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Abstract of process tracing and debugging. To create an

) ephemeral mapping two actions are required: the
Modem operating systems create ephemeraloation of a temporary kernel virtual address

virtual-to—physical mappings fora variety of PU™ and the modification of the virtual-to-physical ad-
POSES, ranging frc_;m t_he Implementatlon of !nter- dress mapping. To date, these actions have been
process communication to the implementation Ofperformed through separate interfaces. This pa-

process tracing and debugging. With succeedyq jemonstrates the benefits of combining these
ing generations of processors the cost of creat;

. ) oo s ~“Tactions under a single interface.
ing ephemeral mappings is increasing, particu-

L This work is motivated by the increasing cost
larly when an ephemeral mapping is shared by . . :
. of ephemeral mapping creation, particularly, the
multiple processors.

. increasing cost of modifications to the virtual-to-
To reduce the cost of ephemeral mapping man-

agement within an operating system kemel, WephyS|caI mapping. To see this trend, consider the

. L latency in processor cycles for theavl pg in-
introduce thesf .buf ephemeral mapping in- Istruction across several generations of the IA32

architecture.  This instruction invalidates the
"Translation Look-aside Buffer (TLB) entry for

the given virtual address. In general, the op-
erating system must issue this instruction when
it changes a virtual-to-physical mapping. When
this instruction was introduced in the 486, it took

. . o 12 cycles to execute. In the Pentium, its latency
and the 64-bilamd64 architecture. This imple- 000504 1o 25 cycles. In the Pentium I, its

mentation reduces the cost of ephemeral mappin(w;latency increased t-100 cycles. Finally, in
management by reusing wherever possible €Xthe Pentium 4, its latency has re.acheEOO’ to
isting virtual-to-physical address mappings. We _ 4, cycles.’ So, despite a factor of three de-
evalu_ate that _buf m_terface for the pipe, mem- crease in the cycle time between a high-end Pen-
ory disk and networking subsystems. Our resultstium Il and a high-end Pentium 4, the cost of a
show that these subsystems perform significantlym‘,jlppmg change measured in waII’cIock time has
better when using thef _buf interface. On a actually increased

multiprocessor platform interprocessor interrupts '

are greatly reduced in number or eliminated alto- Furthermore, ona mult!processor, t.he cost of
gether. ephemeral mapping creation can be significantly

higher if the mapping is shared by two or more
processors. Unlike data cache coherence, TLB
1 [Introduction coherence is generally implemented in software
by the operating system [2, 12]: The processor
Modern operating systems create ephemerainitiating a mapping change issues an interpro-
virtual-to-physical mappings for a variety of pur- cessor interrupt (IPI) to each of the processors
poses, ranging from the implementation of in- that share the mapping; the interrupt handler that
terprocess communication to the implementationis executed by each of these processors includes

subsystems — including pipes, memory disks
socketsexecve(), ptrace(), and the vnode
pager — the current implementation can be re-
placed by calls to thef _buf interface.

We describe the implementation of the
sf _buf interface on the 32-biB86 architecture



an instruction, such asnvl pg, that invalidates lines of code reduction in an operating system
that processor’s TLB entry for the mapping’s vir- kernel from using thesf _buf interface. Sec-
tual address. Consequently, a mapping change ifon 6 presents an experimental evaluation of the
quite costly for all processors involved. sf _buf interface. We present related work in
In the past, TLB coherence was only an issueSection 7 and conclude in Section 8.

for multiprocessors. Today, however, some im-
plementations of Simultaneous Multi-Threading
(SMT), such as the Pentium 4's, require the op-

erating system to implement TLB coherence in aywe use FreeBSD 5.3 as an example to demon-

single-processor system. strate the use of ephemeral mappings. FreeBSD
To reduce the cost and complexity of 53 yses ephemeral mappings in a wide vari-

ephemeral mapping management within an op-ety of places, including the implementation of

erating system kernel, we introduce the_buf pipes, memory diskssendfi |l e(), sockets,

ephemeral mapping interface. Like Machisap  execve(), ptrace(), and the vnode pager.
interface [11], our objective is to provide a

machine-independent interface enabling variant,2 1 Ppi
machine-specific implementations. Unlike pmap, < Ipes

