ethernet driver 91C111.Dll.

For the experiments in this case study, no OS service (si)
experienced failure as a result from more than one driver,
i.e., the OS Service Error Exposure is equal to the sum of
the Service Error Permeabilities for each driver for this ex-
periment. This suggests that there is little correlation be-
tween failures in the OS services tested for both drivers.

Table 8 shows the Driver Error Diffusion values for the
target drivers. The values for the different failure classes are
presented separately as they have different failure impacts.
A Class 3 failure naturally has higher impact than a Class

Failure Class

OS Service NF 1 2 3 �Ej

Correctness 1 384 27 9 0 0.066
CreateFile 384 27 9 0 0.066
GetCommState 384 27 9 0 0.066
GetCommTimeouts 384 27 9 0 0.066
SetCommTimeouts 384 27 9 0 0.066
ReadFile 384 27 9 0 0.066
WriteFile 384 27 9 0 0.066
CloseHandle 411 0 9 0 0
Correctness 2 411 0 9 0 0
SetCommState 411 0 9 0 0
strlen 411 0 9 0 0

Table 6. OS Service Error Exposure for
cerfio serial.Dll.

Failure Class

OS Service NF 1 2 3 �Ej

connect 274 85 1 3 0.205
closesocket 274 85 1 3 0.205
shutdown 274 85 1 3 0.205
getaddrinfo 414 0 1 3 0
getnameinfo 414 0 1 3 0
getpeername 414 0 1 3 0
memset 414 0 1 3 0
select 414 0 1 3 0
sendto 414 0 1 3 0
socket 414 0 1 3 0
strcpy 414 0 1 3 0
WSACleanup 414 0 1 3 0
WSAStartup 414 0 1 3 0

Table 7. OS Service Error Exposure for
91C111.Dll.

2 and so on. Table 8 shows that taking error impact into
consideration, the network driver has the more severe errors,
whereas the serial driver has more Class 2 failures. Thus
these two classes of failures should be the focus of the first
round of wrapping. The network driver has overall more
failures but mainly of lesser impact, however these are still
candidates for wrapping.

Failure Class Diffusion
Driver

Dk
C1 Dk

C2 Dk
C3

Total

cerfio serial.Dll 0.460 0.022 0 0.482
91C111.Dll 0.616 0.002 0.007 0.625

Table 8. Results of injection experiments.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

7. Discussion

Identification of Vulnerabilities: The purpose of our
proposed profiling methodology is to identify potential vul-
nerabilities in the system. We target two distinct interfaces;
the OS-application interface and the OS-driver interface.
The main results of this study can be summarized as:

- Studying services at the OS-driver interface re-
veals specific services for one driver (Ethernet
driver) to be susceptible to errors leading to severe
failures, i.e., FreeLibrary and LoadLibrary (Table 5).
- A set of services at the OS-application interface is
susceptible to errors (Tables 6 and 7). A clustering
effect is observed which reveals dependencies across
services, as well as unexpected lack thereof.
- Comparing Driver Error Diffusion values, we con-
clude that the network driver (91C111.Dll) is
more likely to spread errors (0.625 > 0.482 in Table
8) than the serial port driver.
- No correlation across drivers was observed, i.e.,
no “shared” propagation paths between the drivers.

It is important to note that the vulnerabilities identified
may not correspond to “bugs” in the OS. We have chosen
to use the word “vulnerability” to signify that this is only a
potential weakness in the system. An exposed propagation
path only indicates that there are potential vulnerabilities
in the system. Whether this path will actually be used in
the operational mode of the system is not assured. To bet-
ter consider this relation we intend to extend the model to
include applications as well.

