
A VMM Security Kernel for the VAX Architecture

Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason, and Clifford E. Kahn*

Digital Equipment Corporation
Secure Systems Development

85 Swanson Road (BXBl-l/D03)
Boxborough, MA 01719-1326

Abstract

This paper describes the development of a virtual-machine
monitor (VMM) security kernel for the VAX architecture.
The paper particularly focuses on how the system's hard-
ware, microcode, and software are aimed at meeting Al-

effort has bccn primarily aimcd at identifying the differences
and their cost in development effort and in kernel complexity.

This paper dcscribes how the VAX security kcrncl meets
its five InajOr goals:

* Mcet all AI security rcquircments.
levcl security requirements while maintaining the standard
interfaces and applications of the VMS and ULTRIX-32 op-
erating systems. The VAX security kcrncl supports multiple

Run on commercial hardware without special modifica-
tions other than microcode changcs for virtualization.

concurrent virtual machines on a single VAX system, provid-
ing isolation and controlled sharing of sensitive data. Rigor-
ous engincering standards were applied during devclopmcnt
to comply with the assurance requirements for verification
and configuration management. The VAX security kcrncl
has been dcveloped with a heavy emphasis on performance
and on system managemcnt tools. The kcrnel pcrforms suf-
ficicntly well that all of its development is now carricd out
in virtual machines running on the kcrnel itself, rather than
in a conventional time-sharing system.

1 Introduction
Thc VAX security kerncl project is a rescarch effort to deter-
mine what is rcquired to build a production-quality security
kernel, capable of receiving an A1 rating from the National
Computcr Sccurity Center. A production-qnality sccurity
kcrncl is very different from the many research-quality sccu-
rity kcrncls that have bcen built in the past, and this research

'This paper prcsrnts the opinions of its authors, which arc not ncccs-
sarily those of the Digital Eqiiipmrnt Corporation. Opinions exprcssrd
in this paper must not be construed to imply any product corrimitmcrit
on the part of the Digital Equipment Corporation.

IBM is a registered trademark of International Bnsiness Machines Cor-
poration.

Ilia Jo is a registered trademark of UNISYS Corporation.

MS-DOS is a rrgistcred tradcrnark of Microsoft Corporation

UNIX is a registered trademark of Arneriran Tclcplione and Telegraph
Company.

Thc following arc tradcmarks of Digital Eqiiipmcnt Corporation: DEC,
DEC/CMS, DEC/MMS, PDP, PDP 11, ULTRIX, ULTRIX 32, VAX,
VAX 11/730, VAX 8530, VAX 8550, VAX 8700, VAX 8800, VAX 8810,
VAX 8820, VAX 8830, VAX 8840, VAX DEC/Test Managcr, and VMS.

Provide software compatibility for applications writtcn
for both the VMS and ULTRIX-32 opcrating systems.

Provide an acccptablc lcvel of performancc

Meet the rcquircmcnts of a commercial software
product.

The VAX security kernel is a rescarch effort. Digital
Equipment Corporation makes no commitment to offer it
as a product.

2 Kernel Overview
The VAX sccurity kcrncl is a virtual-machine monitor
that runs on the VAX 8530, 8550, 8700, 8800, and 8810
processors.' It crcatcs isolated virtual VAX proccssors, each
of which can run either the VMS or ULTRIX-32 opcrat-
ing systcm. If dcsired, virtnal machines running each of the
operating systems ca.u run simiiltaneously on the same com-
puter system.' The VAX architccturc was not virtualizablc,
and thcrcforc extensions were madc to the architccturc and
to the processor microcode to support virtualization. (Sce
Section 3.2.)

Figure 1 shows a typical VAX sccurity kcrncl configura-
tion. Whilc the VAX security kcrncl is a VMM, it is primar-
ily a security kcrncl. Thcrcfore, ccrta.in fcaturcs tradition-
ally seen in VMMs, such as self-virtiializatic)n or dcbugging
of onc VM from another, havc bccn omittcd to rcduce kcrnel
com plcxi ty.

'Tlic VMM docs not rnn on VAX 8820, 8830, or 8840 processors,

'At lrast one virtual machine mnst always r n i i thc VMS opprating
dur to niicrocodc and ronsolc diffcrcnrcs

systrm, to carry ont certain system managrmcnt functions.

CH2884-5/90/0000/0002$01 .OO 0 1990 IEEE 2

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

Figure 1: VAX VMM Security Kernel Configuration

The VAX security kernel applies both mandatory and dis-
cretionary access controls to virtual machines. Each virtual
machine is assigned an access class that consists of a secrecy
class and an integrity class, similar to those in the VMS
Security Enhancement Service (VMS SES) [5]. The secrecy
and integrity classes are based on the Bell and LaPadula
security [2] and Biba integrity (41 models, respectively. The
VAX security kernel also supports access control lists (ACLs)
on all objects, similar to those in the VMS operating sys-
tem [14].

The VMM security kerncl is not a general purpose oper-
ating system. The principal subjects and objects are virtual
machines and virtual disks, rather than conventional pro-
cesses and files. That is the inherent difference between a
VMM and a traditional operating system. Processes and
files are implemented within the virtual machines by either
the VMS or ULTRIX-32 operating systems.

The VAX security kernel can support large numbers of
simultaneous All software development of the VAX
security kernel is now carried out on several virtual machines

3Exact numbers depend on the precise hardware configuration.

3

running on the VMM on a VAX 8800 system. On a typical
day, about 40 software engineers and managers are logged
in running a mixed load of text editing, compilation, system
building, and document formatting. The system provides
adequate interactive response time and is sufficiently reliable
to support an engineering group that must meet strict mile-
stones and schedules. As far as we know, the VAX security
kernel is the first security kerncl to support its own devel-
opment team. The Multics Access Isolation Mechanism [36]
was developed on Multics itself, but Multics with AIM was
not a security kernel and only received a 0 2 rating.

The VAX security kernel is currently in the Design Anal-
ysis Phasc with the National Computer Security Center
(NCSC) for an A1 rating. It is being formally specified in Ina
Jo and formal proofs are bcing done on the specifications.

3 Design Approach

This section describes several of the design choices in the
VAX security kernel, including details about the virtual ma-

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

chine approach to security kernels, virtualizing the VAX ar-
chitecture, subjects and objects, access classes, our layered
design, and other software engineering issues.

3.1 Virtual Machine Approach
The choice to build the VAX security kernel as a VMM was
driven by two goals: to maintain compatibility with exist-
ing software written for the VAX architecture and to keep
software development and maintenance costs to a minimum.

Digital Equipment Corporation began plans to enhance
the security of the VAX architecture in mid-1979. Our ini-
tial effort was the design of security enhancements to the
VMS operating system, first prototyped in 1980 and avail-
able today in the base VMS operating system and in the
VMS Security Enhancement Service 151.