oursf _buf interface supports allocation of tem- cgnventional implementations of Unix pipes per-
porary kernel virtual addresses. We describe howigrm two copy operations to transfer the data
various subsystems in the operating system kerfrom the writer to the reader. The writer copies
nel benefit from thef buf interface. the data from the source buffer in its user address
We present the implementation of thé_buf  space to a buffer in the kernel address space, and
interface on two representative architecturesthe reader later copies this data from the kernel
1386, a 32-bit architecture, an@nd64, a 64-bit  puffer to the destination buffer in its user address
architecture. This implementation is efficient: it space.
performs creation and destruction of ephemeral |n the case of large data transfers that fill
mappings in O(1) expected time @86and O(1)  the pipe and block the writer, FreeBSD uses
time onamd64. Thesf buf interface enables ephemeral mappings to eliminate the copy oper-
the automatic reuse of ephemeral mappings sation by the writer, reducing the number of copy
that the high cost of mapping changes can bepperations from two to one. The writer first de-
amortized over several uses. In addition, this im-termines the set of physical pages underlying the
plementation of thesf _buf interface incorpo-  source buffer, themires each of these physical
rates several techniques for avoiding TLB coher-pages disabling their replacement or page-out,
ence operations, eliminating the need for costlyand finally passes the set to the receiver through
IPls. the object implementing the pipe. Later, the
We have evaluated the performance of the pipereader obtains the set of physical pages from the
memory disk and networking subsystems usingpipe object. For each physical page, it creates an
thesf _buf interface. Our results show that these ephemeral mapping that is private to the current
subsystems benefit significantly from its use. ForCPU and is not used by other CPUs. Henceforth,
thebw_pi pe program from the Imbench bench- we refer to this kind of mapping as a CPU-private
mark [10] thesf _buf interface improves perfor- ephemeral mapping. The reader then copies the
mance up to 168% on one of our test platforms.data from the kernel virtual address provided by
In all of our experiments the number of TLB in- the ephemeral mapping to the destination buffer
validations is greatly reduced or eliminated. in its user address space, destroys the ephemeral
The rest of the paper is organized as follows. mapping, andunwires the physical page reen-
The next two sections motivate this work from abling its replacement or page-out.
two different perspectives: First, Section 2 de-
scribes the many uses of ephemeral mappings i?.Z Memory Disks
an operating system kernel; second, Section
presents the execution costs for the machine-leveMemory disks have a pool of physical pages. To
operations used to implement ephemeral map+ead from or write to a memory disk a CPU-
pings. We define thef _buf interface and its private ephemeral mapping for the desired pages
implementation on two representative architec-of the memory disk is created. Then the data is
tures in Section 4. Section 5 summarizes thecopied between the ephemerally mapped pages

2 Ephemeral Mapping Usage



and the read/write buffer provided by the user.2.5 ptrace(2)

After the read or write operation completes, the
ephemeral mapping is freed. Theptrace(2) system call enables one pro-

cess to trace or debug another process. It in-

] cludes the capability to read or write the memory

23 sendfil e(2) and Sockets of the traced process. To read from or write to the
The zero-copysend i | e(2) system call and ggggge DrOcess S Mooy, Ine kernel reates ChU-
zero-copy socket send use ephemeral IT]applm‘:]|cal pages of the traced process. The kernel then

in a similar way. For zero-copy send the .
kernel wires thg physical pagespycorrespond-COp'eSthe data between the ephemerally mapped

ing to the user buffer in memory and then pages and the buffer provided by the tracing pro-

creates ephemeral mappings for them. For°ess: The kernel then frees the ephemeral map-

sendfil e() it does the same for the pages of pings.
the file. The ephemeral mappings persist until the
correspondingrbuf chain is freed, e.g., when
TCP acknowledgments are received. The ker-2'6 Vnode Pager
nel then frees the ephemeral mappings and unThe vnode pager creates ephemeral mappings to
wires the corresponding physical pages. Thesearry out I/O. These ephemeral mappings are not
ephemeral mappings are not CPU-private be-CPU private. They are used for paging to and
cause they need to be shared among all the CPUgom file systems with small block sizes.
— any CPU may use the mappings to retransmit
the pages.

Zero-copy socket receive uses ephemeralmap3 Cost of Ephemeral M appings
pings to implement a form opage remapping
from the kernel to the user address space [6, 4, 8]We focus on the hardware trends that motivate the
Specifically, the kernel allocates a physical pageneed for thesf _buf interface. In particular, we
creates an ephemeral mapping to it, and injectsneasure the costs of local and remote TLB inval-
the physical page and its ephemeral mapping intddations in modern processors. The act of inval-
the network stack at the device driver. After the idating an entry from a processor’s own TLB is
network interface has stored data into the physi-called a local TLB invalidation. A remote TLB
cal page, the physical page and its mapping arénvalidation, also referred to as TLB shoot-down,
passed upward through the network stack. Ulti-is the act of a processor initiating invalidation of
mately, when an application asks to receive thisan entry from another processor's TLB. When an
data, the kernel determines if the application’sentry is invalidated from all TLBs in a multipro-
buffer is appropriately aligned and sized so thatcessor environment, it is called a global TLB in-
the kernel can avoid a copy by replacing the ap-validation.
plication’s current physical page with its own.  \We examine two microbenchmarks: one to
If so, the application’s current physical page is measure the cost of a local TLB invalidation and
freed, the kernel's physical page replaces it in theanother to measure the cost of a remote TLB in-
application’s address space, and the ephemerajalidation. We modify the kernel to add a custom
mapping is destroyed. Otherwise, the ephemerakystem call that implements these microbench-
mapping is used by the kernel to copy the datamarks. For local invalidation, the system call

from its physical page to the application’s. invalidates a page mapping from the local TLB
100,000 times. For remote invalidation, IPIs are
24 execve(2) sent to invalidate the TLB entry of the remote

CPUs. The remote invalidation is also repeated
Theexecve( 2) system call transformsthe call- 100,000 times in the experiment. We perform this
ing process into a new process. The new pro-experiment on the Pentium Xeon processor and
cess is constructed from the given file. This the Opteron processor. The Xeon isi886 pro-
file is either an executable or data for an inter- cessor while the Opteron is @md64 processor.
preter, such as a shell. If the file is an executable;The Xeon processor implements SMT and has
FreeBSD’s implementation @fxecve(2) uses two virtual processors. The Opteron machine has
the ephemeral mapping interface to access théwo physical processors. The Xeon operates at
image header describing the executable. 2.4 GHz while the Opteron operates at 1.6 GHz.



