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Abstract 

This paper describes the development of a virtual-machine 
monitor (VMM) security kernel for the VAX architecture. 
The paper particularly focuses on how the system's hard- 
ware, microcode, and software are aimed at  meeting Al-  

effort has bccn primarily aimcd at  identifying the differences 
and their cost in development effort and in kernel complexity. 

This paper dcscribes how the VAX security kcrncl meets 
its five InajOr goals: 

* Mcet all AI  security rcquircments. 
levcl security requirements while maintaining the standard 
interfaces and applications of the VMS and ULTRIX-32 op- 
erating systems. The VAX security kcrncl supports multiple 

Run on commercial hardware without special modifica- 
tions other than microcode changcs for virtualization. 

concurrent virtual machines on a single VAX system, provid- 
ing isolation and controlled sharing of sensitive data. Rigor- 
ous engincering standards were applied during devclopmcnt 
to comply with the assurance requirements for verification 
and configuration management. The VAX security kcrncl 
has been dcveloped with a heavy emphasis on performance 
and on system managemcnt tools. The kcrnel pcrforms suf- 
ficicntly well that all of its development is now carricd out 
in virtual machines running on the kcrnel itself, rather than 
in a conventional time-sharing system. 

1 Introduction 
Thc VAX security kerncl project is a rescarch effort to deter- 
mine what is rcquired to build a production-quality security 
kernel, capable of receiving an A1 rating from the National 
Computcr Sccurity Center. A production-qnality sccurity 
kcrncl is very different from the many research-quality sccu- 
rity kcrncls that have bcen built in the past, and this research 
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Provide software compatibility for applications writtcn 
for both the VMS and ULTRIX-32 opcrating systems. 

Provide an acccptablc lcvel of performancc 

Meet the rcquircmcnts of a commercial software 
product. 

The VAX security kernel is a rescarch effort. Digital 
Equipment Corporation makes no commitment to offer it 
as a product. 

2 Kernel Overview 
The VAX sccurity kcrncl is a virtual-machine monitor 
that runs on the VAX 8530, 8550, 8700, 8800, and 8810 
processors.' It crcatcs isolated virtual VAX proccssors, each 
of which can run either the VMS or ULTRIX-32 opcrat- 
ing systcm. If dcsired, virtnal machines running each of the 
operating systems ca.u run simiiltaneously on the same com- 
puter system.' The VAX architccturc was not virtualizablc, 
and thcrcforc extensions were madc to the architccturc and 
to the processor microcode to support virtualization. (Sce 
Section 3.2.) 

Figure 1 shows a typical VAX sccurity kcrncl configura- 
tion. Whilc the VAX security kcrncl is a VMM, it is primar- 
ily a security kcrncl. Thcrcfore, ccrta.in fcaturcs tradition- 
ally seen in VMMs, such as self-virtiializatic)n or dcbugging 
of onc VM from another, havc bccn omittcd to rcduce kcrnel 
com plcxi ty. 

'Tlic VMM docs not rnn on VAX 8820, 8830, or 8840 processors, 

'At lrast one virtual machine mnst always r n i i  thc VMS opprating 
dur to niicrocodc and ronsolc diffcrcnrcs 

systrm, to carry ont certain system managrmcnt functions. 
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Figure 1: VAX VMM Security Kernel Configuration 

The VAX security kernel applies both mandatory and dis- 
cretionary access controls to virtual machines. Each virtual 
machine is assigned an access class that consists of a secrecy 
class and an integrity class, similar to those in the VMS 
Security Enhancement Service (VMS SES) [5]. The secrecy 
and integrity classes are based on the Bell and LaPadula 
security [2] and Biba integrity (41 models, respectively. The 
VAX security kernel also supports access control lists (ACLs) 
on all objects, similar to those in the VMS operating sys- 
tem [14]. 

The VMM security kerncl is not a general purpose oper- 
ating system. The principal subjects and objects are virtual 
machines and virtual disks, rather than conventional pro- 
cesses and files. That is the inherent difference between a 
VMM and a traditional operating system. Processes and 
files are implemented within the virtual machines by either 
the VMS or ULTRIX-32 operating systems. 

The VAX security kernel can support large numbers of 
simultaneous All software development of the VAX 
security kernel is now carried out on several virtual machines 

3Exact numbers depend on the precise hardware configuration. 

3 

running on the VMM on a VAX 8800 system. On a typical 
day, about 40 software engineers and managers are logged 
in running a mixed load of text editing, compilation, system 
building, and document formatting. The system provides 
adequate interactive response time and is sufficiently reliable 
to support an engineering group that must meet strict mile- 
stones and schedules. As far as we know, the VAX security 
kernel is the first security kerncl to support its own devel- 
opment team. The Multics Access Isolation Mechanism [36] 
was developed on Multics itself, but Multics with AIM was 
not a security kernel and only received a 0 2  rating. 

The VAX security kernel is currently in the Design Anal- 
ysis Phasc with the National Computer Security Center 
(NCSC) for an A1 rating. It is being formally specified in Ina 
Jo and formal proofs are bcing done on the specifications. 

3 Design Approach 

This section describes several of the design choices in the 
VAX security kernel, including details about the virtual ma- 
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chine approach to security kernels, virtualizing the VAX ar- 
chitecture, subjects and objects, access classes, our layered 
design, and other software engineering issues. 

3.1 Virtual Machine Approach 
The choice to build the VAX security kernel as a VMM was 
driven by two goals: to maintain compatibility with exist- 
ing software written for the VAX architecture and to keep 
software development and maintenance costs to a minimum. 

Digital Equipment Corporation began plans to enhance 
the security of the VAX architecture in mid-1979. Our ini- 
tial effort was the design of security enhancements to the 
VMS operating system, first prototyped in 1980 and avail- 
able today in the base VMS operating system and in the 
VMS Security Enhancement Service 151. 

At the time of the initial prototype of the VMS secu- 
rity enhancements [IG], Digital considered a traditional ker- 
nel/emulator security kernel to support VMS applications. 
However, it quickly became clear that the software devel- 
opment costs of a VMS emulator would be comparable to 
the cost of development of the VMS operating system itself. 
Worse still, the emulator would have to track all changes 
made to the VMS operating system, resulting in ongoing 
costs that would be unacceptably high for the limited market 
for Al-secure systems. The kernel/enmlator system could 
not replace the existing VMS operating system because its 
performance would not be as good, and it would likely be 
export controlled. Furthermore, the growing demand for 
UNIX-based software would force development of a UNIX 
emulator at still more development cost. 

To resolve these development cost and compatibility prob- 
lems, we chose a VMM security kernel approach. A VMM 
security kernel presents the interface of a computer architcc- 
turc that is comparatively simple and not subject to frequent 
change. Thus, the VAX security kernel presents an interface 
of the VAX architecture [21] and supports both the VMS 
and ULTR.IX 32 operating systems with relatively few mod- 
ifications. 

The idea of a VMM security kernel is not a new one. Mad- 
nick and Donovan [22] first suggested the merits of VMMs for 
security, and Rhode [30] first proposed VMM security ker- 
nels. From 1976 to 1982, Systems Development Corporation 
(now a division of the UNISYS Corporation) built a ker- 
nelized version of IBM’s VM/370 virtual-machine monitor, 
called KVM/370 [IZ]. While the design of the VAX secu- 
rity kernel is very different from KVM/370, we have applied 
some of the lessons learned in the KVM/370 project [ I l l .  
Section 7 compares the VAX security kernel with KVM/370. 
Gasser [lo,  Section 10.71 provides more dctail on some of the 
trade-offs between a VMM security kernel approach and a 
ker nel/emulator approach. 

3.2 Virtualizing the VAX 
The requircments for virtualizing a computer architecture 
were specified by Popek and Goldberg [26]. In essence, they 

require that all sensitive instructions and all references to 
sensitive data structures trap when executed by unprivileged 
code. A sensitive instruction or data structure is one that 
either reveals or modifies the privileged state of the proces- 
sor. 

3.2.1 Sensitive Instructions 

Unfortunately, the VAX architecture does not meet Popek 
and Goldberg’s requirements. Several instructions, includ- 
ing Move Processor Status Longword (MOVPSL), Probe 
(PROBEx), and Return from Exception or Interrupt (REI) 
are sensitive, but unprivileged. Furthermore, page table en- 
tries (PTEs) are sensitive data structures that can be read 
and written with unprivileged instructions. 

As a result, we made a number of extensions to  the VAX 
architecture to support virtualization. In particular, we 
added a VM bit to the processor status longword (PSL) 
that indicated whether or not the processor was executing 
in a virtual machine. A variety of sensitive instructions 
were changed to trap based on the setting of the VM bit, 
so that the VMM security kernel could emulate their exe- 
cution. Space does not permit a full discussion of the in- 
struction changes, but some details are discussed by Karger, 
Mason and Leonard [IS]. 