At the time of the initial prototype of the VMS secu-
rity enhancements [IG], Digital considered a traditional ker-
nel/emulator security kernel to support VMS applications.
However, it quickly became clear that the software devel-
opment costs of a VMS emulator would be comparable to
the cost of development of the VMS operating system itself.
Worse still, the emulator would have to track all changes
made to the VMS operating system, resulting in ongoing
costs that would be unacceptably high for the limited market
for Al-secure systems. The kernel/enmlator system could
not replace the existing VMS operating system because its
performance would not be as good, and it would likely be
export controlled. Furthermore, the growing demand for
UNIX-based software would force development of a UNIX
emulator at still more development cost.

To resolve these development cost and compatibility prob-
lems, we chose a VMM security kernel approach. A VMM
security kernel presents the interface of a computer architcc-
turc that is comparatively simple and not subject to frequent
change. Thus, the VAX security kernel presents an interface
of the VAX architecture [21] and supports both the VMS
and ULTR.IX 32 operating systems with relatively few mod-
ifications.

The idea of a VMM security kernel is not a new one. Mad-
nick and Donovan [22] first suggested the merits of VMMs for
security, and Rhode [30] first proposed VMM security ker-
nels. From 1976 to 1982, Systems Development Corporation
(now a division of the UNISYS Corporation) built a ker-
nelized version of IBM’s VM/370 virtual-machine monitor,
called KVM/370 [IZ]. While the design of the VAX secu-
rity kernel is very different from KVM/370, we have applied
some of the lessons learned in the KVM/370 project [I l l .
Section 7 compares the VAX security kernel with KVM/370.
Gasser [lo, Section 10.71 provides more dctail on some of the
trade-offs between a VMM security kernel approach and a
ker nel/emulator approach.

3.2 Virtualizing the VAX
The requircments for virtualizing a computer architecture
were specified by Popek and Goldberg [26]. In essence, they

require that all sensitive instructions and all references to
sensitive data structures trap when executed by unprivileged
code. A sensitive instruction or data structure is one that
either reveals or modifies the privileged state of the proces-
sor.

3.2.1 Sensitive Instructions

Unfortunately, the VAX architecture does not meet Popek
and Goldberg’s requirements. Several instructions, includ-
ing Move Processor Status Longword (MOVPSL), Probe
(PROBEx), and Return from Exception or Interrupt (REI)
are sensitive, but unprivileged. Furthermore, page table en-
tries (PTEs) are sensitive data structures that can be read
and written with unprivileged instructions.

As a result, we made a number of extensions to the VAX
architecture to support virtualization. In particular, we
added a VM bit to the processor status longword (PSL)
that indicated whether or not the processor was executing
in a virtual machine. A variety of sensitive instructions
were changed to trap based on the setting of the VM bit,
so that the VMM security kernel could emulate their exe-
cution. Space does not permit a full discussion of the in-
struction changes, but some details are discussed by Karger,
Mason and Leonard [IS].

3.2.2 Ring Compression

The most significant and security-relevant change to the
VAX architecture was to virtualize protection rings. In the
past, only processors with two protection states (such as
the IBM 360/370 architecture) had been virtualized. Gold-
berg (13, section 4.31 described the difficulties of virtualizing
machines with protection rings and therefore more than two
protection states. He proposed several techniques for map-
ping ring numbers, some in software and one with a hardware
ring reloca.tion register, but he recognized that none of his
techniques were satisfactory. His software techniques broke
down because the physical ring number remained visible, and
his hardware ring relocation technique broke down because
virtualizing a machine with N rings always required N+1
rings.

Since the VMS operating system uses all four of the pro-
tection rings of the VAX architecture, it was essential that
we develop a new technique for virtualization of protection
rings. That technique is called rin,g compression.

Figure 2 shows how the protection rings of a virtual VAX
processor are mapped to the rings of a real VAX proces-
sor. Virtual user and supervisor modes map to their real
counterparts, but virtual executive and kernel modes both
map to real executive mode. The real ring numbers are con-
cealed from the virtual machine’s operating system (VMOS)
by three extensions to the VAX architecture: the addition of
the VM bit to the PSL (described in Section 3.2.1), the ad-
dition of a VM processor status longword register (VMPSL),
a.nd the modification of all instructions that could reveal the
real ring number. Those instructions either trap to the VMM
security kernel for emulation or obtain their information from

4

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

Figure 2: Ring Compression

the VMPSL, which contains the virtual ring number rather
than the real ring number. Additional details can be found
in Karger, Mason and Leonard [18].

Ring compression also requires that the security kernel
change the memory protection of pages belonging to virtual
machines so that their kerncl-mode pages become accessible
from executive mode. This change of memory protection
could adversely affect security within a given virtual machine
because the virtual machine’s kernel mode is no longer fully
protected from its executive mode.

For the two operating systems of interest to the VAX se-
curity kernel, there is no effective loss of security within the
virtual machines themselves, although there is a loss of ro-
bustness against potentially bug-laden executive mode code.
Fortunately, the VMS operating system grants all programs
that run in executive mode the right to change mode to ker-
nel at will and uses the the kernel/executive mode boundary
only as a reliability mechanism. Furthermore, the ULTRIX-
32 operating system does not use executive mode at all.

Of course, the compression of kcrnel and executive modcs
in the virtual machines in no way compromiscs the security
of the VMM, as the security kcrncl runs only in real kcr-
ne1 mode, and no virtual machine ever is granted access to
real kernel mode pages. If there were some other VAX op-
erating system that actually used all four rings for security
purposes, it would lose some of its own security, much as
IBM operating systems lose some of their security when run
in VM/370. However, no such operating systems exist for
the VAX architecture.

3.2.3 1 / 0 Emulation

Traditional virtual-machine monitors, such as IBM’s
VM/370, have virtualized not only the CPU, but also the
1/0 hardware. Virtualixation of the 1/0 hardware allows

the VMOS to run essentially unmodified. Virtualixation of
the VAX 1/0 hardware is particularly difficult because its
1/0 devices are programmed by reading and writing control
and status registers (CSRs) that are located in a region of
physical memory called 1/0 space. This type of I/O origi-
nated on the PDP-11 scrics of computers and caused pcr-
formance difficulties in the UCLA PDP-11 virtual-machine
monitor [27] because the VMM must somehow simulate ev-
ery instruction that manipulates a CSR. Vahey [33] proposed
a complex hardware performance assist, but such a device
would add excessive complexity and development cost to thc
VAX security kerncl.