For the Xeon the cost of a local TLB invali- or one or more of the following values combined
dation is around 500 CPU cycles when the pagewith bitwise or:
table entry (PTE) resides in the data cache, and
about 1,000 cycles when it does not. On a Xeon *® “Private” denoting that the mapping is for
machine with a single physical processor buttwo ~ the private use of the calling thread;
virtual processors, the CPU initiating a remote
invalidation has to wait for about 4,000 CPU cy-
cles until the remote TLB invalidation completes.
On a Xeon machine with two physical processors
and four virtual processors, that time increases to
about 13,500 CPU cycles.

For the Opteron a local TLB invalidation costs
around 95 CPU cycles when the PTE exists in the
data cache, and 320 cycles when it does not. Re-
mote TLB invalidations on an Opteron machine
with two physical processors cost about 2,030
CPU cycles.

e “no wait” denoting thasf _buf _al | oc()
must not sleep if it is unable to allo-
cate ansf _buf at the present time; in-
stead, it may returnNULL; by default,
sf _buf _al | oc() sleeps until arsf _buf
becomes available for allocation;

¢ ‘“interruptible” denoting that the sleep by
sf _buf _.al | oc() should be interruptible
by a signal; ifsf _buf _al | oc() 's sleep is
interrupted, it may returhlULL.

If the “no wait” option is given, then the “in-
terruptible” option has no effect. The “private”
option enables some implementations, such as

We first present the ephemeral mapping interfacete one fori386, to reduce the cost of virtual-

Then, we describe two distinct implementations {0-Physical mapping changes. For example, the

on representative architecturéd86 andamde4 implementation may avoid remote TLB invalida-
emphasizing how each implementation is Opti_tion. Several uses of this option are described in
mized for its underlying architecture. This sec- S€ction 2 and evaluated in Section 6. .

tion concludes with a brief characterization of the ~ Sf-buf free() frees ansf _buf when its

implementations on the three other architecturedast reference is released. .
supported by FreeBSD 5.3. sf _buf _kva() returns the kernel virtual ad-

dress of the givesf _buf .
sf _buf _page() returns the physical page
that is mapped by the givest _buf .

The ephemeral mapping management inter-
face consists of four func_tions t_hat either 42 {386 | mplementation
return an ephemeral mapping object or re-
quire one as a parameter. These func-Conventionally, the386's 32-bit virtual address
tions aresf _buf _al | oc(),sf _buf free(), spaceis splitinto user and kernel spaces to avoid
sf _buf kva(),andsf _buf page().Tablel the overhead of a context switch on entry to and
shows the full signature for each of these func-exit from the kernel. Commonly, the split is
tions. The ephemeral mapping object is entirely3GB for the user space and 1GB for the kernel
opaque; none of its fields are public. For his- space. In the past, when physical memories were
torical reasons, the ephemeral mapping object isnuch smaller than the kernel space, a fraction of
called ansf _buf . the kernel space would be dedicated to a perma-
sf _buf _al | oc() returns arsf _buf forthe  nent one-to-one, virtual-to-physical mapping for
given physical page. A physical page is rep-the machine’s entire physical memory. Today,
resented by an object calledvanpage. An  howeverj386 machines frequently have physical
implementation ofsf _buf _al | oc() may, at memories in excess of their kernel space, making
its discretion, return the sam& _buf to mul-  such adirect mapping an impossibility.
tiple callers if they are mapping the same phys- To accommodate machines with physical
ical page. In general, the advantages of shareanemories in excess of their kernel space j 886
sf _buf s are (1) that fewer virtual-to-physical implementation allocates a configurable amount
mapping changes occur and (2) that less kernebf the kernel space and uses it to implement a
virtual address space is used. The disadvantage igrtual-to-physical mapping cachethat is indexed
the added complexity of reference counting. Theby the physical page. In other words, an access to
flags argument taf _buf _al | oc() is either0  this cache provides a physical page and receives

4 Ephemeral Mapping Management

4.1 Interface



struct sf_buf * sf buf _al l oc(struct vmpage *page, int flags)
voi d sf buf free(struct sf_buf *nmappi ng)

vmof f set _t sf buf kva(struct sf_buf *mapping)

struct vmpage * sf _buf _page(struct sf_buf *mapping)

Table 1: Ephemeral Mapping Interface

a kernel virtual address for accessing the pro-validation is issued to those processors miss-
vided physical page. An access is termed a cachéng from thecpumask and those processors are
hit if the physical page has an existing virtual- added to thecpumask. The final three ac-
to-physical mapping in the cache. An access istions by sf _buf _al | oc() are (1) to remove
termed a cache miss if the physical page does nothesf _buf from the inactive list if its reference
have a mapping in the cache and one must be crecountis zero, (2) to increment its reference count,
ated. and (3) to return thef _buf .