3.2.2 Ring Compression 

The most significant and security-relevant change to the 
VAX architecture was to virtualize protection rings. In the 
past, only processors with two protection states (such as 
the IBM 360/370 architecture) had been virtualized. Gold- 
berg (13, section 4.31 described the difficulties of virtualizing 
machines with protection rings and therefore more than two 
protection states. He proposed several techniques for map- 
ping ring numbers, some in software and one with a hardware 
ring reloca.tion register, but he recognized that none of his 
techniques were satisfactory. His software techniques broke 
down because the physical ring number remained visible, and 
his hardware ring relocation technique broke down because 
virtualizing a machine with N rings always required N+1 
rings. 

Since the VMS operating system uses all four of the pro- 
tection rings of the VAX architecture, it was essential that 
we develop a new technique for virtualization of protection 
rings. That technique is called rin,g compression. 

Figure 2 shows how the protection rings of a virtual VAX 
processor are mapped to the rings of a real VAX proces- 
sor. Virtual user and supervisor modes map to their real 
counterparts, but virtual executive and kernel modes both 
map to real executive mode. The real ring numbers are con- 
cealed from the virtual machine’s operating system (VMOS) 
by three extensions to the VAX architecture: the addition of 
the VM bit to the PSL (described in Section 3.2.1), the ad- 
dition of a VM processor status longword register (VMPSL), 
a.nd the modification of all instructions that could reveal the 
real ring number. Those instructions either trap to the VMM 
security kernel for emulation or obtain their information from 
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Figure 2: Ring Compression 

the VMPSL, which contains the virtual ring number rather 
than the real ring number. Additional details can be found 
in Karger, Mason and Leonard [18]. 

Ring compression also requires that the security kernel 
change the memory protection of pages belonging to virtual 
machines so that their kerncl-mode pages become accessible 
from executive mode. This change of memory protection 
could adversely affect security within a given virtual machine 
because the virtual machine’s kernel mode is no longer fully 
protected from its executive mode. 

For the two operating systems of interest to the VAX se- 
curity kernel, there is no effective loss of security within the 
virtual machines themselves, although there is a loss of ro- 
bustness against potentially bug-laden executive mode code. 
Fortunately, the VMS operating system grants all programs 
that run in executive mode the right to change mode to ker- 
nel at will and uses the the kernel/executive mode boundary 
only as a reliability mechanism. Furthermore, the ULTRIX- 
32 operating system does not use executive mode at  all. 

Of course, the compression of kcrnel and executive modcs 
in the virtual machines in no way compromiscs the security 
of the VMM, as the security kcrncl runs only in real kcr- 
ne1 mode, and no virtual machine ever is granted access to 
real kernel mode pages. If there were some other VAX op- 
erating system that actually used all four rings for security 
purposes, it would lose some of its own security, much as 
IBM operating systems lose some of their security when run 
in VM/370. However, no such operating systems exist for 
the VAX architecture. 

3.2.3 1 / 0  Emulation 

Traditional virtual-machine monitors, such as IBM’s 
VM/370, have virtualized not only the CPU, but also the 
1/0 hardware. Virtualixation of the 1/0 hardware allows 

the VMOS to run essentially unmodified. Virtualixation of 
the VAX 1/0 hardware is particularly difficult because its 
1/0 devices are programmed by reading and writing control 
and status registers (CSRs) that are located in a region of 
physical memory called 1/0 space. This type of I/O origi- 
nated on the PDP-11 scrics of computers and caused pcr- 
formance difficulties in the UCLA PDP-11 virtual-machine 
monitor [27] because the VMM must somehow simulate ev- 
ery instruction that manipulates a CSR. Vahey [33] proposed 
a complex hardware performance assist, but such a device 
would add excessive complexity and development cost to thc 
VAX security kerncl. 

Instead, the VAX security kernel implcmcnts a spccial 1/0 
interconnection strategy for virtual machincs. The VAX ar- 
chitecture 1211 does not specify how 1/0 is to be done, and 
different VAX processors have implemented very different 
1/0 interfaces. The VAX security kcrncl I/O intcrfacc is 
a specialized kernel call mechanism, optimized for pcrfor- 
mance, rather than traditional CSR-based I/O. In essencc, a 
virtual machine stores I/O-related parameters (such as buffcr 
addresses, etc.) in specified locations in its J/O space, but no 
1/0 takes place until the virtual machine cxccutcs a Move to 
Privileged Register (MTPR) instruction to a special kcrncl 
call (KCALL) register. This MTPR traps to security kerncl 
software that then performs thc I/O. Thus, thc number of 
traps to kcrnel software is dramatically less than would be 
required for CSR emulation. 

This special kernel 1/0 interface means that spccial un- 
trusted virtual device drivers had to be written for both the 
VMS and ULTRIX 32 opcrating systems, but this cffort was 
no more than is typically rcquired to support a new VAX 
processor, a small number of enginccr-years. 

Bccause the virtual VAX processors have an 1/0 intcrface 
different from that of any existing VAX processors, the VAX 
security kernel docs not fall into any of Goldbcrg’s tradi- 
tional categories of VMMs. Goldberg [13, pp. 22-26] defines 
a Type I VMM as a VMM that runs on a bare machinc. Hc 
dcfincs a Type I1 VMM as a VMM that runs under an  cx- 
isting host opcrating system. Goldbcrg 113, section 3.31 also 
defines a Hybrid Virtual-Machine Monitor as one in which 
all supcrvisory-state instructions are simulatcd, rather than 
just the privilcgcd instructions. The VMM security kcrncl is 
essentially a cross between a self-virtualizing Typc I VMM 
for all non-1/0 instructions and a Hybrid Virtual-Machine 
Monitor for 1 / 0  instructions. 

3.2.4 Self-Virtualization 

As we dcsigned the extcnsions to the VAX architrc- 
ture, we ensured that the architecture would pcrmit self- 
uzrtualizatzon. Sclf-virtualixation is the ability o f  a virtual- 
machine monitor to run in one of its own virtual machincs 
and recursivcly create sccond-level virtual machincs. Srlf- 
virtualixation is vcry useful for devcloping and debugging 
thc virtual-machine monitor itsclf, but it is of little valuc to 
actnal users. Since sclf-virtualixation would havc addcd sig- 
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nificant complexity to the Trusted Computing Base (TCB), 
no software support has becn done.4 

3.3 Subjects 
There are two kinds of subjccts in the VAX security kerncl, 
users and virtual machines (VMs). A user communicates 
over the trusted path with a process called a Server. Servcrs 
are trusted processes, but unlike the trusted processes in 
other systems such as KSOS-11 [3], servers run only within 
the kernel itself. User subjects cannot run uscr-written code; 
servers execute only verified code that is part of the TCB. 

The powcrs of a server arc determined by: 

The user’s minimum and maximum acccss class. (See 
Section 3.5.) 

The tcrminal’s minimum and maximum access class. 

The uscr’s discretionary access rights. 

The user’s privileges. (Sec Section 3 .6 . )  

The privileges exercisa.ble from the terminal 

A virtual machine is an untrustcd subject that runs a 
VMOS. A user intcracts with the VMOS in whatcvcr fashion 
is normal for that opcrating systcm, for example, by logging 
into that VMOS and issuing commands. A user may write 
and run code inside a VM and cvcn penetratc the VMOS, 
all without affecting the security of othcr victual machines 
or the security kcrncl itself. At worst, a pcnctrated virtual 
machine could only affect othcr virtual machines with which 
it shared disk volumes. 

On login to the security kernel, the VMM cstablishcs a 
conncction bctwecn the uscr’s tcrminal linc and thc user’s 
Server, callcd a session. Whcn the uscr wants to use somc 
virtual machine, the user issucs the CONNECT command to his 
or her Server, specifying the namc of that VM. If the con- 
nection is authorized, the system snspcnds the user’s cxisting 
session with thc Scrver and cstablishcs a ncw session betwccn 
the uscr’s terminal linc and the rcqucstcd virtual machinc. 
Thus, the Servcrs and thc VMs have distinct identities and 
distinct security attributes. 

Virtual machincs may be run in a single-uscr mode to pro- 
vide maximum individual accountability. Alternately, they 
can be run in a multi-uscr mode. In such a case, individual 
accountability might be achicved by running a VMOS with 

4The softwarc changcs nccdcd for self-virtnalisation primarily con- 
sist of changes to the virtual device drivcrs descrihcd in Scction 3.2.3 
and some clianges in the emulation of certain sensitive instructions. 
Under thc proposed Trnstcd VMM Intcrprctation [ I ] ,  it might cvcn be 
possible for a self-virtualized security kcrnel to itsclf rcmain A1 ratcd. 
To achieve that goal, the first level VMM would map the second lcvcl 
VMM’s kcrncl mode to real cxecntivc modc, whilc thc VMs running on 
top of the second levcl VMM would have their suprrvisor, executive, 
and kernel modcs all mapped to real supervisor modc. Of course, as 
one continucs to recursively self-virtnalise, one runs ont of protection 
rings at the fourth lcvel VMM, and that VMM would no longcr be 
protcctcd from its virtual machines. 

at least a C2 rating, as suggested by thc proposed Trustcd 
VMM Intcrprctation [I] of Trustcd Information Systems, Inc. 