Instead, the VAX security kernel implcmcnts a spccial 1/0
interconnection strategy for virtual machincs. The VAX ar-
chitecture 1211 does not specify how 1/0 is to be done, and
different VAX processors have implemented very different
1/0 interfaces. The VAX security kcrncl I/O intcrfacc is
a specialized kernel call mechanism, optimized for pcrfor-
mance, rather than traditional CSR-based I/O. In essencc, a
virtual machine stores I/O-related parameters (such as buffcr
addresses, etc.) in specified locations in its J/O space, but no
1/0 takes place until the virtual machine cxccutcs a Move to
Privileged Register (MTPR) instruction to a special kcrncl
call (KCALL) register. This MTPR traps to security kerncl
software that then performs thc I/O. Thus, thc number of
traps to kcrnel software is dramatically less than would be
required for CSR emulation.

This special kernel 1/0 interface means that spccial un-
trusted virtual device drivers had to be written for both the
VMS and ULTRIX 32 opcrating systems, but this cffort was
no more than is typically rcquired to support a new VAX
processor, a small number of enginccr-years.

Bccause the virtual VAX processors have an 1/0 intcrface
different from that of any existing VAX processors, the VAX
security kernel docs not fall into any of Goldbcrg’s tradi-
tional categories of VMMs. Goldberg [13, pp. 22-26] defines
a Type I VMM as a VMM that runs on a bare machinc. Hc
dcfincs a Type I1 VMM as a VMM that runs under an cx-
isting host opcrating system. Goldbcrg 113, section 3.31 also
defines a Hybrid Virtual-Machine Monitor as one in which
all supcrvisory-state instructions are simulatcd, rather than
just the privilcgcd instructions. The VMM security kcrncl is
essentially a cross between a self-virtualizing Typc I VMM
for all non-1/0 instructions and a Hybrid Virtual-Machine
Monitor for 1 / 0 instructions.

3.2.4 Self-Virtualization

As we dcsigned the extcnsions to the VAX architrc-
ture, we ensured that the architecture would pcrmit self-
uzrtualizatzon. Sclf-virtualixation is the ability o f a virtual-
machine monitor to run in one of its own virtual machincs
and recursivcly create sccond-level virtual machincs. Srlf-
virtualixation is vcry useful for devcloping and debugging
thc virtual-machine monitor itsclf, but it is of little valuc to
actnal users. Since sclf-virtualixation would havc addcd sig-

5

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

nificant complexity to the Trusted Computing Base (TCB),
no software support has becn done.4

3.3 Subjects
There are two kinds of subjccts in the VAX security kerncl,
users and virtual machines (VMs). A user communicates
over the trusted path with a process called a Server. Servcrs
are trusted processes, but unlike the trusted processes in
other systems such as KSOS-11 [3], servers run only within
the kernel itself. User subjects cannot run uscr-written code;
servers execute only verified code that is part of the TCB.

The powcrs of a server arc determined by:

The user’s minimum and maximum acccss class. (See
Section 3.5.)

The tcrminal’s minimum and maximum access class.

The uscr’s discretionary access rights.

The user’s privileges. (Sec Section 3 .6 .)

The privileges exercisa.ble from the terminal

A virtual machine is an untrustcd subject that runs a
VMOS. A user intcracts with the VMOS in whatcvcr fashion
is normal for that opcrating systcm, for example, by logging
into that VMOS and issuing commands. A user may write
and run code inside a VM and cvcn penetratc the VMOS,
all without affecting the security of othcr victual machines
or the security kcrncl itself. At worst, a pcnctrated virtual
machine could only affect othcr virtual machines with which
it shared disk volumes.

On login to the security kernel, the VMM cstablishcs a
conncction bctwecn the uscr’s tcrminal linc and thc user’s
Server, callcd a session. Whcn the uscr wants to use somc
virtual machine, the user issucs the CONNECT command to his
or her Server, specifying the namc of that VM. If the con-
nection is authorized, the system snspcnds the user’s cxisting
session with thc Scrver and cstablishcs a ncw session betwccn
the uscr’s terminal linc and the rcqucstcd virtual machinc.
Thus, the Servcrs and thc VMs have distinct identities and
distinct security attributes.

Virtual machincs may be run in a single-uscr mode to pro-
vide maximum individual accountability. Alternately, they
can be run in a multi-uscr mode. In such a case, individual
accountability might be achicved by running a VMOS with

4The softwarc changcs nccdcd for self-virtnalisation primarily con-
sist of changes to the virtual device drivcrs descrihcd in Scction 3.2.3
and some clianges in the emulation of certain sensitive instructions.
Under thc proposed Trnstcd VMM Intcrprctation [I] , it might cvcn be
possible for a self-virtualized security kcrnel to itsclf rcmain A1 ratcd.
To achieve that goal, the first level VMM would map the second lcvcl
VMM’s kcrncl mode to real cxecntivc modc, whilc thc VMs running on
top of the second levcl VMM would have their suprrvisor, executive,
and kernel modcs all mapped to real supervisor modc. Of course, as
one continucs to recursively self-virtnalise, one runs ont of protection
rings at the fourth lcvel VMM, and that VMM would no longcr be
protcctcd from its virtual machines.

at least a C2 rating, as suggested by thc proposed Trustcd
VMM Intcrprctation [I] of Trustcd Information Systems, Inc.

Virtual machincs can also be trcatcd as objects bccarisc a
user may request that the TCB provide a conncction bctween
the user’s tcrniinal and somc VM. For this opcration, the
user is tlic subject and the VM is the object.

3.4 Objects
The VAX security kernel supports a variety of objccts in-
cluding rcal dcviccs and volumes and sccurity kcrncl filcs.

One group of objccts compriscs the real dcviccs on the
system: disk drivcs, tape drives, printers, terminal lines, and
singlc acccss-class nctwork lines. As thcsc deviccs can con-
tain or transmit information, acccss to thcrn must tic con-
trollctl by the TCB. Anothcr objcct is the primary memory
that is allocated to each VM whcn it is activated.

Disk and tapc volumcs arc also objccts. Thc contcnts of
somc disk volumes arc complctely undcr the control of a vir-
tual macliine. Thry may contain a filc systcni structure or
just an arbitrary collectio~i of bits, dcpending on the mctlioti
uscd by thc VMOS to acccss thc volume. Such volunics are
callcd ezcha.ngeahle v o l u m e s because thcy may bc excliangcd
with othcr compiitcr systciris running conventional opcrating
systems. Otlicr disk volumcs contain a VAX sccurity kerncl
filc structurc and are callcd VAX security kernel volumes.
These voluincs must not be directly acccsscd by a VMOS
or exchangcd with othcr systems, as an untrusted subject
could subvert the kernel’s file systcrri or read information to
which it was not cntitlcd. The VAX security kcrncl does not
providc trustcd tape volumes; all tapc volumes are cxcliangc-
ablc.