The implementation of the mapping cache con- |f however, ansf _buf mapping the given
sists of two structures containirs§ -buf s: (1)a  page is not found in the hash table by
hash table of valicsf _buf s that is indexed by sf _buf _al | OC() , the least recenﬂy used
physical page and (2) an inactive list of unusedsf puf is removed from the inactive list. If the
sf _buf s that is maintained in least-recently- inactive list is empty and the given flags include
used order. Arsf _buf can appear in both struc- “no wait”, sf _buf _al | oc() returnsNULL. If
tures simultaneously. In other words, an unuseghe inactive list is empty and the given flags
sf _buf may still represent a valid mapping. do not include “no wait”,sf _buf _al | oc()

Figure 1 defines th&386 implementation of sleeps until an inactivef _buf becomes avail-
the sf _buf . It consists of six fields: an im- able. Ifsf _buf _al | oc() 's sleep is interrupted
mutable virtual address, a pointer to a physicalbecause the given flags include “interruptible”,
page, a reference count, a pointer used to implesf _buf _al | oc() returnsNULL.
ment a hash chain, a pointer used to implement 5.~ a4 inactivesf buf
the inactive list, and a CPU mask used for opti- ¢ put al | oc(),
mizing CPU-private mappings. Asf _buf rep-
resents a valid mapping if and only if the pointer
to a physical page is valid, i.e., it is nbtLL.

is acquired by
it performs the following
five actions. First, if the inactivef _buf repre-
sents a valid mapping, specifically, if it has a valid
. _ o en . physical page pointer, then it must be removed
An sf _buf is on the_ inactive list if and only if from the hash table. Second, the_buf 's phys-
the reference countis zero. ical page pointer is assigned the given physical
The hash table and inactive listef _buf s are page, thesf _buf 's reference countis set to one,
initialized during kernel initialization. The hash and thesf _buf is inserted into the hash table.
table is initially empty. The inactive listis filled Third, the page table entry for tief _buf 's vir-
as follows: A range of kernel virtual addresses istyal address is changed to map the given physical
allocated by the ephemeral mapping module; forpage. Fourth, TLB invalidations are issued and
each virtual page in this range, ah_buf iscre-  the cpumask is set. Both of these operations
ated, its virtual address initialized, and inserteddepend on the state of the old page table entry’s
into the inactive list. accessed bit and the mapping options given. If
The first action by th&386 implementation of  the old page table entry’s accessed bit was clear,
sf _buf _al | oc() is to search the hash table then the mapping cannot possibly be cached by
for ansf _buf mapping the given physical page. any TLB. In this case, no TLB invalidations are
If one is found, then the next two actions are issued and thepunask is set to include all pro-
determined by thasf _buf's cpumask. First,  cessors. If, however, the old page table entry’s
if the executing processor does not appear inaccessed bit was set, then the mapping options
the cpunask, a local TLB invalidation is per- determine the action taken. If the given flags in-
formed and the executing processor is added taclude “private”, then a local TLB invalidation is
the cpumask. Second, if the given flags do performed and thepumask is set to contain the
not include “private” and thecpumask does executing processor. Otherwise, a global TLB in-
not include all processors, a remote TLB in- validation is performed and thepunask is set



to include all processors. Finally, tlsé _buf is  pointer to avmpage pointer, dereferences
returned. that pointer to obtain theempage’s physical
The implementation ofsf _buf free() address, and applies the inverse direct mapping
decrements thef _buf's reference count, in- to that physical address to obtain a kernel virtual
serting thesf _buf into the free list if the address.
reference count becomes zero. When an
sf _buf is inserted into the free list, a sleeping
sf _buf _al | oc() is awakened. )
The implementations c§f buf kva() and 44 Implementaﬂons For Other Ar-
sf _buf _page() return the corresponding field chitectures
from thesf _buf .
The implementations falpha andia64 are iden-
. tical to that ofamd64. Although thesparc64 ar-
4.3 amdé4 |mplementation chitecture has a 64-bit virtual address space, its

The amd64 implementation of the ephemeral Virtually-indexed and virtually-tagged cache for
mapping interface is trivial because of this archi- instructions and data complicates the implemen-
tecture’s 64-bit virtual address space. tation. If two or more virtual-to-physical map-
During kernel initialization, a permanent, one- Pings for the same physical page exist, then to
to-one, virtual-to-physical mapping is created Maintain cache coherence either the.thual ad-
within the kernel's virtual address space for the dresses must have the saoutor, meaning they
machine’s entire physical memory using 2MB su- confl!ct with each_other in the cach(_a, or else
perpages. Also, by design, the inverse of thiscach!ng must be disabled for all mapplngs_to the
mapping is trivially computed, using a single Physical page [5]. To make the best of this, the
arithmetic operation. This mapping and its in- SParc64 implementation is, roughly speaking, a
verse are used to implement the ephemeral maphybnd of thei386 and amd64 |mplementat|on§:
ping interface. Because every physical page had e Permanent, one-to-one, virtual-to-physical
a permanent kernel virtual address, there is nd"appingis used wheniits color is compatible with
recurring virtual address allocation overhead as-the color of the user-level address space map-
sociated with this implementation. Because thisPings for the physical page. Otherwise, the per-
mapping is trivially invertible, mapping a physi- manent, one-to-one, v!rtual—to—physmal mapping
cal page back to its kernel virtual address is easycannot be used, so a virtual address of a compati-