Virtual machincs can also be trcatcd as objects bccarisc a 
user may request that the TCB provide a conncction bctween 
the user’s tcrniinal and somc VM. For this opcration, the 
user is tlic subject and the VM is the object. 

3.4 Objects 
The VAX security kernel supports a variety of objccts in- 
cluding rcal dcviccs and volumes and sccurity kcrncl filcs. 

One group of objccts compriscs the real dcviccs on the 
system: disk drivcs, tape drives, printers, terminal lines, and 
singlc acccss-class nctwork lines. As thcsc deviccs can con- 
tain or transmit information, acccss to thcrn must tic con- 
trollctl by the TCB. Anothcr objcct is the primary memory 
that is allocated to each VM whcn it  is activated. 

Disk and tapc volumcs arc also objccts. Thc contcnts of 
somc disk volumes arc complctely undcr the control of a vir- 
tual macliine. Thry may contain a filc systcni structure or 
just an arbitrary collectio~i of bits, dcpending on the mctlioti 
uscd by thc VMOS to acccss thc volume. Such volunics are 
callcd ezcha.ngeahle v o l u m e s  because thcy may bc excliangcd 
with othcr compiitcr systciris running conventional opcrating 
systems. Otlicr disk volumcs contain a VAX sccurity kerncl 
filc structurc and are callcd VAX security kernel volumes. 
These voluincs must not be directly acccsscd by a VMOS 
or exchangcd with othcr systems, as an untrusted subject 
could subvert the kernel’s file systcrri or read information to 
which it was not cntitlcd. The VAX security kcrncl does not 
providc trustcd tape volumes; all tapc volumes are cxcliangc- 
ablc. 

VAX security kcrncl VO~UIIICS contain VAX security kernel 
filcs that arc organizcd as a flat file systcm. VAX sccurity 
kernel filcs are used for a varicty of purposcs in the systcm 
and arc considercd objccts by the TCB. Onc use for VAX 
security kcrncl filcs is to hold long-term systcm databascs 
such as the andit log and the authorization filc. Thcsc filcs 
arc considcrcd part of thc TCB and, with the exception of thc 
audit log, crror log and crash dump filcs, cannot be dircctly 
rcfercnccd by virtual machines. 

Anothcr use of VAX security kcrncl filcs is to crcatc vir- 
tual disk volumes, loosely analogous to mini-disks iii IBM’s 
VM/370 [23, pp. 549 -5631. Mini-disks allow a physical disk 
to bc partitioncd, so that onc nced not dcdicate an cntirc 
physical disk to a sinal1 virtual machine that only rcquircs a 
small amount of disk spacc. Such virtual disks may contain 
tlic filc structurc of somc VMOS, such as a VMS filr struc- 
turc or an ULTR.IX 32 filc structurc. Howevcr, thc VMM 
dcals with virtual disks only as a wliolc. Thc contcnts of a 
virtual disk arc all part of a singlc objcct as far as thc VMM 
i s  conccrncd. 

3.5 Access Classes 
The VAX sccurity kcrnrl cnforccs mandatory controls, as rc- 
qiiircd of all A1 systcms. Both secrecy and integrity modcls 
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are supported, based on the work of Bell and LaPadula 121 
and of Biba [4], respectively. To implement mandatory con- 
trols, each kernel subject and kernel object is assigned a 
sensitivity label, called an access class.5 An access class 
consists of two components, a secrecy class and an integrity 
class. These components are each further divided into a level 
and a category set. A secrecy level is a hicrarchical classifi- 
cation. The secrecy category set is the set of non-hierarchical 
secrecy categories that represents the sensitivity of the ac- 
cess class. The integrity level and integrity category sct are 
defined analogously. For compatibility with VMS SES [5], 
the kcrnel supports 256 secrecy lcvels, 256 integrity levels, 
64 secrecy categorics, and 64 integrity categories. 

Given the complex structure of access classes, two dcfini- 
tions must be carefully constructed: 

Definition 1 An access class A is equal to an access class 
B if and only if: 

The secrecy level of A is equal to the secrecy level of B, 

The secrecy category set of A is equal to the secrecy 
category set of B, 

The integrity level o f A  is equal to the integrity level of 
B, and 

The integrity category set of A is equal to the integrity 
category set of B. 

Definition 2 An access class A dominates an access class 
B if and only if: 

The secrecy level of A is greater than or equal to the 
secrecy level of B, 

The secrecy category set of A is an improper superset of 
the secrecy category set of B, 

The integrity level of A is less than or equal to the 
integrity level of B, and 

The integrity category set of A is an improper subset of 
the integrity category set of B. 

The secrecy and integrity modcls define that a subjcct 
may reference an object depending on the access classes of 
the subject and object and on the type of reference. A sub- 
ject may read from an object only if the subject’s access class 
dominates the access class of the object. A subject may write 
to an object only if the object’s access class dominates the 
access class of the subject.‘ Thus, for example, a virtual 
machine may mount for read-write access an exchangeable 
volume only if the VM’s access class is equal to that of the 
volume. However, the VM may mount for read-only access 
any exchangeable volume where the VM’s access class dom- 
inates that of the volume. 

3.6 Privileges 
System managers, security managcrs, and operators gain 
their powers by having privileges. The privileges allow great 
flexibility in the assignmcnt of powers and rcsponsibilitics, 
including a measure of two-person control and separation of 
duties. Privileges restrict access beyond the protections pro- 
vided by mandatory and discretionary access controls. A 
privileged user cannot see data that would be otherwise in- 
accessible. Only the downgrading privileges allow bypassing 
of access controls, and the use of those privilcges is audited. 

Most privileges can be exercised only through the trustcd 
path and are called user privileges. (Sec Table 1.) Two 
privileges can be exercised by virtual machines and are called 
virtual-machine privileges. (See Table 2.)  

3.7 Layered Design 
The VAX security kernel has been implemented following the 
strict levels of abstraction approach originally used by Dijk- 
stra [8] in the THE system. Janson [15] developed thc use of 
levels of abstraction in security kernel design as a mcans of 
rcducing complexity and providing precise and undcrstand- 
able specifications. Each layer of the design implcments some 
abstraction in part by making calls on lower layers. In no 
caw does a lowcr layer invoke or depend upon highcr layer 
abstractions. By making lowcr layers unaware of higher ab- 
stractions, we reduce the total number of interactions in the 
system and thereby reduce the overall complexity. Further- 
more, each laycr can be tested in isolation from all higher 
layers, allowing debugging to proceed in an orderly fashion, 
rather than haphazardly throughout the system. This type 
of layering is called out in thc requirements for B3 and A1 
systems when the NCSC evaluation criteria [7, p. 381 state 
that, “The TCB shall incorporate significant use of layering, 
abstraction and data hiding. Significant system engineering 
shall be directed toward minimizing the complexity of the 
TCB . . . ” 

The laycrcd design of the VAX security kerncl was bascd 
heavily on thc Multics kerncl design work of Janson [15] and 
Reed [28] and to a lesser extent on the Naval Postgraduate 
School kerncl design [6]. Figure 3 shows a diagram of the 
layers of the VAX security kerncl. The arrows in the diagram 
indicate how each layer functionally depends on the abstract 
machine created by lower layers. 

Each layer adds specific functions within the security ker- 
nel, such that at  the security pcrimeter, the secrecy and 
integrity modcls are enforced. The kernel itself is process 
structured, as described in the summary of the various lay- 
ers. Unlike many other kernels, all of the trusted processes 
run within the security perimetcr and are included in the 
formal specifications described in Section 5.4. 

‘Some objects, such as terminal lines, may be assigned a range of 
access classes. 

61n general, write access is even further restricted; a subject may 
write to an object only if the subject’s and object’s acccm classes are 
equal. This disallows blind writes to an object that cannot be read. 