VAX security kcrncl VO~UIIICS contain VAX security kernel
filcs that arc organizcd as a flat file systcm. VAX sccurity
kernel filcs are used for a varicty of purposcs in the systcm
and arc considercd objccts by the TCB. Onc use for VAX
security kcrncl filcs is to hold long-term systcm databascs
such as the andit log and the authorization filc. Thcsc filcs
arc considcrcd part of thc TCB and, with the exception of thc
audit log, crror log and crash dump filcs, cannot be dircctly
rcfercnccd by virtual machines.

Anothcr use of VAX security kcrncl filcs is to crcatc vir-
tual disk volumes, loosely analogous to mini-disks iii IBM’s
VM/370 [23, pp. 549 -5631. Mini-disks allow a physical disk
to bc partitioncd, so that onc nced not dcdicate an cntirc
physical disk to a sinal1 virtual machine that only rcquircs a
small amount of disk spacc. Such virtual disks may contain
tlic filc structurc of somc VMOS, such as a VMS filr struc-
turc or an ULTR.IX 32 filc structurc. Howevcr, thc VMM
dcals with virtual disks only as a wliolc. Thc contcnts of a
virtual disk arc all part of a singlc objcct as far as thc VMM
i s conccrncd.

3.5 Access Classes
The VAX sccurity kcrnrl cnforccs mandatory controls, as rc-
qiiircd of all A1 systcms. Both secrecy and integrity modcls

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

are supported, based on the work of Bell and LaPadula 121
and of Biba [4], respectively. To implement mandatory con-
trols, each kernel subject and kernel object is assigned a
sensitivity label, called an access class.5 An access class
consists of two components, a secrecy class and an integrity
class. These components are each further divided into a level
and a category set. A secrecy level is a hicrarchical classifi-
cation. The secrecy category set is the set of non-hierarchical
secrecy categories that represents the sensitivity of the ac-
cess class. The integrity level and integrity category sct are
defined analogously. For compatibility with VMS SES [5],
the kcrnel supports 256 secrecy lcvels, 256 integrity levels,
64 secrecy categorics, and 64 integrity categories.

Given the complex structure of access classes, two dcfini-
tions must be carefully constructed:

Definition 1 An access class A is equal to an access class
B if and only if:

The secrecy level of A is equal to the secrecy level of B,

The secrecy category set of A is equal to the secrecy
category set of B,

The integrity level o f A is equal to the integrity level of
B, and

The integrity category set of A is equal to the integrity
category set of B.

Definition 2 An access class A dominates an access class
B if and only if:

The secrecy level of A is greater than or equal to the
secrecy level of B,

The secrecy category set of A is an improper superset of
the secrecy category set of B,

The integrity level of A is less than or equal to the
integrity level of B, and

The integrity category set of A is an improper subset of
the integrity category set of B.

The secrecy and integrity modcls define that a subjcct
may reference an object depending on the access classes of
the subject and object and on the type of reference. A sub-
ject may read from an object only if the subject’s access class
dominates the access class of the object. A subject may write
to an object only if the object’s access class dominates the
access class of the subject.‘ Thus, for example, a virtual
machine may mount for read-write access an exchangeable
volume only if the VM’s access class is equal to that of the
volume. However, the VM may mount for read-only access
any exchangeable volume where the VM’s access class dom-
inates that of the volume.

3.6 Privileges
System managers, security managcrs, and operators gain
their powers by having privileges. The privileges allow great
flexibility in the assignmcnt of powers and rcsponsibilitics,
including a measure of two-person control and separation of
duties. Privileges restrict access beyond the protections pro-
vided by mandatory and discretionary access controls. A
privileged user cannot see data that would be otherwise in-
accessible. Only the downgrading privileges allow bypassing
of access controls, and the use of those privilcges is audited.

Most privileges can be exercised only through the trustcd
path and are called user privileges. (Sec Table 1.) Two
privileges can be exercised by virtual machines and are called
virtual-machine privileges. (See Table 2.)

3.7 Layered Design
The VAX security kernel has been implemented following the
strict levels of abstraction approach originally used by Dijk-
stra [8] in the THE system. Janson [15] developed thc use of
levels of abstraction in security kernel design as a mcans of
rcducing complexity and providing precise and undcrstand-
able specifications. Each layer of the design implcments some
abstraction in part by making calls on lower layers. In no
caw does a lowcr layer invoke or depend upon highcr layer
abstractions. By making lowcr layers unaware of higher ab-
stractions, we reduce the total number of interactions in the
system and thereby reduce the overall complexity. Further-
more, each laycr can be tested in isolation from all higher
layers, allowing debugging to proceed in an orderly fashion,
rather than haphazardly throughout the system. This type
of layering is called out in thc requirements for B3 and A1
systems when the NCSC evaluation criteria [7, p. 381 state
that, “The TCB shall incorporate significant use of layering,
abstraction and data hiding. Significant system engineering
shall be directed toward minimizing the complexity of the
TCB . . . ”

The laycrcd design of the VAX security kerncl was bascd
heavily on thc Multics kerncl design work of Janson [15] and
Reed [28] and to a lesser extent on the Naval Postgraduate
School kerncl design [6]. Figure 3 shows a diagram of the
layers of the VAX security kerncl. The arrows in the diagram
indicate how each layer functionally depends on the abstract
machine created by lower layers.

Each layer adds specific functions within the security ker-
nel, such that at the security pcrimeter, the secrecy and
integrity modcls are enforced. The kernel itself is process
structured, as described in the summary of the various lay-
ers. Unlike many other kernels, all of the trusted processes
run within the security perimetcr and are included in the
formal specifications described in Section 5.4.

‘Some objects, such as terminal lines, may be assigned a range of
access classes.

61n general, write access is even further restricted; a subject may
write to an object only if the subject’s and object’s acccm classes are
equal. This disallows blind writes to an object that cannot be read.

HIH The Hardware-Interrupt Handler layer is immediately
above the physical VAX hardware and modificd mi-
crocode. It contains the interrupt handlcrs for the vari-
ous I/O controllers and certain CPU-specific code.