a TLB invalidation. through a dictionary as in thi€86 implementa-

In this implementation, thesf _buf is  ton.
simply an alias for thevmpage; in other
words, an sf _buf pointer references a
vmpage. Consequently, the implementations .
of spf ?buf call ocq() ar>1/d sf _bul? _page() 5 Usingthesf buf Interface
are nothing more than cast operations evaluated
at compile-time: sf _buf _alloc() casts Of the places where the FreeBSD kernel uti-
the given vmpage pointer to the returned lizes ephemeral mappings, only three were non-
sf _buf pointer; converselysf _buf page() trivially affected by the conversion from the orig-
casts the giversf _buf pointer to the returned inal implementation to thef _buf -based imple-
vmpage pointer. Furthermore, none of the mentation: The conversion of pipes eliminated 42
mapping options given by the flags passed tolines of code; the conversion of zero-copy receive
sf _buf _al | oc() requires any action by this eliminated 306 lines of code; and the conversion
implementation: it never performs a remote TLB of the vnode pager eliminated 18 lines of code.
invalidation so distinct handling for “private” Most of the eliminated code was for the alloca-
mappings serves no purpose; it never blockstion of temporary virtual addresses. For example,
so ‘“interruptible” and “no wait” mappings to minimize the overhead of allocating temporary
require no action. The implementation of virtual addresses, each pipe maintained its own,
sf _buf free() is the empty function. The private cache of virtual addresses that were ob-
only function to have a non-trivial implemen- tained from the kernel’'s general-purpose alloca-
tation issf _buf kva(): It casts ansf _buf tor.



struct sf_buf {
LI ST_ENTRY(sf _buf) list_entry; /* hash list */
TAlI LQ ENTRY(sf _buf) free_entry; /* inactive list */

st ruct vm page *m /* currently nmapped page */
vm of f set _t kva; /* virtual address of mapping */
i nt ref count; /* usage of this mapping */
cpumask_t cpumask; /* cpus on which mapping is valid */
}
Figure 1: The386 Ephemeral Mapping Objecs{ -buf )
6 Performance Evaluation performed once using the_bf kernel and once

using the original kernel on each of the platforms.
This section presents the experimental platformsFor all experiments on all platforms, the_lsfif
and evaluation of thef buf interface on the kernel provides noticeable performance improve-

pipe, memory disk and network subsystems. ments.
For the Opteron-MP performance improve-
6.1 Experimental Platforms ment is due to two factors: (1) complete elimi-

nation of virtual address allocation cost and (2)
The experimental setup consisted of five plat-complete elimination of local and remote TLB
forms. The first platform is a Pentium Xeon invalidations. Under the original kernel, the ma-
2.4 GHz machine, with hyper-threading enabled,chine independent code always allocates a virtual
having 2 GB of memory. We refer to this plat- address for creating an ephemeral mapping. The
form as Xeon-HTT. Due to hyper-threading the corresponding machine independent code, under
Xeon-HTT has two virtual CPUs on a single the stbuf kernel, does not allocate a virtual ad-
physical processor. The next three platforms aredress but makes a call to the machine dependent
identical to Xeon-HTT but have different proces- code. The cost of virtual address allocation is
sor configurations. The second platform runs aavoided in theamd64 machine dependent imple-
uniprocessor kernel resulting in having a single mentation of thesf _buf interface which returns
virtual and physical processor. Henceforth, wethe permanent one-to-one physical-to-virtual ad-
refer to this platform as Xeon-UP. The third plat- dress mappings. Secondly, since the ephemeral
form has two physical CPUs, each with hyper- mappings returned by thef _buf interface are
threading disabled; we refer to this platform as permanent, all local and remote TLB invalida-
Xeon-MP. The fourth platform has two physical tions for ephemeral mappings are avoided under
CPUs with hyper-threading enabled, resulting inthe sfbuf kernel. The above explanation holds
having four virtual CPUs. We refer to this plat- true for all experiments on the Opteron-MP and,
form as Xeon-MP-HTT. Unlike Xeon-UP, mul- hence, we do not repeat the explanation for the
tiprocessor kernels run on the other Xeon plat-rest of the paper.
forms. The Xeon has ar386 architecture. Our For the various p|atforms onthe Xeon, the per-

fifth platform is a dual processor Opteron model formance improvement under the Isif kernel
242 (1.6 GHz) with 3 GB of memory. Hence- were due to: (1) reduction of physical-to-virtual

forth, we refer to this platform as Opteron-MP. address allocation cost and (2) reduction of local
The Opteron has aamd64 architecture. All the  and remote TLB invalidations. On th&86 archi-

platforms run FreeBSD 5.3. tecture, thesf _buf interface maintains a cache
of physical-to-virtual address mappings. While
6.2 Executive Summary of Results creating an ephemeral mapping under théuf

kernel, a cache hit results in reuse of a physical-
This section presents an executive summary oto-virtual mapping. The associated cost is lower
the experimental results. For the rest of this papethan the cost of allocating a new virtual address
we refer to the kernel using tled _buf interface  which is done under the original kernel. Further,
as the sfbuf kernel and the kernel using the orig- a cache hit avoids local and remote TLB invalida-
inal techniques of ephemeral mapping managetions which would have been required under the
ment as the original kernel. Each experiment isoriginal kernel. Secondly, if an ephemeral map-



Pipe

ping is declared CPU-private, it requires no re- 3000 ‘
mote TLB invalidations on a cache miss under the
sf_buf kernel. For each of our experiments in the
following sections we articulate the reasons for
performance improvement under thelsff ker-
nel. Unless stated otherwise, thetsff kernel on
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a Xeon machine uses a cache of 64K entries of ol §
physical-to-virtual address mappings, where each
entry corresponds to a single physical page. This ® X TP XeonHTT XeonMP Xoon MPHIT Optron P
cache can map a maximum footprint of 256 MB.
For some of the experiments we vary this cache Figure 2: Pipe bandwidth in MB/s
size to study its effects. e