HIH The Hardware-Interrupt Handler layer is immediately 
above the physical VAX hardware and modificd mi- 
crocode. It contains the interrupt handlcrs for the vari- 
ous I/O controllers and certain CPU-specific code. 
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Privilege 

Privilege 
OPERATE 

SET-ACL 

CLASSIFY-DEVICE 

CLASSIFY-SUBJECT 

Powers 

Dismount volumes; activate and deactivate other virtual machines; set 
login limits 

Change any object's ACL, if access class permits 

CLASSIFY-VOLUME 

DELETE-AUDIT 
DOWNGRADE-SECRECY 

DOWNGRADE-SECRECY-NO INSPECT 
ENABLE-DEBUGGER 

OPERATE 
REGISTER 

SET-AUDIT 

SET-COVERT-CHANNEL-DEFENSE 
SET-FILE 

SET-PASSWORD 

UPGRADE-INTEGRITY 
UPGRADE-INTEGRITY-NOINSPECT 

Powers 

Assign access classes to 1/0 devices and privileges to terminals 

Assign access classes and privileges to subjects; name levels and 
categories 

Register and assign access classes to volumes 

Delete audit data 
Downgrade secrecy of text after human inspection 

Downgrade secrecy of data without inspection 
Enable untrusted kernel debugger 

Mount volumes, change printer paper, boot and shutdown system 
Register and change non-security attributes of devices, virtual 
machines, and users 
Control audit log and real-time alarms 

Enable or disable covert channel defenses 
Create, delete, or copy kernel files 
Change users' passwords and password parameters 

Upgrade integrity of text after human inspection 
Upgrade integrity of data without inspection 

Table 1: User Privilegcs 

Table 2: Virtual Machinc Privilegcs 

LLS The Lower-Level Scheduler is based strongly on Rccd's 
two-level schcdulcr design [28]. It creates the abstrac- 
tions of levcl one virtual proccssors (vpls) that are the 
basic unit of schcdnling for thc system. The LLS sup- 
ports symmetric multiprocessing by binding and un- 
binding real CPUs to individual vpls. As shown in 
Figure 4, there are thrcc kinds of vpls: dedicated vpls 
that typically contain device drivers, bindable vpls that 
can be bound to dedicated vp2s by the higticr level 
scheduler, and addressable vpls that can be bound to 
bindable vp2s ant1 thereby to virtual machines. Vpls 
are intcndcd to be very incxpcnsivc proccsscs for usc 
within the kerncl. Only addrcssablc vpls  have full ad- 
dress spaccs; all other vpls run out of the global addrcss 
space of the kcrnel. Thus, thc lower-levcl schcdulcr can 
context switch in and out of most vpls by nierely sav- 
ing rcgisters and switching stack pointcrs. Thc lowcr- 
level schcduler also implements eventcounts 1291 as the 
ba.sic synchronization mcchanisrn of the kcrncl. Evcnt- 
counts can be awaited or adva.nced in the normal way, 
o r  a processor in terrupt  can bc tied to an eventcount, 
such that a VM can be interruptcd whcn an cvcntcount 
has rcachcd a particular value. This proccssor intcrrupt 

nicchanisIn providcs upward transfers of control that are 
otherwise forbiddcn in the kerncl. Proccssor intcrrupts 
arc only delivcrcd whcn the CPU is executing outsidc 
the security kcrncl. 

10s Tlic 1/0 scrviccs laycr implcmcnts dcvicc drivrrs that 
control the real I /O dcviccs. The current version sup- 
ports only directly conncctcd terminals and storitgc dc- 
vices. 

VMP Thc VM physical nicmory laycr managcs real physi- 
cal memory, and assigns it to virtual machincs. 

VMV Thc VM virtual mcmory laycr implcmcnts thc 
sha.dow page tables necdcd to support virtual riicmory 
in the virtual niachincs.' VMV implements a primary- 
nicmory only stratcgy, rcquiring that all the physical 
nicmory that a virtual machine secs bc physicillly rcs- 
idcnt when that virtual machinc is active. Wliilc this 
technique limits the nuruber of siniultancously active 

7Sliadow page tables are created by a VMM, because thc pliysical 
addresses in page table cntrics must be relocated. Sliadow pagr ta- 
blcs arc described in detail by Madnick aiid Donovan (23, Scction 9-51. 
Shadow page tables are also where ring compression occurs. 
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Figure 3: VAX Security Kerncl Layers 

virtual machines to the iiumbcr that can fit into physi- 
cal nicmory simultaneously, it significantly reduccs kcr- 
ncl complcxity by eiiminating the need for a dcmand- 
paging mcchanism in the kcrnel. It also climinatcs the 
phcnomcnon of double paging that is oftcn sccn in other 
VMMs, whcrc tlic dcmand paging mechanisms of thc 
VMM and of the VMOS can thrash against one an- 
other, leading to scrious performancc dcgradation. In 
thc VMM security kcrncl, the virtual machines are al- 
located a fixed amount of physical nicmory and do all 
thcir own paging. 

HLS The IIighcr-Lcvcl Scheduler is also bascd on Rccd's 
two-levcl schcdulcr [28]. Uiilikc Rccd's dcsign, our 
higher-lcvcl schedulcr is cxtrcmcly simple bccausc it 
docs not nccd to schcdule acccss to primary nicmory. 
The HLS does creatc the abstraction of lcvel-two virtual 
processors (vp2s). There are two kinds of vp2s: dedi- 
m t e d  vp2s that are used primarily by the SSVR laycr 
described bclow and bindable vp2s that arc uscd for vir- 
tual machincs. Figure 4 shows the relationships bctwccn 
vpls and vp2s. 

AUD Tlic auditing laycr providcs the facilities for sccurity 
auditing and sccurity alarms. It is described in dctail in 
a companion papcr [31]. 

F l l F  The Filcs~ 11 Filcs layer implcments a subsct of tlie 
ODS 2 file systcni that is also uscd in thc VMS op- 
crating systcm.' Tlic most significant restrictions on 
the VAX sccurity kernel implcnientation of ODS -2 are 
that all filcs must bc prc-allocated and contiguous. This 
reduces kernel complexity by climinating the need for 
dynamic file cxtcnsions. F l l F  implcmcnts ODS 2 filcs 
only as a flat filc systcm. 

VOL The Volumes laycr implements VAX sccurity kcrncl 
and cxchangcablc volumcs and providcs rcgistrics of all 
subjccts and objects. Thcsc rcgistrics are much simplcr 
than ODS 2 directorics. 

VTerm Tlic Virtual Tcrminals laycr implcmcnts virtual tcr- 
minds for each virtual machinc, and manages thc pliysi- 
cal terminal lines. Each iiscr may have multiple scssions 
conncctcd to diffcrcnt virtual machines, and VTcrm pro- 
vidcs the session managcnicnt functions, as described 
in Section 4.1. VTcrm also implcmcnts asynchronous 
network lincs to allow virtual machincs to connect to 
single-a.ccess-class networks via spccially dcdicatcd tcr- 
mina1 lincs. The current version of the systcm has no 
support for higher-speed network connections. 

VPrint Thc Virtual Printers laycr implements virtual print- 
crs for each virtual machine and multiplcxcs the real 
physical printers among the virtual printers. It providcs 
top and bottom labeling, as well as trusted banner pagcs 
to dcliniit listings of different access classes and diffcrcnt 
VMs. 

'A bricf summary of the Filcs 11 ODS 2 structure can bc found in 
the appendices of [35]. 
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KI The Kerncl Interfacc layer implements virtual controllcrs 
for the various virtual 1 / 0  devices and the security 
function controller, which implements such functions as 
loading virtual disks into virtual drives. 

VVAX The Virtual VAX layer completes the virtualieation 
process by emulating sensitive instructions, delivering 
exceptions and interrupts to the virtual machine, etc. 

SSVR The Secure Server layer implements the trusted path 
for the security kernel, logs users in and out, and pro- 
vides security-related administrative functions. There 
is a dedicated vp2 for each tcrminal line to provide a 
Server process for each logged in user. 

VMOS The VMOS layer is the virtual machine's operating 
system. 

USERS The users in Figure 3 include both the untrusted 
applications programs that run on top of the VMOS, 
and the human beings who communicate directly with 
the secure server via the trusted path. 

Figure 4: Level One and Level Two Virtual Proccssors 

3.8 Software Engineering Issues 
A number of interesting software engincering issues arose 
during the development of the VAX security kerncl. While 
space does not permit discussing all of them, this section 
highlights a few of the most significant. 

3.8.1 Programming Language Choice 

Perhaps the most critical software engineering issue in the 
VAX security kernel design was the choice of a programming 

language. From the problenis that KSOS 11 had with its 
choice of compilcrs [3, 251, i t  was clear that wc ncedcd high 
quality compilers to dcvclop our sccurity kcrncl. Whilc we 
wanted as strongly-typcd a languagc as possiblc, it was much 
more critical that the conipilcr correctly compilc very large 
programs, produce high quality VAX object codc, and bc 
supported by an organization that could quickly rcspond to 
any problems wc might find. 

At the timc the VAX security kcrncl prototypc effort be- 
gan, thcre were only a sniall riumbcr of systcms prograni- 
ming languages available for thc VAX architccturc: BLISS 
32, PL/I-, PASCAL, and C. BLISS 32 was rejected bccausc 
of its lack of data typing facilities. PASCAL was rcjcctcd 
because the V2.0 compiler that gencrated high quality codc 
was not yet availa.ble. This left PL/I and C,  both of which 
used the samc good quality codc gcncrator. Wc chosc PL/I 
because of its slightly better data typing support, bccausc 
of its bettcr support for charactcr string manipulation, and 
bccausc tlic first prototypc dcvclopcrs had cxtcnsivc prior 
cxpericnce in coding operating systcms in PL/I. 