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

Privilege

Privilege
OPERATE

SET-ACL

CLASSIFY-DEVICE

CLASSIFY-SUBJECT

Powers

Dismount volumes; activate and deactivate other virtual machines; set
login limits

Change any object's ACL, if access class permits

CLASSIFY-VOLUME

DELETE-AUDIT
DOWNGRADE-SECRECY

DOWNGRADE-SECRECY-NO INSPECT
ENABLE-DEBUGGER

OPERATE
REGISTER

SET-AUDIT

SET-COVERT-CHANNEL-DEFENSE
SET-FILE

SET-PASSWORD

UPGRADE-INTEGRITY
UPGRADE-INTEGRITY-NOINSPECT

Powers

Assign access classes to 1/0 devices and privileges to terminals

Assign access classes and privileges to subjects; name levels and
categories

Register and assign access classes to volumes

Delete audit data
Downgrade secrecy of text after human inspection

Downgrade secrecy of data without inspection
Enable untrusted kernel debugger

Mount volumes, change printer paper, boot and shutdown system
Register and change non-security attributes of devices, virtual
machines, and users
Control audit log and real-time alarms

Enable or disable covert channel defenses
Create, delete, or copy kernel files
Change users' passwords and password parameters

Upgrade integrity of text after human inspection
Upgrade integrity of data without inspection

Table 1: User Privilegcs

Table 2: Virtual Machinc Privilegcs

LLS The Lower-Level Scheduler is based strongly on Rccd's
two-level schcdulcr design [28]. It creates the abstrac-
tions of levcl one virtual proccssors (vpls) that are the
basic unit of schcdnling for thc system. The LLS sup-
ports symmetric multiprocessing by binding and un-
binding real CPUs to individual vpls. As shown in
Figure 4, there are thrcc kinds of vpls: dedicated vpls
that typically contain device drivers, bindable vpls that
can be bound to dedicated vp2s by the higticr level
scheduler, and addressable vpls that can be bound to
bindable vp2s ant1 thereby to virtual machines. Vpls
are intcndcd to be very incxpcnsivc proccsscs for usc
within the kerncl. Only addrcssablc vpls have full ad-
dress spaccs; all other vpls run out of the global addrcss
space of the kcrnel. Thus, thc lower-levcl schcdulcr can
context switch in and out of most vpls by nierely sav-
ing rcgisters and switching stack pointcrs. Thc lowcr-
level schcduler also implements eventcounts 1291 as the
ba.sic synchronization mcchanisrn of the kcrncl. Evcnt-
counts can be awaited or adva.nced in the normal way,
o r a processor in terrupt can bc tied to an eventcount,
such that a VM can be interruptcd whcn an cvcntcount
has rcachcd a particular value. This proccssor intcrrupt

nicchanisIn providcs upward transfers of control that are
otherwise forbiddcn in the kerncl. Proccssor intcrrupts
arc only delivcrcd whcn the CPU is executing outsidc
the security kcrncl.

10s Tlic 1/0 scrviccs laycr implcmcnts dcvicc drivrrs that
control the real I /O dcviccs. The current version sup-
ports only directly conncctcd terminals and storitgc dc-
vices.

VMP Thc VM physical nicmory laycr managcs real physi-
cal memory, and assigns it to virtual machincs.

VMV Thc VM virtual mcmory laycr implcmcnts thc
sha.dow page tables necdcd to support virtual riicmory
in the virtual niachincs.' VMV implements a primary-
nicmory only stratcgy, rcquiring that all the physical
nicmory that a virtual machine secs bc physicillly rcs-
idcnt when that virtual machinc is active. Wliilc this
technique limits the nuruber of siniultancously active

7Sliadow page tables are created by a VMM, because thc pliysical
addresses in page table cntrics must be relocated. Sliadow pagr ta-
blcs arc described in detail by Madnick aiid Donovan (23, Scction 9-51.
Shadow page tables are also where ring compression occurs.

8

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

Users

secure Vlrtual 1 Server I vm

I Handlers I

VAX
Hardware

Figure 3: VAX Security Kerncl Layers

virtual machines to the iiumbcr that can fit into physi-
cal nicmory simultaneously, it significantly reduccs kcr-
ncl complcxity by eiiminating the need for a dcmand-
paging mcchanism in the kcrnel. It also climinatcs the
phcnomcnon of double paging that is oftcn sccn in other
VMMs, whcrc tlic dcmand paging mechanisms of thc
VMM and of the VMOS can thrash against one an-
other, leading to scrious performancc dcgradation. In
thc VMM security kcrncl, the virtual machines are al-
located a fixed amount of physical nicmory and do all
thcir own paging.

HLS The IIighcr-Lcvcl Scheduler is also bascd on Rccd's
two-levcl schcdulcr [28]. Uiilikc Rccd's dcsign, our
higher-lcvcl schedulcr is cxtrcmcly simple bccausc it
docs not nccd to schcdule acccss to primary nicmory.
The HLS does creatc the abstraction of lcvel-two virtual
processors (vp2s). There are two kinds of vp2s: dedi-
m t e d vp2s that are used primarily by the SSVR laycr
described bclow and bindable vp2s that arc uscd for vir-
tual machincs. Figure 4 shows the relationships bctwccn
vpls and vp2s.

AUD Tlic auditing laycr providcs the facilities for sccurity
auditing and sccurity alarms. It is described in dctail in
a companion papcr [31].

F l l F The Filcs~ 11 Filcs layer implcments a subsct of tlie
ODS 2 file systcni that is also uscd in thc VMS op-
crating systcm.' Tlic most significant restrictions on
the VAX sccurity kernel implcnientation of ODS -2 are
that all filcs must bc prc-allocated and contiguous. This
reduces kernel complexity by climinating the need for
dynamic file cxtcnsions. F l l F implcmcnts ODS 2 filcs
only as a flat filc systcm.

VOL The Volumes laycr implements VAX sccurity kcrncl
and cxchangcablc volumcs and providcs rcgistrics of all
subjccts and objects. Thcsc rcgistrics are much simplcr
than ODS 2 directorics.

VTerm Tlic Virtual Tcrminals laycr implcmcnts virtual tcr-
minds for each virtual machinc, and manages thc pliysi-
cal terminal lines. Each iiscr may have multiple scssions
conncctcd to diffcrcnt virtual machines, and VTcrm pro-
vidcs the session managcnicnt functions, as described
in Section 4.1. VTcrm also implcmcnts asynchronous
network lincs to allow virtual machincs to connect to
single-a.ccess-class networks via spccially dcdicatcd tcr-
mina1 lincs. The current version of the systcm has no
support for higher-speed network connections.

VPrint Thc Virtual Printers laycr implements virtual print-
crs for each virtual machine and multiplcxcs the real
physical printers among the virtual printers. It providcs
top and bottom labeling, as well as trusted banner pagcs
to dcliniit listings of different access classes and diffcrcnt
VMs.

'A bricf summary of the Filcs 11 ODS 2 structure can bc found in
the appendices of [35].

9

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

KI The Kerncl Interfacc layer implements virtual controllcrs
for the various virtual 1 / 0 devices and the security
function controller, which implements such functions as
loading virtual disks into virtual drives.

VVAX The Virtual VAX layer completes the virtualieation
process by emulating sensitive instructions, delivering
exceptions and interrupts to the virtual machine, etc.