The Xeon-UP platform outperforms all other 100000 ‘ ‘ ‘ o

original m—

Xeon platforms when the benchmark is sin-
gle threaded. Only, the web server is multi-
threaded, thus only it can exploit symmetric
multi-threading (Xeon-HTT), multiple proces-
sors (Xeon-MP), or the combination of both
(Xeon-MP-HTT). Moreover, Xeon-UP runs a op
uniprocessor kernel which is not subject to the
synchronization overhead incurred by multipro-
cessor kernels running on the other Xeon plat-
forms. Figure 3: Local and remote TLB invalidations is-
sued for the pipe experiment
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6.3 Pipes

This experiment used the Imbench_pi pe pro-
gram [10] under the sbuf kernel and the origi- .
nal kernel. This benchmark creates a Upixpe 6.4.1 Disk Dump (dd)

between two processes, transfers 50 MB throughrhis experiment usedd to transfer a memory
the pipe in 64 KB chunks and measures the bandgisk to the null device using a block size of 64
width obtained. Figure 2 shows the result for KB and observes the transfer bandwidth. We
this experiment on our test platforms. Thetsff  perform this experiment for two sizes of mem-
kernel achieved 67%, 129%, 168%, 113% andory disks — 128 MB and 512 MB. The size of
22% higher bandwidth than the original kernel thesf _buf cache on the Xeons is 64K entries,
for the Xeon-UP, Xeon-HTT, Xeon-MP, Xeon- which can map a maximum of 256 MB, larger
MP-HTT and the Opteron-MP respectively. For than the smaller memory disk but smaller than the
the Opteron-MP, the performance improvementiarger one. Under the siuf kernel two configu-

is due to the reasons explalned in Section .G.Z{ations are used — one using the pri\/ate mappmg
For the Xeon platforms, the small set of physical gption and the other eliminating its use and thus
pages used by the benchmark are mapped repeagreating default shared mappings.

edly resulting in a near 100% cache-hit rate and  Figures 4 and 6 show the bandwidth obtained
complete elimination of local and remote TLB on each of the platforms for the 128 MB disk and
invalidations as shown in Figure 3. For all the 512 MB disk respectively. For the Opteron-MP
experiments in this paper we count the numberysing thesf _buf interface increases the band-
of remote TLB invalidations issued and not the width by about 37%. On the Xeons, thé _buf

number of remote TLB invalidations that actually interface increases the bandwidth by up to 51%.

of thesf _buf interface on memory disks.

happen on the remote processors. Using the private mapping option has no ef-
fect on the Opteron-MP because all local and re-
6.4 Memory Disks mote TLB invalidations are avoided by the use of

permanent, one-to-one physical-to-virtual map-
This section presents two experiments — one uspings. Since there is nsf _buf cache on the
ing Disk Dump ¢ld) and another using the Post- Opteron-MP, similar performance is obtained on
Mark benchmark [9] — to characterize the effect both disk sizes.



Disk Dump: 512 MB Mcmol) Disk

For the Xeons, the 128 MB disk can be mapped 70 ‘
entirely by thesf _buf cache causing no local 00 Y
and remote TLB invalidations even when the pri- s00 |
vate mapping option is eliminated. This is shown
in Figure 5. Hence, using the private mapping
option has negligible effect for the 128 MB disk
as shown in Figure 4. However, the 512 MB disk
cannot be mapped entirely by teé _buf cache.
The sequential disk access @l causes almost
a 100% cache-miss under thelsff kernel. Us-
ing the private mapping option reduces the costFigure 6: Disk dump bandwidth in MB/s for 512
of these cache misses by eliminating remote TLBMB memory disk
invalidations and thus improves the performance,
which is shown in Figure 6. As shown in Fig- tes0s D‘\mm‘pmMBMc o
ure 7, the use of the private mapping option elim-
inates all remote TLB invalidations from all Xeon
platforms for the 512 MB memory disk.
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Figure 7: Local and remote TLB invalidations is-
sued for the disk dump experiment on 512 MB
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200 -

100 =

INSZZ

Figure 4: Disk dump bandwidth in MB/s for 128 a file. We used the benchmark’s default param-
MB memory disk eters, i.e., block size of 512 bytes and file sizes
ranging from 500 bytes up to 9.77 KB.
We used a 512 MB memory disk for the Post-
ool o o e = Mark benchmark. We used the three prescribed
i configurations of PostMark. The first configura-

tion has 1,000 initial files and performs 50,000
transactions. The second has 20,000 files and per-
forms 50,000 transactions. The third configura-
tion has 20,000 initial files and performs 100,000

Disk Dump: 128 MB Memory Disk

- 10000
g

1000

100

a
2

10 transactions.
, PostMark reports the number of transactions
TR e TR R e MR o R performed per second (TPS), and it measures the

read and write bandwidth obtained from the sys-
Figure 5: Local and remote TLB invalidations is- tem. Figure 8 shows the TPS obtained on each
sued for the disk dump experiment on 128 MB of our platforms for the largest configuration of
memory disk PostMark. Corresponding results for read and
write bandwidths are shown in Figure 9. The re-
sults for the two other configurations of PostMark
exhibit similar trends and, hence, are not shown
in the paper.
PostMark is a file system benchmark simulating For the Opteron-MP, using thef _buf inter-
an electronic mail server workload [9]. It creates face increased the TPS by about 11% to about
a pool of continuously changing files and mea-27%. Read and write bandwidth increased by
sures the transaction rates where a transaction igbout 11% to about 17%.
creating, deleting, reading from or appending to  For the Xeon platforms, using tlsd _buf in-