The Driver Error Diffusion values are calculated using
the whole set of experiments. Thus the values depend on
the number of experiments, i.e., the higher the number of
experiments, the lower the values. If one disregards the
number of experiments, the number of errors is to be com-
pared. Assuming that the potential sources for vulnerabili-
ties increase with the number of functions, the first method
becomes useful to compare drivers. The Driver Error Dif-
fusion then indicates the likelihood of actual vulnerabilities
being present, given the size of the interface. For impact
analysis, the number of failures might be of more impor-
tance, and here focusing on each error case, starting with
Class 3 is a relevant approach.

Application Profile: The operational profile of an ap-
plication, i.e., the way an application in the system uses
and depends on the OS, has a high impact on the robust-
ness of the system. The subset of services used and their
exposure to errors affect the system wide exposure to er-
rors. For this case study four applications were used, that
both load the system for the duration of the experiments and
measure the propagation of errors. For propagation profil-
ing to be truly useful, real application profiles must be used.

The operational profile of real applications, must influence
the interpretations of the exposure and diffusion measures.
An application profile must consider a) the services used by
an application, b) the impact errors in these services have
on the application, c) the frequency at which they are used,
and c) the relative criticality of the application. When the
profiles exist for the applications in the system, they can be
composed with the exposure profile to get a system-wide
profile, which ranks the applications (and the services they
depend upon) according to their susceptibility to propagat-
ing errors. The definition and implementation of such ap-
plication profiling is part of our future work.

Experiments: An important aspect of our methodology
is for it to be repeatable. Our experiments are repeatable
in the sense that no randomness is involved in choosing the
error type or location. However, there is a risk that the state
of the system is not the same for every injection. We limit
this problem by rebooting the system before each injection
and we have found no deviation so far for multiple runs of
the same experiment set.

Naturally we acknowledge that our current method is
not complete. A concern when using any FI technique is
the choice of error model. Without a valid error model the
conclusions derived might be misleading or even false. We
have chosen a simple, but yet realistic, error model for our
experiments. This means that the errors we inject are possi-
ble in real systems; they are for instance not caught by the
compiler. We believe that the errors we use are represen-
tative of real errors. However, it is part of our future work
to extend and include more error models, to study their re-
spective properties such as exposing coverage (the number
of vulnerabilities exposed and their type), cost in terms of
implementation effort and the execution time.

Another concern for any FI experiment is to use a min-
imum of intrusiveness on the target system, in order for
the experiments not to be influenced by the setup. For our
setup, the Manager and Interceptor run on the target system,
see Figure 2. To minimize their impact on the results, we
have designed them to be as small as possible. The num-
ber of messages being sent is kept to the bare minimum.
Most of the communication takes place before the system
has booted up, i.e, before an error is injected.

Wrapper Placement & Design: For effective use of
wrappers, the actual wrapper composition is of importance.
The measures presented above also help for this purpose.
Careful inspection of the failure of LoadLibrary (Table 5)
reveals that it occurs during boot-up of the system. This
means that no application, however well designed, can cope
with this error. This suggests that a wrapper for this er-
ror must be placed at the OS-driver interface level, filter-
ing the parameters, to not allow this type of error to pass.
With code access this information can be used to verify that
this vulnerability is not used/activated from a driver. For

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

some other failures of lesser impact, like CreateFile in Ta-
ble 6, wrappers can be defined at the OS-application level,
implementing for instance a restart functionality handling
transient errors. The development of wrappers and study of
their usefulness for enhancing the robustness of the system
is an important part of our future work.

Future Work: Our ongoing and future work includes
extending the current prototype in several directions. We
intend to use a larger set of targets, both drivers and OS’s
(e.g., Windows CE .Net 5.0, Windows XP and Linux). We
also intend to investigate error models of varied level of de-
tail, to analyze the effectiveness of different error models.