SSVR The Secure Server layer implements the trusted path
for the security kernel, logs users in and out, and pro-
vides security-related administrative functions. There
is a dedicated vp2 for each tcrminal line to provide a
Server process for each logged in user.

VMOS The VMOS layer is the virtual machine's operating
system.

USERS The users in Figure 3 include both the untrusted
applications programs that run on top of the VMOS,
and the human beings who communicate directly with
the secure server via the trusted path.

Figure 4: Level One and Level Two Virtual Proccssors

3.8 Software Engineering Issues
A number of interesting software engincering issues arose
during the development of the VAX security kerncl. While
space does not permit discussing all of them, this section
highlights a few of the most significant.

3.8.1 Programming Language Choice

Perhaps the most critical software engineering issue in the
VAX security kernel design was the choice of a programming

language. From the problenis that KSOS 11 had with its
choice of compilcrs [3, 251, i t was clear that wc ncedcd high
quality compilers to dcvclop our sccurity kcrncl. Whilc we
wanted as strongly-typcd a languagc as possiblc, it was much
more critical that the conipilcr correctly compilc very large
programs, produce high quality VAX object codc, and bc
supported by an organization that could quickly rcspond to
any problems wc might find.

At the timc the VAX security kcrncl prototypc effort be-
gan, thcre were only a sniall riumbcr of systcms prograni-
ming languages available for thc VAX architccturc: BLISS
32, PL/I-, PASCAL, and C. BLISS 32 was rejected bccausc
of its lack of data typing facilities. PASCAL was rcjcctcd
because the V2.0 compiler that gencrated high quality codc
was not yet availa.ble. This left PL/I and C, both of which
used the samc good quality codc gcncrator. Wc chosc PL/I
because of its slightly better data typing support, bccausc
of its bettcr support for charactcr string manipulation, and
bccausc tlic first prototypc dcvclopcrs had cxtcnsivc prior
cxpericnce in coding operating systcms in PL/I.

We were not happy with the choice of PL/I because its
data types wcre not strongly enforced. When thc high qual-
ity V2.0 PASCAL compiler became available, wc began writ-
ing ncw codc for the kernel in PASCAL. PASCAL providcs
much strongcr data.-typc chccking than PL/I, and thc VAX
calling standard made inter-languagc calls casy to iiriplc-
nicnt.

Higher-lcvcl languagc compilcrs cannot gcncratc optimal
code for all programs. Thcrcforc, we found it ncccssary
to implcnicnt those rnodulcs that actual nicasurcrnciits had
shown to be pcrforrnaricc-critical in the MACRO 32 asscm-
bly languagc. Tablc 3 shows how much cotlc was writtcn in
cach of the languagcs for cadi layer of tlic k c " d 9 Thc table
shows the nuniber of cxccutablc so~irce codc statcmciits (cx-
cluding comincnts, dcclarations, and white space) arid pcr-
hyer and per-language totals.

In rctrospcct, tlic use of both PL/I and PASCAL has led
to ccrtain difficulties. Softwarc cngincers must bc traincd
in both langua.gcs, and sonic kcrncl bugs havc rcsultcd froni
mjsundcrstandirigs of how to pass paraincters from onc lam
gua,gc to the othcr. Futurc seciirity kcrncl dcvclopcrs would
do wcll to choosc one systcms programniing 1aiigua.gc and
stick to it.

3.8.2 Coding Strategies

A nunibcr of cotling stratcgics provcd very uscfiil in thc tlc-
vclopincnt of tlic VAX sccurity kcrncl. For cxamplc, wc
avoidcd all use of global pools within thc kcrncl to mini-
mize thc possibility of stora.gc channels. Thc maxiniuin sizc
of data structures is dctcrmincd at systcm boot timc (bascd

Q'Tabl~ 3 inclridcs a numbcr of cntrirs that arc riot shown in the
layer diagram in Figrirc 3 Tliesr layers, COMMON, P M M , SVSDOO,
VMMDOOT, and VMMLID providc ccrtain booting and ruiitirnr l i -
brary support fiinctions The normal riintime librarirs for the PL/ I
and PASCAL langiiages arc not linkcd into the kernel bcmiisc t h y
would have added a large amount of code that would riccd to br eval-
uatcd and placcd riridrr configuration control

10

~

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

4 Human Interfaces
Layer

VVAX
SSVR
KI
VPRINT
VTERM
VOL
Fl1F
AUD
HLS
VMV
VRP
10s
LLS
HIH

COMMON
PKM
SVSBOO
VMMBOOT
VMMLIB
Total

HACRO
3371

0
10
0
0
0
0
0
0

129
0
0

1289
815

244
0

2541
55

3021
11475

?ASCAL
1502
6876
3354
1455
1419
2553
2962
543
0
0
0

4725
13

2393

0
0

734
213
503

29245

-
PL/ I -

0
330
0
0
0
0
0
0

430
1069
352
0

3839
174

0
176
0

430
1265
8065
-
-

-
Tot a1 -
4873
7206
3364
1455
1419
2553
2962
543
430
1198
352
4725
5141
3382

244
176
3275
698
4789
48785
-
-

Table 3: Executable Statements per Layer

on system generation parametcrs), and memory is allocated
for that maximum size during kernel initialization.

Differcnt sections of memory within the kerncl are sep-
arated by no-access guard pages to detcct run-away array
or string refcrences. Unused memory is set to all ones to
increase the chance of dctccting the use of uninitialized vari-
ables because zeros are less likcly to generate exceptions.

The layers of the kernel are coded defensively with sanity
checks to protect each layer from higher layers. If irregulari-
ties are detected, the system crashes to avoid the possibility
of a security compromise. These sanity checks were devised
to aid in the debugging of the kcrncl and do not themselvcs
provide security assurance mechanisms. However, many of
the checks remain enabled in the finished kernel to help de-
tect any remaining bugs.

The actions of a user or a virtual machine cannot crash the
kernel. They can cause error messages, exception conditions
raised in the virtual machine, or in extreme cases, the halting
of an offending subject.

Since the entire TCB runs in kernel mode, there are
no hardware-enforced firewalls between layers. HOWCVCI,
the layering methodology forbids lower layers from calling
higher layers. To help us spot layer violations, we ap-
plied both automatic and manual techniques. Using the fea-
tures of the VAX DEC/Module Management System (VAX
DEC/MMS) and the VAX DEC/Code Management Systems
(VAX DEC/CMS), we were able to isolate all dependencies
of a layer on other layers. By visual inspection, we could
immediately spot upward references. In fact during dcvelop-
ment, we did dctect and fix several such occurrences.