6.4.2 PostMark



PostMark: 20,000 files/100,000 transactions
T T T

terface increased the TPS by about 4% to about 1es07
13%. Read and write bandwidth went up by 1e406 |
about 4% to 15%. The maximum footprint of
the PostMark benchmark is about 150 MB under
the three configurations used and is completely
mapped by thef _buf cache on the Xeons. We
did not eliminate the use of the private mapping
option on the Xeons for the fuf kernel as there

were no remote TLB invalidations under these 1 L%ﬁeun;o.e‘nggln%meL%ceagm%g‘c‘%%%)%c‘ggkmop.e
workloads. The performance improvementon the

Xeons is thus due to the elimination of local and Figure 10: Local and remote TLB invalida-

remote TLB invalidations as shown in Figure 10. tions issued for PostMark with 20,000 files and
100,000 transactions

Sf_buf
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buffer sizes are set to 64 KB for this experi-
ment. Sockets are configured to use zero copy
send. We perform two sets of experiments on
each platform, one using the default Maximum
Transmission Unit (MTU) size of 1500 bytes and
another using a large MTU size of 16K bytes.

Figures 11 and 12 show the network through-

Figure 8: Transactions per second for PostMark.put obtained under the &fuf kernel and the orig-

) . . inal kernel on each of our platforms. The larger
with 20,000 files and 100,000 transactions MTU size yields higher throughput because less

CPU time is spent doing TCP segmentation. The
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PostMark: 20,000 files/100.000 transactions thI’OUghpUt improvements from thsf _buf in-
14 T T T T
== terface on all platforms range from about 4% to

about 34%. Using the larger MTU size makes
the cost of creation of ephemeral mappings a big-
ger factor in network throughput. Hence, the per-
formance improvement is higher when using the
sf _buf interface under this scenario.

Reduction in local and remote TLB invalida-
T e ————— tions explain the above performance improve-
ComtITT - Xeon ME Xeon-MPHTT Opteron ment as shown in Figures 13 and 14. The
sf _buf interface greatly reduces TLB invalida-
tions on the Xeons, and completely eliminates
them on the Opteron-MP.

Read/Write Throughput (MB/s)

Read  Write
Xeon-UP

Figure 9: Read/Write Throughput (in MB/s) for
PostMark with 20,000 files and 100,000 transac-
tions

Netperf: Large MTU
T
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6.5 Networking Subsystem S

2500

This section uses two sets of experiments — one
usingnet per f and another using a web server
— to examine the effects of theff _buf interface

on the networking subsystem.
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6.5.1 Netperf

This experiment examines the throughputFigure 11: Netperf throughput in Mbits/s for

achieved between a netperf client and server orldrge MTU
the same machine. TCP socket send and receive
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6.5.2 Web Server

We used apache 2.0.50 as the web server on
each of our platforms. We ran an emulation of
30 concurrent clients on a separate machine to
generate a workload on the server. The server
and client machines were connected via a Giga-
bit Ethernet link. Apache was configured to use
sendfil e(2). For this experiment we mea-
sure the throughput obtained from the server and
count the number of local and remote TLB inval-
idations on the server machine. The web server
was subject to real workloads of web traces from
NASA and Rice University’s Computer Science
Department that have been used in published lit-
erature [7, 15]. For the rest of this paper we refer
to these workloads as the NASA workload and
the Rice workload respectively. These workloads
have footprints of 258.7 MB and 1.1 GB respec-
tively.

Figures 15 and 16 show the throughput for all
the platforms using both the &uf kernel and
the original kernel for the NASA and the Rice
workloads respectively. For the Opteron-MP, the
sf_buf kernel improves performance by about 6%
for the NASA workload and about 14% for the
Rice workload. The reasons behind these perfor-
mance improvements are the same as described
earlier in Section 6.2.

For the Xeons, using the &iuf kernel results
in performance improvement of up to about 7%.
This performance improvement is a result of the
reduction in local and remote TLB invalidations
as shown in Figures 17 and 18.

For the above experiments the Xeon platforms
employed arsf _buf cache of 64K entries. To
study the effect of the size of this cache on web
server throughput we reduced it down to 6K
entries. A smaller cache causes more misses,
thus increasing the number of TLB invalidations.
Implementation of thesf _buf interface on the
i386 architecture employs an optimization which
avoids TLB invalidations if the page table entry’s
(PTE) access bit is clear. With TCP checksum
offloading enabled, the CPU does not touch the
pages to be sent, and as a result the corresponding
PTEs have their access bits clear and on a cache
miss TLB invalidation is avoided. With TCP
checksum offloading disabled, the CPU touches

Figure 14: Local and remote TLB invalidations the pages and the corresponding PTEs, causing
issued for Netperf experiments with small MTU TLB invalidations on cache misses. So for each

cache size we did two experiments, one with TCP
checksum offloading enabled and the other by
disabling it.