We were not happy with the choice of PL/I because its 
data types wcre not strongly enforced. When thc high qual- 
ity V2.0 PASCAL compiler became available, wc began writ- 
ing ncw codc for the kernel in PASCAL. PASCAL providcs 
much strongcr data.-typc chccking than PL/I,  and thc VAX 
calling standard made inter-languagc calls casy to iiriplc- 
nicnt. 

Higher-lcvcl languagc compilcrs cannot gcncratc optimal 
code for all programs. Thcrcforc, we found it ncccssary 
to implcnicnt those rnodulcs that actual nicasurcrnciits had 
shown to be pcrforrnaricc-critical in the MACRO 32 asscm- 
bly languagc. Tablc 3 shows how much cotlc was writtcn in 
cach of the languagcs for cadi layer of tlic k c " d 9  Thc table 
shows the nuniber of cxccutablc so~irce codc statcmciits (cx- 
cluding comincnts, dcclarations, and white space) arid pcr- 
hyer and per-language totals. 

In rctrospcct, tlic use of both PL/I and PASCAL has led 
to ccrtain difficulties. Softwarc cngincers must bc traincd 
in both langua.gcs, and sonic kcrncl bugs havc rcsultcd froni 
mjsundcrstandirigs of how to pass paraincters from onc lam 
gua,gc to the othcr. Futurc seciirity kcrncl dcvclopcrs would 
do wcll to choosc one systcms programniing 1aiigua.gc and 
stick to it. 

3.8.2 Coding Strategies 

A nunibcr of cotling stratcgics provcd very uscfiil in thc tlc- 
vclopincnt of tlic VAX sccurity kcrncl. For cxamplc, wc 
avoidcd all use of global pools within thc kcrncl to mini- 
mize thc possibility of stora.gc channels. Thc maxiniuin sizc 
of data structures is dctcrmincd at systcm boot timc (bascd 

Q'Tabl~ 3 inclridcs a numbcr of cntrirs that arc riot shown in the 
layer diagram in Figrirc 3 Tliesr layers, COMMON,  P M M ,  SVSDOO, 
VMMDOOT,  and VMMLID providc ccrtain booting and ruiitirnr l i -  
brary support fiinctions The normal riintime librarirs for the PL/ I  
and PASCAL langiiages arc not linkcd into the kernel bcmiisc t h y  
would have added a large amount of code that would riccd to br eval- 
uatcd and placcd riridrr configuration control 
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4 Human Interfaces 
Layer 

VVAX 
SSVR 
KI 
VPRINT 
VTERM 
VOL 
Fl1F 
AUD 
HLS 
VMV 
VRP 
10s 
LLS 
HIH 

COMMON 
PKM 
SVSBOO 
VMMBOOT 
VMMLIB 
Total 

HACRO 
3371 

0 
10 
0 
0 
0 
0 
0 
0 

129 
0 
0 

1289 
815 

244 
0 

2541 
55 

3021 
11475 

?ASCAL 
1502 
6876 
3354 
1455 
1419 
2553 
2962 
543 
0 
0 
0 

4725 
13 

2393 

0 
0 

734 
213 
503 

29245 

- 
PL/ I - 

0 
330 
0 
0 
0 
0 
0 
0 

430 
1069 
352 
0 

3839 
174 

0 
176 
0 

430 
1265 
8065 
- 
- 

- 
Tot a1 - 
4873 
7206 
3364 
1455 
1419 
2553 
2962 
543 
430 
1198 
352 
4725 
5141 
3382 

244 
176 
3275 
698 
4789 
48785 
- 
- 

Table 3: Executable Statements per Layer 

on system generation parametcrs), and memory is allocated 
for that maximum size during kernel initialization. 

Differcnt sections of memory within the kerncl are sep- 
arated by no-access guard pages to detcct run-away array 
or string refcrences. Unused memory is set to all ones to 
increase the chance of dctccting the use of uninitialized vari- 
ables because zeros are less likcly to generate exceptions. 

The layers of the kernel are coded defensively with sanity 
checks to protect each layer from higher layers. If irregulari- 
ties are detected, the system crashes to avoid the possibility 
of a security compromise. These sanity checks were devised 
to aid in the debugging of the kcrncl and do not themselvcs 
provide security assurance mechanisms. However, many of 
the checks remain enabled in the finished kernel to help de- 
tect any remaining bugs. 

The actions of a user or a virtual machine cannot crash the 
kernel. They can cause error messages, exception conditions 
raised in the virtual machine, or in extreme cases, the halting 
of an offending subject. 

Since the entire TCB runs in kernel mode, there are 
no hardware-enforced firewalls between layers. HOWCVCI, 
the layering methodology forbids lower layers from calling 
higher layers. To help us spot layer violations, we ap- 
plied both automatic and manual techniques. Using the fea- 
tures of the VAX DEC/Module Management System (VAX 
DEC/MMS) and the VAX DEC/Code Management Systems 
(VAX DEC/CMS), we were able to isolate all dependencies 
of a layer on other layers. By visual inspection, we could 
immediately spot upward references. In fact during dcvelop- 
ment, we did dctect and fix several such occurrences. 

High-security systems have developed a reputation for being 
hard to use, primarily due to their limited user interfaces. We 
believe that it is essential that a human interface meet the 
expectations of today’s commercial computer users. How- 
ever, we faced the same obstacles faced by other developers 
of high-security systems: 

0 Development resources are limited and satisfying the A1 
criteria takes precedence over all other efforts. 

0 The kerncl must be small and verifiable. Uscr interface 
features, such as a sophisticated command parser, are 
large and often difficult to vcrify. Conscquently, an in- 
terface built entirely on trusted code cannot match the 
usability of an interface built on untrustcd code. 

We overcame these obstacles by creating two separate 
command sets: the Secure Server commands and the SE- 
CURE commands. The Secure Server commands are imple- 
mented entirely in trusted code. The administrative com- 
mands, the SECURE commands, are parsed in the VMS 
and ULTRIX 32 operating systems. With this approach, 
we reduce the amount of trusted code and gain the well- 
developed command intcrfaces of thcsc mature commcrcial 
operating systcms. SECURE commands are normally only 
issued by the system manager, the security nianagcr, thc op- 
erators, and the auditors, although ordinary users may need 
to issue a few of them at times. By contrast, all users must 
issue some Secure Server commands to login and connect to 
virtual machines. 

4.1 Secure Server Commands 
The Secure Server is the user’s direct interface to the kcrncl. 
A user invokes a trusted path to thc Secure Server by pressing 
the Secure Attention Key. This key operates at  all timcs and 
cannot be intercepted by untrustcd wde. We have chosen 
the BREAK key to be the Secure Attcntion Key. 

The Secure Server’s commands control tcrminal connec- 
tions to virtual machines in the same way that a terminal 
server controls tcrminal connections to physical machines, 
using commands such as: CONNECT, DISCONNECT, RESUME, 
and SHOW SESSIONS. A user can create sessions with several 
virtual machines at  different access classes and can quickly 
switch from one to another. 

The intcrface for the Secure Server commands is built en- 
tirely in trusted code and offers only minimal command-line 
editing functions. 

4.2 SECURE Commands 
The tools for managing the system arc thc SECURE com- 
mands. The SECURE commands and utilitics are im- 
plemented just as are other commands in the VMS and 
ULTRIX 32 command languages, except that they issue kcr- 
ne1 calls to do thcir work. The complcte sct of SECURE 
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commands and utilities is installed in the VMS operating 
system. A subset of the SECURE commands is offered by 
the ULTRIX-32 operating system. 

The SECURE commands, unlike the Secure Server com- 
mands, are parsed by the VMS and ULTRIX 32 command 
language interpreters. The user can take advantage of such 
features as command-line recall arid command procedures. 

Thcre are two types of SECURE commands: VM 
SECURE commands and User SECURE commands. Both 
typcs of SECURE commands arc issued from the VM’s 
opcrating-systcm command lcvcl. VM SECURE commands 
are executed in the contcxt of tlic issuing VM. User SECURE 
commands are submitted to thc Sccure Server for cxccution. 
The commands are distinguished by the type of subject, a 
uscr or a virtual machine, that holds the access class and 
privileges ncccssary to issue thc command. 

SECURE Utility 
Authorize 

Registcr/Dcvicc 
Regis ter/Volume 

Sysgcn 
Crash Dump Analyzcr 

4.3 Command Confirmation 
While both the User and VM SECURE commands are ad- 
ministrativc commands, only the User SECURE commands 
must be trusted. For such sccurity-relevant commands, we 
require A1 assurance that: 

Purpose 
Registers users and virtual 
machines, etc. 
R.egist.cn I/O deviccs. 
Registers disk and tapc 
volumes. 
Sets limits on system rcsourccs. 
Provides data for detcrniiiiing 
the cause of a systcm crash. 