High-security systems have developed a reputation for being
hard to use, primarily due to their limited user interfaces. We
believe that it is essential that a human interface meet the
expectations of today’s commercial computer users. How-
ever, we faced the same obstacles faced by other developers
of high-security systems:

0 Development resources are limited and satisfying the A1
criteria takes precedence over all other efforts.

0 The kerncl must be small and verifiable. Uscr interface
features, such as a sophisticated command parser, are
large and often difficult to vcrify. Conscquently, an in-
terface built entirely on trusted code cannot match the
usability of an interface built on untrustcd code.

We overcame these obstacles by creating two separate
command sets: the Secure Server commands and the SE-
CURE commands. The Secure Server commands are imple-
mented entirely in trusted code. The administrative com-
mands, the SECURE commands, are parsed in the VMS
and ULTRIX 32 operating systems. With this approach,
we reduce the amount of trusted code and gain the well-
developed command intcrfaces of thcsc mature commcrcial
operating systcms. SECURE commands are normally only
issued by the system manager, the security nianagcr, thc op-
erators, and the auditors, although ordinary users may need
to issue a few of them at times. By contrast, all users must
issue some Secure Server commands to login and connect to
virtual machines.

4.1 Secure Server Commands
The Secure Server is the user’s direct interface to the kcrncl.
A user invokes a trusted path to thc Secure Server by pressing
the Secure Attention Key. This key operates at all timcs and
cannot be intercepted by untrustcd wde. We have chosen
the BREAK key to be the Secure Attcntion Key.

The Secure Server’s commands control tcrminal connec-
tions to virtual machines in the same way that a terminal
server controls tcrminal connections to physical machines,
using commands such as: CONNECT, DISCONNECT, RESUME,
and SHOW SESSIONS. A user can create sessions with several
virtual machines at different access classes and can quickly
switch from one to another.

The intcrface for the Secure Server commands is built en-
tirely in trusted code and offers only minimal command-line
editing functions.

4.2 SECURE Commands
The tools for managing the system arc thc SECURE com-
mands. The SECURE commands and utilitics are im-
plemented just as are other commands in the VMS and
ULTRIX 32 command languages, except that they issue kcr-
ne1 calls to do thcir work. The complcte sct of SECURE

11

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

commands and utilities is installed in the VMS operating
system. A subset of the SECURE commands is offered by
the ULTRIX-32 operating system.

The SECURE commands, unlike the Secure Server com-
mands, are parsed by the VMS and ULTRIX 32 command
language interpreters. The user can take advantage of such
features as command-line recall arid command procedures.

Thcre are two types of SECURE commands: VM
SECURE commands and User SECURE commands. Both
typcs of SECURE commands arc issued from the VM’s
opcrating-systcm command lcvcl. VM SECURE commands
are executed in the contcxt of tlic issuing VM. User SECURE
commands are submitted to thc Sccure Server for cxccution.
The commands are distinguished by the type of subject, a
uscr or a virtual machine, that holds the access class and
privileges ncccssary to issue thc command.

SECURE Utility
Authorize

Registcr/Dcvicc
Regis ter/Volume

Sysgcn
Crash Dump Analyzcr

4.3 Command Confirmation
While both the User and VM SECURE commands are ad-
ministrativc commands, only the User SECURE commands
must be trusted. For such sccurity-relevant commands, we
require A1 assurance that:

Purpose
Registers users and virtual
machines, etc.
R.egist.cn I/O deviccs.
Registers disk and tapc
volumes.
Sets limits on system rcsourccs.
Provides data for detcrniiiiing
the cause of a systcm crash.

The command was issucd by a uscr and not by a Trojan
horsc in a VM.

The command received by the Sccure Scrvcr is exactly
the same command typed by the uscr and not a com-
mand that was covertly modificd by a Trojan horsc.

Thc user who issued thc command can be identified in
the andit log.

Our design for the User SECURE commands providcs
both trust and individuality accountability even for com-
mands issued from an untrustcd environmcnt. Upon receipt
of a valid User SECURE command, the VM instructs the
user to press SECURE ATTENTION. This kcy invokes a
trusted path bctwcen the mer’s terminal and thc Secure
Scrvcr. A SECURE ATTENTION signal can bc scnt to thc
Secure Server only by manually pressing the BREAK key.
This prevents a Trojan horsc from complcting the execution
of a User SECURE command.

To prevent a VM from spoofing thc user by passing a dif-
fercnt command from what thc user typed, the Secnrc Scrvcr
displays the action that will be taken by thc command and
prompts the user to approvc or reject thc operation. Figure 5
is an abbreviated examplc of a User SECURE command is-
sued from a VMS virtual machinc. Resum,in,g indicates that
control of thc terminal will bc returned to thc virtual ma-
chine.

4.4 SECURE Utilities
Managing thc VMM security kernel rcquires a number of
utilities. Our SECURE iitilitics are modeled after VMS util-
ities and are summarized in Table 4.

$ SECURE DELETE TLS:STATUS.RPT
P r e s s SECURE ATTENTION t o complete

execut ion of t h i s command.
User presses SECURE ATTENTION to establish a

trusted path.
Delete VAX s e c u r i t y ke rne l f i l e

TLS:STATUS.RPT

Confirmation [Yes o r No] : Y

VMM: F i l e d e l e t e d
Resuming . . .

Figure 5: Example of a User SECURE command

Table 4: SECURE Utilitics

4.5 Reclassifying Information

Users can be pcrmitted to changc thc acccss class of the
contents of a VAX security kernel file or an excliaiigea.ble
voluinc with thc SECURE R.ECLASSIFY command. This
command copics the contents of a kcrncl filc or volumc to an
cxisting kernel file or volume labclcd with a different, access
class. The source and dcstination objects must lic within thc
user’s access-class range. In addition, privilcges are rcqnircd
if thc reclassification downgrades the data’s sccrccy class or
upgrades its integrity class.

Reclassification normally rcqnircs trusted inspection by
thc iiscr. Inspection is requircd to be sure that a Trojan
horsc has not inserted additional information that the user
did not intend to reclassify. To make inspcction easier, tlic
uscr can opt to print the VAX security kcrncl filc or display
the file on the tcrrninal, one scrccn at a time. Oncc thc
complete filc is printed or displayed, the uscr is promptcd
to approve the reclassification. To prevent the covcrt pass-
ing of information from the source filc to thc target filc in
the form of invisiblc cscape scqucnces, inspected filcs must
contain only printing charactcrs, spaces, and form fccds. A
line rr1a.y not cnd with a space because a trailing space would
bc invisible. The reclassification is terminatcd if any illcgal
chaaactcr is encountered.

12

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

http://R.egist.cn

5 Assurance

The principal reason for building an A1 security kernel is to
provide a high degree of assurance that the security features
of the system actually work correctly. This section describes
some of the techniques that we have used in the VAX se-
curity kernel to provide the necessary assurance of security,
to meet both the requirements of an A1 evaluation and the
requirements of real-world users. I t is this integration of
both A1 requirements and real-world requirements that is
of particular research interest, as previous security kernels
have not succeeded at integrating the A1 requirements with
good performance and compatibility with large amounts of
existing commercial software.