Figure 19 shows the throughput for the NASA
workload on the Xeon-MP for the above ex-
periment. For larger cache size slightly higher
throughputis obtained because of more reduction
in local and remote TLB invalidations as shown
in Figure 20. Also, enabling checksum offloading
brings local and remote TLB invalidations fur-
ther down because of the access bit optimization.
Reducing the cache size from 64K to 6K entries
does not significantly reduce throughput because
the hitrate of the ephemeral mapping cache drops
from nearly 100% to about 82%. This lower
cache hit rate is sufficient to avoid any noticeable
performance degradation.
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Figure 15: Throughput (in Mbits/s) for the NASA
workload
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issued for the Rice workload
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Figure 16: Throughput (in Mbits/s) for the Rice
workload

7 Redated Work

Chu describes a per process mapping cache for
zero-copy TCP in Solaris 2.4 [6]. Since the

cache is not shared among all processes in the
system its benefits are limited. For example

Throughput (Mbits/s)

700

600

500

400

300

200

100

T
enable checksum offloadi 4
disable checksum offloadi;E

64K cache entries

6K cache entries

No cache (original)

Figure 19: Throughput (in Mbits/s) for the Nasa

a multi-processed web server using FreeBsD'sWorkload on Xeon-MP with thef buf cache

sendfil e(2), like apache 1.3, will not get the

having 64K or 6K entries and the original ker-

maximum benefit from the cache if more than one"€! @nd with TCP checksum offloading enabled
process transmit the same file. In this case the filer disabled

pages are the same for all processes so having a
common cache would serve best.



NASA Workload

1e+08 ‘ achieving low-latency communication and imple-
ment a low-latency RPC system. They point out
re-mapping as one of the sources of the cost of
: communication. On multiprocessors, this cost is
increased due to TLB coherency operations [2].
The sf _buf interface obviates the need for re-
i mapping and hence lowers the cost of communi-
cation.

T
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Figure 20: Local and remote TLB invalidations

issued for the NASA workload on Xeon-MP with Modern operating systems create ephemera]

thesf _buf cache having 64K or 6K entries and Virtua]-to_physicaj mappings fora Variety of pur-
the Original kernel and with TCP checksum of- poses, ranging from the imp|ementa‘[ion of inter-
floading enabled or disabled process communication to the implementation of
process tracing and debugging. The hardware
] ) costs of creating these ephemeral mappings are
Ruan and Pai extend the mapping cache t0yenerally increasing with succeeding generations
be shared among all processes [13]. This cachgf processors. Moreover, if an ephemeral map-
is sendf i | e(2) -specific. Our work extends  ping is to be shared among multiprocessors, those
the benefits of the shared mapping cache to adpgcessors must act to maintain the consistency
ditional kernel subsystems providing substantial 5¢ their TLBs. In this paper we have provided a
modularity and performance improvements. We gofiware solution to alleviate this problem.
provide a yniform API for processor specific im- | this paper we have devised a new abstrac-
pIementatlons_. We also study the effect of theion to be used in the operating system kernel,
cache on multiprocessor systems. the ephemeral mapping interface. This interface
Bonwick and Adams [3] describe Vmem, a jjlocates ephemeral kernel virtual addresses and
generic resource allocator, where kernel VirtUﬂ'virtual-to-physical address mappings. The inter-
addresses are viewed as a type of resource. Howgce is low cost, and greatly reduces the number
ever, the goals of our work are different from that of costly interprocessor interrupts. We call our
of Vmem. In the context of kernel virtual address ephemeral mapping interface as sfe_buf in-
resource, Vmem's goal is to achieve fast alloca-terface. We have described its implementation
tion and low fragmentation. However, it makes in the FreeBSD-5.3 kernel on two representative
no guarantee that the allocated kernel virtual ad-architectures — theé386 and theamds4, and
dresses are "safe”, i.e., they require no TLB in- gutlined its implementation for the three other
validations. In contrast, thef _buf interface re- architectures Supported by FreeBSD. Many ker-
turns kernel virtual addresses that are completelyyg| subsystems—pipes, memory disks, sockets,
safe in most cases, requiring no TLB invalida- execve(), ptrace(), and the vnode pager—
tions. Additionally, the cost of using thef _buf  penefit from using thesf _buf interface. The
interface is small. sf _buf interface also centralizes redundant code
Bala et al. [1] design a software cache of TLB from each of these subsystems, reducing their
entries to provide fast access to entries on a TLBgverall size.
miss. This cache mitigates the costs of a TLB \We have evaluated thef _buf interface for
miss. The goal of our work is entirely different: the pipe, memory disk and networking subsys-
to maintain a cache of ephemeral mappings. Betems. For thdow._pi pe program of the Imbench
cause our work re-uses address mappings, it caBenchmark [10] the bandwidth improved by up to
augment such a cache of TLB entries. This is be-about 168% on one of our platforms. For mem-
cause the mappings corresponding to the physiory disks, a disk dump program resulted in about
cal pages with entries in tref _buf interface do  37% to 51% improvement in bandwidth. For the
not need to change in the software TLB cache. InPostMark benchmark [9] on a memory disk we
other words, the effectiveness of such a cache (ofiemonstrate up to 27% increase in transaction
TLB entries) can be increased with teé buf  throughput. Thesf _buf interface increases net-
interface. perf throughput by up to 34%. We also demon-
Thekkath and Levy [14] explore techniques for strate tangible benefits for a web server workload



with thesf _buf interface. In all these cases, the [11] R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron,

ephemeral mapping interface greatly reduced or
completely eliminated the number of TLB inval-

idations.
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