The command was issucd by a uscr and not by a Trojan 
horsc in a VM. 

The command received by the Sccure Scrvcr is exactly 
the same command typed by the uscr and not a com- 
mand that was covertly modificd by a Trojan horsc. 

Thc user who issued thc command can be identified in 
the andit log. 

Our design for the User SECURE commands providcs 
both trust and individuality accountability even for com- 
mands issued from an untrustcd environmcnt. Upon receipt 
of a valid User SECURE command, the VM instructs the 
user to press SECURE ATTENTION. This kcy invokes a 
trusted path bctwcen the mer’s terminal and thc Secure 
Scrvcr. A SECURE ATTENTION signal can bc scnt to thc 
Secure Server only by manually pressing the BREAK key. 
This prevents a Trojan horsc from complcting the execution 
of a User SECURE command. 

To prevent a VM from spoofing thc user by passing a dif- 
fercnt command from what thc user typed, the Secnrc Scrvcr 
displays the action that will be taken by thc command and 
prompts the user to approvc or reject thc operation. Figure 5 
is an abbreviated examplc of a User SECURE command is- 
sued from a VMS virtual machinc. Resum,in,g indicates that 
control of thc terminal will bc returned to thc virtual ma- 
chine. 

4.4 SECURE Utilities 
Managing thc VMM security kernel rcquires a number of 
utilities. Our SECURE iitilitics are modeled after VMS util- 
ities and are summarized in Table 4. 

$ SECURE DELETE TLS:STATUS.RPT 
P r e s s  SECURE ATTENTION t o  complete 

execut ion of t h i s  command. 
User presses SECURE ATTENTION to establish a 

trusted path. 
Delete VAX s e c u r i t y  ke rne l  f i l e  

TLS:STATUS.RPT 

Confirmation [Yes o r  No] : Y 

VMM: F i l e  d e l e t e d  
Resuming . . .  

Figure 5: Example of a User SECURE command 

Table 4: SECURE Utilitics 

4.5 Reclassifying Information 

Users can be pcrmitted to changc thc acccss class of the 
contents of a VAX security kernel file or an excliaiigea.ble 
voluinc with thc SECURE R.ECLASSIFY command. This 
command copics the contents of a kcrncl filc or volumc to an 
cxisting kernel file or volume labclcd with a different, access 
class. The source and dcstination objects must lic within thc 
user’s access-class range. In addition, privilcges are rcqnircd 
if thc reclassification downgrades the data’s sccrccy class or 
upgrades its integrity class. 

Reclassification normally rcqnircs trusted inspection by 
thc iiscr. Inspection is requircd to be sure that a Trojan 
horsc has not inserted additional information that the user 
did not intend to reclassify. To make inspcction easier, tlic 
uscr can opt to print the VAX security kcrncl filc or display 
the file on the tcrrninal, one scrccn at  a time. Oncc thc 
complete filc is printed or displayed, the uscr is promptcd 
to approve the reclassification. To prevent the covcrt pass- 
ing of information from the source filc to thc target filc in  
the form of invisiblc cscape scqucnces, inspected filcs must 
contain only printing charactcrs, spaces, and form fccds. A 
line rr1a.y not cnd with a space because a trailing space would 
bc invisible. The reclassification is terminatcd if any illcgal 
chaaactcr is encountered. 
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5 Assurance 

The principal reason for building an A1  security kernel is to 
provide a high degree of assurance that the security features 
of the system actually work correctly. This section describes 
some of the techniques that we have used in the VAX se- 
curity kernel to provide the necessary assurance of security, 
to meet both the requirements of an A1 evaluation and the 
requirements of real-world users. I t  is this integration of 
both A1 requirements and real-world requirements that is 
of particular research interest, as previous security kernels 
have not succeeded at  integrating the A1 requirements with 
good performance and compatibility with large amounts of 
existing commercial software. 

Gasser [lo,  p. 1631 describes Honeywell's STOP kernel for 
the SCOMP [9] and Gemini Computers' GEMSOS [32] as 
commercial-grade security kernels. However, STOP does 
not provide software compatibility with existing operating 
systems, and GEMSOS to date has only been used in spe- 
cialized environments. Shockley, Tao, and Thompson [32) 
report that research is under way to provide both UNIX 
and MS-DOS environments for GEMSOS, but it is not clear 
whether those environments are yet working. If Gemini suc- 
ceeds in providing both UNIX and MS-DOS environments 
in GEMSOS, they will have succeeded at integrating A1 re- 
quirements with real-world requirements. The VAX security 
kernel supports both the VMS and ULTRIX 32 operating 
systems with their layered applications today. 

5.1 Design and Code Changes 

Every change to our code undergoes both design and code re- 
view, regardless of whether the code is trusted or untrusted, 
or whether it is a whole new layer or a bug fix. Design 
reviews for even the smallest fixes ensure that system-wide 
effects are considered. Each layer has an owner, who partici- 
pates in the design review, and is responsible for the quality 
of that layer. Each code change is reviewed both in the con- 
text of its own layer and in the contexts of its calling and 
called layers, so as to catch inter-layer problems. 

Reviewers learn from the code they review, as well as shar- 
ing their knowledge through review comments. Reviewers 
address readability and clarity, security, performance, ele- 
gance and adherence to guidelines. Much like access con- 
trols, design and code guidelines are either mandatory or 
discretionary. Mandatory guidelines are based on prior expe- 
rience in security kernel developments. Discretionary gnide- 
lines are used to avoid well-known traps in the programming 
language, and to produce consistent, readable code. This 
consistency makes i t  easicr for an engineer to pick up and 
debug in a new area, reducing engineering costs and time. 

The code review results, along with the design and test 
plan, are publicized for the entire group to check. This prac- 
tice provides a last review of the entire change by a large 
audience. Code review results can also serve as cxamplcs 
from which engineers can learn good coding practices. 

The development team makes extensive use of VAX Notes 
online conferences to publicize design and coding guidelines, 
to  discuss specific design issues, to track bug reports, and 
to  record and publicize the results of the above-mentioned 
design and code reviews. 

Each coding task is integrated with the current working 
system as soon as it is complete. This integration always 
produces a working system. (See Section 5.3.) Continual and 
incremental integration avoids major unexpected failures by 
identifying design and/or coding errors as soon as possible. 

5.2 Development Environment 
As mentioned in Section 2, we have been developing the VAX 
security kerncl on a VAX security kernel system. Thus, our 
group does its daily work on a system designed to meet A1  
security requirements, using most of its features and con- 
trols. Our VMs run at  meaningful access classes. Different 
versions of the kernel are niaintained on different VMs to 
keep orthogonal tasks from impinging on each other. We also 
use VMs for developing and testing the untrusted code that 
must run in the VMS and ULTRIX- 32 operating systems. 
We have separated the roles of our own system manager and 
security manager, as recommended in the NCSC Evaluation 
Criteria [7]. 

The CPU and console of the development machine are 
kept inside a lab that only members of the VAX security 
kernel development group can enter. Within that lab, the 
development machine is protected by a cage, which consists 
of another room with a locked door. Physical access to both 
the lab and to the cage within the lab is controlled by a 
key-card security system. Finally, our development machine 
is not yet connected to Digital's internal computer network, 
to minimize the external threat to our development cnviron- 
ment and our project. 

5.3 Testing 
Intcgrating a coding task requires that a developer run a 
standard regression test suite. Integration occurs usually at  
least once a week, and as often as twice a day.'" This regrcs- 
sion suite consists of two portions: layer tests and KCALL 
tests. Layer tests are linked directly into the kerncl, and 
test layer interfaces and internal routines by calling them di- 
rectly and checking their outcome. KCALL tests rim in a 
VM, issuing legal, illcgal, and malformed requests, to chcck 
the VM interface. 

A separate suite of tests, issued via the VAX DEC/Tcst 
Managcr (DTM), is run once every two weeks to test the user 
command interface. These tests currently run for 30 hours. 
They consist of commands that are successful, commands 
that produce errors, and commands that send malformcd 
packets to the SSVR layer. DTM checks both the results of 
each command and the displays it produces. 

We also run the standard VAX architccturc cxcrciscr 
(AXE) that verifies that a particular CPU corrcctly iniplc- 

'"Dcvelopers of course run individual tests prior to integration. 
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ments a VAX computer. We run AXE to test the VAX 
virtualixation, described in Section 3.2. AXE tests werc run 
extensively during the development of the CPU microcode 
extensions and the VVAX layer. They will be run again 
when the kernel reaches final complction. 