8. Conclusions

Overall, the contributions of this paper lie in develop-
ing measures to aid quantification of OS error flow. The
relevance of the measures and associated methodology is
demonstrated by the OS case study where the experiments
exposed a number of potential vulnerabilities. This infor-
mation can be used either to place wrappers in the system
or as feedback to OS or driver designers. We believe that
this shows the utility of the proposed measures and method-
ology. Studying exposure and impact of errors tells the de-
signer not only where many errors may pass but also more
importantly where occurring errors may have severe conse-
quences. Without this profiling, this information would not
have been available. As demonstrated, the potential vul-
nerabilities can lead to system failure, no matter how the
applications on the system are designed (and verified). We
also find it significant that the observed vulnerabilities were
identified using limited black-box information.

Acknowledgments: We express our appreciation for
help and insights from Martin Hiller, Falk Fraikin, the
DEEDS group and the funding support from Microsoft Re-
search.

References

[1] A. Albinet et al. Characterization of the Impact of
Faulty Drivers on the Robustness of the Linux Kernel.
Proc. of DSN, pp. 807–816, 2004.

[2] J. Durães, H. Madeira. Multidimensional Characteriza-
tion of the Impact of Faulty Drivers on the OS Behavior.
IEICE Trans., E86-D(12):2563–2570, Dec. 2003.

[3] J. Arlat et al. Dependability of COTS Microkernel-
Based Systems. IEEE Trans. on Computers, 51(2):138–
163, Feb. 2002.

[4] T. Ball, S. Rajamani. The SLAM project: Debugging
System Software via Static Analysis. Proc. of POPL, pp.
1–3, 2002.

[5] A. Chou et al. An Empirical Study of Operating System
Errors. Proc. of SOSP, pp. 73–88, 2001.

[6] J. DeVale, P. Koopman. Performance Evaluation of Ex-
ception Handling in I/O Libraries. Proc. of DSN, pp.
519–524, 2001.

[7] J.-C. Fabre et al. Building Dependable COTS
Microkernel-Based Systems Using Mafalda. Proc. of
PRDC, pp. 85–92, 2000.

[8] C. Fetzer, Z. Xiao. An Automated Approach to Increas-
ing the Robustness of C Libraries. Proc. of DSN, pp.
155–164, 2002.

[9] T. Fraser et al. Hardening COTS SW With Generic SW
Wrappers. Proc. of OASIS, pp. 399–413, 2003.

[10] W. Gu et al. Characterization of Linux Kernel Behav-
ior Under Errors. Proc. of DSN, pp. 459 – 468, 2003.

[11] M. Hiller, A. Jhumka, N. Suri. PROPANE: An En-
vironment for Examining the Propagation of Errors in
Software. Proc. of ISSTA, pp. 81–85, 2002.

[12] M. Hiller, A. Jhumka, N. Suri. EPIC: Profiling the
Propagation and Effect of Data Errors in Software. IEEE
Trans. on Computers, 53(5):512–530, May 2004.

[13] A. Johansson et al. On Enhancing the Robustness of
Commercial OS’s. Proc. of ISAS, pp. 174–185, 2004.

[14] P. Koopman, J. DeVale. Comparing the Robustness of
POSIX OS’s. Proc. of FTCS, pp. 30–37, 1999.

[15] T. Mitchem et al. Linux Kernel Loadable Wrappers.
Proc. of DARPA Information Survivability Conf., vol. 2,
pp. 296–307, 2000.

[16] B. Murphy, B. Levidow. Windows 2000 Dependabil-
ity. Proc. of the Workshop on Dependable Networks and
OS, pp. D20–28, 2000.

[17] J. Pan et al. Robustness Testing and Hardening of
CORBA Orb Implementations. Proc. of DSN, pp. 141–
150, 2001.

[18] L. Réveillère, G. Muller. Improving Driver Robust-
ness: an Evaluation of the Devil Approach. Proc. of
DSN, pp. 131–140, 2001.

[19] M. M. Swift et al. Improving the Reliability of Com-
modity OS’s. Proc. of SOSP, pp. 207–222, 2003.

[20] T. Tsai, N. Singh. Reliability Testing of Applications
on Windows NT. Proc. of DSN, pp. 427–436, 2000.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