We are currently dcveloping test plans for fully exercising 
all of the access control decisions and other security-relevant 
checks made by the system and for system-penetration test- 
ing. Some of these new tests will be developed from scratch, 
and some will be based on the formal specifications, 

5.4 Formal Methods 
The requirements for an A1 security cvaluation state that a 
formal security policy modcl must be written, that a formal 
top-lcvel specification (FTLS) of the system dcsign must be 
written and proven to satisfy the security policy model, that 
the system implcmcntation must be informally shown to be 
consistent with the FTLS, and that formal methods must 
be used in covert channel analysis of the system. The FTLS 
must accurately model system external intcrfaces, extcrnally 
visible behavior, and security-relcvant actions. A dcscriptive 
top-lcvel specification (DTLS) is also rcquircd as a complcte 
natural language description of the system. 

We use the Formal Development Mcthodology (FDM) 
specification and verification system 1191 to help meet these 
requirements. We arc writing both our security policy modcl 
(which consists of critcria and constraints and the top-levcl 
specification (TLS) of the various transforms) and our FTLS 
in the FDM specification language, Ina Jo. We are using 
the FDM interactive thcorem prover (ITP) to show that thc 
TLS obeys the policy and that the FTLS maps to the TLS. 
The DTLS consists of our intcrnal design documcntation, 
plus some special glue documents that tic the DTLS and the 
FTLS together, particularly dcscribing areas of the kcrncl 
that are not formally modcled in thc FTLS. 

Table 3 shows the number of executable statements in the 
sccurity kcrncl. For comparison, table 5 shows an cstimatc 
of the total number of lincs of Ina Jo (commcnts excluded) 
and the number of lines of transforms (declarations excluded) 
required to specify that kernel. The numbers are estimates 
because the FTLS is not yct complete. The totals show that 
the number of lines of transforms are about one sixth of the 
number of executable statemcnts in the sccurity kcrncl. 

FTLS 11758 8410 
Total 12408 8704 

Table 5: Lines of Formal Specifications 

We are doing a formal covert channel analysis using a new 
tcchniquc for automating the Shared-Resourcc Matrix ap- 
proach [20] using code-level flow analysis tools. 

Formal methods do not makc thc system secure by thcm- 
selves. Successful proof that our specifications mcet sccurity 
policy does not guarantee that thcre are no lurking imple- 
mentation bugs. However, thc use of formal mcthods sig- 
nificantly improves thc overall quality of the security ker- 
nel. Whcn combined with thc inforind testing procedures of 
Section 5.3, thc use of formal methods improves thc assur- 
ance that thc sccurity featurcs arc cffcctive. Indccd, the vcry 
act of formally specifying the sccurity kerncl in Ina J o  has 
already dctcctcd scvcral kcrncl bugs, both bccause of con- 
straints imposcd by proof procedurcs, and because the pro- 
cess of codc corrcspondcncc provides a thorough method for 
reviewing the TCB code and inforind design specifications. 
The separation of duties bctwccn the softwarc cnginrcr and 
the vcrificr, by itself, providcs valuable extra assurancc, evcn 
if no proofs wcrc cvcr done. 

5.5 Configuration Control 
Wc maintain strict configuration control on many itcms, in- 
cluding dcsign documcnts, trustcd kernel codc, tcst suites, 
user documcnts, and vcrification documcnts. All of our code 
is maintained undcr the VAX DEC/Code Management Sys- 
tem (CMS) to maintain a history of cach change to cach 
module. Sccurity rcvicws chcck cach item against the specific 
NCSC critcria rcquircnicnts (71 it fulfills and chcck among 
thc itcms for internal corisistcncy. Itcms that have been re- 
viewed are storcd on a mastcr pack that is physically pro- 
tcctcd a,gairist modification. 

Our hardwarc, firmware, and softwarc devclopmcnt tools 
are devclopcd by othcr groups within the corporation. We 
review hardware and firmware ECOs, prior to supporting 
thcm in the VAX sccurity kcrncl. NCW vcrsions of software 
development tools arc testcd on a stand-alone laboratory sys- 
tem prior to use on the kernel dcvelopmcnt machinc. Wc usc 
only thc standard, released vcrsions of software dcvelopmcnt 
tools, thc samc versions that have bccn checked out for ship- 
ment to our customers. With rare cxccptions, no ficld-test 
versions arc pcrnii t tcd on the kernel dcvclopment machine. 

5.6 Trusted Distribution 
The end uscr of a security kernel must have somc assurancc 
that no one has tampered with or substituted countcrfeit 
copics of the hardware and software that make up the system. 
Hardware and software have different trustcd distribution 
requirements. 

5.6.1 Hardware Trusted Distribution 

To assure that the hardware systems would arrive at  the 
customer’s site meeting the trusted distribution criteria, we 
have devcloped a security-seal program. If someonc tam- 
pered with the seal, evidence would be providcd of the at- 
tempted entry. A locking dcvice would combine with thc se- 
curity scaling procedures to ensure a trusted shipment. Full 
individual accountability would be providcd, including logs 
of the dclivery. 
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5.6.2 Software Trusted Distribution 

Installation of an A1 system involvcs achieving a trustcd 
state. The steps to do this on VAX 8800 hardware are coin- 
plex. The console processor software and CPU microcode 
must be installed and cryptographically checksummed with 
stand-alone software to detect any possible tampering. If a 
secure site loses its trusted state for any reason, they must re- 
install the console software and the CPU microcode. Trusted 
state could be lost just by running an untrusted operating 
system or hardware diagnostics on the system. 

Next, the trusted code is installed via untrusted code 
(VMS) and the result is cryptographically checksummed to 
verify that the untrusted code has not tampered with the 
trusted code. The result of the checksum is checked against 
a message authentication code to verify correct installation. 
The checksumming software is shipped separately from the 
rest of the software, so that a single failure of the trusted dis- 
tribution system could not compromise both the checksum 
program and the authentication code. 

For software, there would also be an option of using trusted 
couriers instead of the separate delivery paths. 

6 Production-Quality Kernels 
A production-quality security kernel is designed to protect 
and ensure the quality of real-world information. This sec- 
tion describes some of thc differences between research and 
production-quality security kernels that are required to meet 
general user requirements, as well as to satisfy the NCSC cri- 
teria for an A1 operating system. 

6.1 Producing the Kernel 
The primary tools for creating a security kerncl are compil- 
ers. Quality compilers must work for large programs, pro- 
duce efficient object code, and be rcliably supported. We 
sacrificed programming language elegance in favor of com- 
pilers with a strong track record: the VAX PASCAL and 
PL/I compilers. We maintained contact with the compiler 
developers throughout the dcvelopment, and they providcd 
much needcd hclp to us, including occasional changes to the 
actual compiler code. 

A second tool, a symbolic dcbugger/crash dunip annlyzcr, 
is needcd to develop and debug the system. It would also be 
needed by users and support personnel to diagnose problcms, 
and by users who might wish to add functions to the kcrncl. 

A production-quality security kernel must have adcquate 
performance to justify its purchase in thc face of other op- 
tions such as multiple separate computers or periods pro- 
cessing. To help ensure attention to performance, we do our 
own development work on a VAX security kernel systcm. 
Performance-critical paths wcre writtcn in a high-levcl lan- 
guage and then re-written in assembly language for speed. 
We have meters to find performance-critical routines, and 
a rudimentary performance monitor to gather statistics on 
CPU and 1/0 usage. 

Bug tracking mcchanisms arc needed both to satisfy NCSC 
configuration management guidclincs, and to give us a means 
to respond to problcms on a timely basis. They also provide 
a means to check against our definition of quality: having no 
security bugs and no bug that keeps production work from 
running. Statistics on the number of bugs and their scvcrity 
provide concrete feedback on stability. 

6.2 Documentation 
A real security kernel requires extensive docuincntation for 
its users and for its system and sccurity managcrs. These 
documents must not only mect thc content requircmcnts of 
the NCSC; they must also bc clear and understandable to 
both novicc and sophisticated customers. The VAX sccurity 
kcrnel documcntation set consists of ninc manuals and a ref- 
ercnce card. Thc manuals includc a user's guidc, guidcs to 
both system security and systcm managcmcnt, a command 
reference manual, both basic and advanced programmer's 
manuals, an installation guide, a master indcx, and rclcase 
notes. These manuals have bccn written to the samc qual- 
ity standards as tlic manuals for the VMS and ULTRIX 32 
operating systems. 

7 Comparison with KVM/370 
While the VAX sccurity kerncl supcrficially bcars a strong 
rescmblancc to KVM/370, in that both systems crcatc vir- 
tual machines that run at differcnt access classcs, thc intcrnal 
structurcs of tlic two systcms arc vcry differcnt. 

Most significantly, KVM/370 was designed as a rctrofit 
to the existing VM/370 product, with a specific goal of 
leaving at lcast half of the original code intact [ l l ] .  As 
a result, KVM/370 was structurcd as shown in Figure 6. 
The KVM/370 security kcrnel uscd a variation on srlf- 
virtualization to create a scrics of NKCPs (Non-Kerncl Con- 
trol Programs), each at a distinct mandatory access class. 
The NKCPs ran unmodificd VM/370 codc to crcatc niulti- 
plc virtual niachincs that then ran thc CMS (Coiivcrsational 
Monitor System), a singlc-user operating system dcsigncd 
to run in a virtual machine. The disadvantagc of this ap- 
proach is that many functions exccutcd by a virtual ma- 
chine rcquircd two context switchcs, first into the NKCP 
and tlicn into the security kcrncl. By comparison, VAX se- 
curity kcrnel achicvcs a higher performance lcvcl by allowing 
the virtual machines to communicate directly with thc sc- 
curity kernel. This makes the VAX security kcrncl largcr 
than the KVM/370 sccurity kerncl, but we belicve that tlic 
performance gains justify thc incrcasc in sizc." 

KVM/370 never implementcd support for VMOSs that 
supportcd virtual mcmory. It implcmcnted demand paging 
within its TCB. By contrast, the VAX sccurity kernel lcavcs 
virtual mcmory support to the VMOSs. As discusscd in 

"This comparison is not strictly fair to KVM/370 bccaiise tlic 
KVM/370 team was requircd to maintain compatibility and a large 
body of original code from VM/370, whilc the VAX security kcrncl 
tcam had thc libcrty of dcsigning and coding from scratch. 
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Figure 6: KVM/370 Configuration 

Section 3.7, eliminating demand paging rcduccs kcrnel com- 
plexity and improves performancc at  the cost of limiting thc 
number of simultaneously active virtual machines. 

Anothcr major diffcrcncc is that KVM/370 has a very lim- 
itcd interface for system managcment and sccurity rnanagc- 
mcnt functions. For example, new uscrs cannot bc addcd 
during online operation. By contrast, the VAX security kcr- 
ne1 offers a full complement of system and security managc- 
ment tools, such as arc rcquircd in a gencral-purposc systcm. 
(See Scction 4.) 

Whilc pcrformance comparisons are very tricky to niakc, 
thc rclativc pcrformance of the VAX security kcrncl seems 
better than that of KVM/370. KVM/370 reports [ll] per- 
formance rangcs from 10% to 50% of VM/370, dcpcnding 
on the workload. By contrast, thc VAX security kcrncl ex- 
hibits performancc ranges from 30% to 90% of VMS capacity, 
again depending on the workload. Thc KVM/370 mea.sure- 
mcnls were of an untuned system, while thc VAX sccurity 
kcrncl measiircmcnts wcrc of a system with a limitcd amount 
of tuning. The KVM/370 compa.risons wcrc to VM/370, it- 
self a virtual-machine monitor with pcrformance degradation 

compared to a nativc opcrating system. Thc VAX security 
kernel comparisons wcrc to the nativc VMS operating sys- 
tcrn. KVM/370 reportrd a niinibcr of dcsirablc performa1ic.e 
optimizations that had not been donc, a,rid likcwise, wc know 
of a niimbcr of optimizations that have not yrt been applied 
to VAX scciirity kcrnel because of limited dcvclopmcnt rc- 
sources. 

8 History of the Project 
The idea of a virtual-iriacliiric nionitor security kcrncl for the 
VAX, siniilar in concept to KVM/370, was first conccivcd 
by Paul Kargcr and Stcvc Lipncr in a Mcxican rcstaiirant in 
Palo Alto, CA, immcdiatcly after thc 1981 Syniposiiim on 
Security and Privacy. An initial tlcsigri study [17] c011~1iid~d 
in 1982 that such a security kcrnel would be practical for thc 
VAX architccturc. 

The sccnrity kcrncl was initially prototypcd on a VAX- 
11/730 system. Thc VAX 11/730 CPU [34] was partirularly 
attract i vc bccansc i t  was ver ti call y microprogr a mnird, arid 
its microcode was excciitcd from a writcablc control storc 
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(WCS) that could be reloaded from magnetic tape cassettes. 
This environment was ideal for experimenting with alternate 
microcode extensions to the VAX architecture, although the 
CPU itself was quite slow. 

The VMS operating system first successfully booted in a 
virtual machineon 19 July 1984. That version of the security 
kernel was a research prototype and was not a production- 
quality system. It was extremely slow (due in part to the 
choice of the VAX-11/730 and in part to the initial soft- 
ware design that emphasized quick development and exten- 
sive self-checking, but not performance), and its user inter- 
face was extremely crude. 

Once the VMM security kerncl prototype was running re- 
liably on the VAX-l1/730 and we had accomplished some 
performance tuning (that improved system performance by 
at least an order of magnitude), we then began investiga- 
tion of what a production-quality version would be like. The 
extensions to the VAX architecture were re-implemented on 
the VAX 8800 family of CPUs to provide a high-performance 
base for the system. Like the VAX-11/730, the VAX 8800 
CPU [24] runs its microcode from a writeable control store 
(WCS), SO modifications were possible. The VAX 8800 mi- 
crocode is organized horizontally, rather than vertically, and 
the microcode is pipclined, so the actual implementation of 
the extensions was much more complex than for the VAX- 
11/730. 

Going from the research prototype to the practical version 
also gave us the opportunity to revisit a number of design 
decisions. In particular, the extensions to the VAX arch- 
itccture to support virtualization were simplified, in part 
due to the limitcd availability of microcode memory in the 
VAX 8800. A performance study of the VAX security ker- 
nel prototype revealed that some of our architectural exten- 
sions did not provide the expectcd performance gains, while 
other extensions would be more valuable. For example, the 
prototype design included complex microcode assistance for 
delivering exceptions and interrupts to the virtual machines, 
but these microcode assists proved not to be useful, and a 
much simplcr scheme was implcmentcd for the VAX 8800. 
Similarly, pcrformance measuremcnts of the prototype re- 
vealed that VAX opcrating systcms (and VMS in particular) 
use the MTPR instruction to change thcir interrupt priority 
lcvcl (IPL) much more frequently than anyone had expected. 
Thcrefore, the software was changcd to optimize this particu- 
lar path, and microcode assistance was considered, although 
not implemented in this version. 

The move to the production-quality kernel also marked 
the dcvelopment of such features as user and systcm man- 
agcment interfaces, auditing, and error logging. The proto- 
type kernel, as a rcsearch kcrncl, had no need of such tools, 
but a real A1 system must have them, so that the end uscrs 
can manage and rcliably run real applications on the system. 

By January 1988, the kerncl was sufficiently stable that 
some engineers could begin doing their development work on 
a VM. Also in January 1988, the first VAX security kerncl 
was installcd outside the kcrncl dcvelopment group. That 
system was installed in the European ULTRIX Engineer- 

ing Group in Reading, England for porting the ULTRIX-32 
operating system to a virtual machine. ULTRIX 32 first 
booted in a virtual machine on 15 February 1988, only two 
months after detailed design for the port began, and less 
than one month after a working VAX security kernel system 
was available for use in Reading. 

By August 1988, VAX security kernel builds were bcing 
done on virtual machines, and by early 1989, essentially all 
software development work was being done on the kernel. 
By Spring of 1989, the kernel was sufficiently stable that 
the VAX 8800 that had been running a conventional VMS 
time sharing systcm for the kernel developers was rclcased 
for other purposes. 

9 Conclusions 

The VAX security kernel is a working, production-quality 
VMM security kernel with performance sufficient to support 
a large number of time-sharing uscrs. It is sufficiently fast 
and stable that it supports its own development team. It 
supports vast amounts of existing user software that has been 
written for both the VMS and the ULTRIX-32 opcrating 
systems, and it supports both operating systems running 
simultaneously on the same CPU. VAX security kcrnel is 
currently (as of February 1990) in the Design Analysis Phase 
with the National Computer Security Center (NCSC) for an 
A1 rating. As a research project in what is required to build 
a practical security kernel, it has been a major success. 

The development of VAX security kernel has been long 
and arduous, and we have learned a number of lessons dur- 
ing that time. Performance of a security kernel is extrcmely 
important, and getting good performance is very hard. It 
requires detailed analysis of what portions of the kernel are 
performance-critical and a willingness to redesign those por- 
tions for performance and possibly re-code them in assembly 
language or to provide microcodc performance assistance. 

Building the system twice, once as a research prototype 
and once as a research study of a production-quality systcm, 
was extremely valuable. The second time around, we were 
able to apply some of the pcrformance lessons learncd by 
adjusting our microcode assistance, and we dcvelopcd thc 
user and management interfaces that are essential in a rcal 
system. 

Dcvcloping a system to A1 standards is very hard work. 
Some of thc A1 requirements can directly conflict with per- 
formancc and usability goals, and the testing and rcview 
rcquiremcnts are very time consuming. Furthcrmore, the 
export controls imposed on A 1 systems can seriously rcduce 
the potential market for a system, making it difficult to re- 
cover the costs in achieving the A1 rating. On the othcr 
hand, the discipline requircd to mcct A1 requircments dcfi- 
nitcly improves overall software quality and reliability. 
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