Gasser [lo, p. 1631 describes Honeywell's STOP kernel for
the SCOMP [9] and Gemini Computers' GEMSOS [32] as
commercial-grade security kernels. However, STOP does
not provide software compatibility with existing operating
systems, and GEMSOS to date has only been used in spe-
cialized environments. Shockley, Tao, and Thompson [32)
report that research is under way to provide both UNIX
and MS-DOS environments for GEMSOS, but it is not clear
whether those environments are yet working. If Gemini suc-
ceeds in providing both UNIX and MS-DOS environments
in GEMSOS, they will have succeeded at integrating A1 re-
quirements with real-world requirements. The VAX security
kernel supports both the VMS and ULTRIX 32 operating
systems with their layered applications today.

5.1 Design and Code Changes

Every change to our code undergoes both design and code re-
view, regardless of whether the code is trusted or untrusted,
or whether it is a whole new layer or a bug fix. Design
reviews for even the smallest fixes ensure that system-wide
effects are considered. Each layer has an owner, who partici-
pates in the design review, and is responsible for the quality
of that layer. Each code change is reviewed both in the con-
text of its own layer and in the contexts of its calling and
called layers, so as to catch inter-layer problems.

Reviewers learn from the code they review, as well as shar-
ing their knowledge through review comments. Reviewers
address readability and clarity, security, performance, ele-
gance and adherence to guidelines. Much like access con-
trols, design and code guidelines are either mandatory or
discretionary. Mandatory guidelines are based on prior expe-
rience in security kernel developments. Discretionary gnide-
lines are used to avoid well-known traps in the programming
language, and to produce consistent, readable code. This
consistency makes i t easicr for an engineer to pick up and
debug in a new area, reducing engineering costs and time.

The code review results, along with the design and test
plan, are publicized for the entire group to check. This prac-
tice provides a last review of the entire change by a large
audience. Code review results can also serve as cxamplcs
from which engineers can learn good coding practices.

The development team makes extensive use of VAX Notes
online conferences to publicize design and coding guidelines,
to discuss specific design issues, to track bug reports, and
to record and publicize the results of the above-mentioned
design and code reviews.

Each coding task is integrated with the current working
system as soon as it is complete. This integration always
produces a working system. (See Section 5.3.) Continual and
incremental integration avoids major unexpected failures by
identifying design and/or coding errors as soon as possible.

5.2 Development Environment
As mentioned in Section 2, we have been developing the VAX
security kerncl on a VAX security kernel system. Thus, our
group does its daily work on a system designed to meet A1
security requirements, using most of its features and con-
trols. Our VMs run at meaningful access classes. Different
versions of the kernel are niaintained on different VMs to
keep orthogonal tasks from impinging on each other. We also
use VMs for developing and testing the untrusted code that
must run in the VMS and ULTRIX- 32 operating systems.
We have separated the roles of our own system manager and
security manager, as recommended in the NCSC Evaluation
Criteria [7].

The CPU and console of the development machine are
kept inside a lab that only members of the VAX security
kernel development group can enter. Within that lab, the
development machine is protected by a cage, which consists
of another room with a locked door. Physical access to both
the lab and to the cage within the lab is controlled by a
key-card security system. Finally, our development machine
is not yet connected to Digital's internal computer network,
to minimize the external threat to our development cnviron-
ment and our project.

5.3 Testing
Intcgrating a coding task requires that a developer run a
standard regression test suite. Integration occurs usually at
least once a week, and as often as twice a day.'" This regrcs-
sion suite consists of two portions: layer tests and KCALL
tests. Layer tests are linked directly into the kerncl, and
test layer interfaces and internal routines by calling them di-
rectly and checking their outcome. KCALL tests rim in a
VM, issuing legal, illcgal, and malformed requests, to chcck
the VM interface.

A separate suite of tests, issued via the VAX DEC/Tcst
Managcr (DTM), is run once every two weeks to test the user
command interface. These tests currently run for 30 hours.
They consist of commands that are successful, commands
that produce errors, and commands that send malformcd
packets to the SSVR layer. DTM checks both the results of
each command and the displays it produces.

We also run the standard VAX architccturc cxcrciscr
(AXE) that verifies that a particular CPU corrcctly iniplc-

'"Dcvelopers of course run individual tests prior to integration.

13

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

ments a VAX computer. We run AXE to test the VAX
virtualixation, described in Section 3.2. AXE tests werc run
extensively during the development of the CPU microcode
extensions and the VVAX layer. They will be run again
when the kernel reaches final complction.

We are currently dcveloping test plans for fully exercising
all of the access control decisions and other security-relevant
checks made by the system and for system-penetration test-
ing. Some of these new tests will be developed from scratch,
and some will be based on the formal specifications,

5.4 Formal Methods
The requirements for an A1 security cvaluation state that a
formal security policy modcl must be written, that a formal
top-lcvel specification (FTLS) of the system dcsign must be
written and proven to satisfy the security policy model, that
the system implcmcntation must be informally shown to be
consistent with the FTLS, and that formal methods must
be used in covert channel analysis of the system. The FTLS
must accurately model system external intcrfaces, extcrnally
visible behavior, and security-relcvant actions. A dcscriptive
top-lcvel specification (DTLS) is also rcquircd as a complcte
natural language description of the system.

We use the Formal Development Mcthodology (FDM)
specification and verification system 1191 to help meet these
requirements. We arc writing both our security policy modcl
(which consists of critcria and constraints and the top-levcl
specification (TLS) of the various transforms) and our FTLS
in the FDM specification language, Ina Jo. We are using
the FDM interactive thcorem prover (ITP) to show that thc
TLS obeys the policy and that the FTLS maps to the TLS.
The DTLS consists of our intcrnal design documcntation,
plus some special glue documents that tic the DTLS and the
FTLS together, particularly dcscribing areas of the kcrncl
that are not formally modcled in thc FTLS.

Table 3 shows the number of executable statements in the
sccurity kcrncl. For comparison, table 5 shows an cstimatc
of the total number of lincs of Ina Jo (commcnts excluded)
and the number of lines of transforms (declarations excluded)
required to specify that kernel. The numbers are estimates
because the FTLS is not yct complete. The totals show that
the number of lines of transforms are about one sixth of the
number of executable statemcnts in the sccurity kcrncl.

FTLS 11758 8410
Total 12408 8704

Table 5: Lines of Formal Specifications

We are doing a formal covert channel analysis using a new
tcchniquc for automating the Shared-Resourcc Matrix ap-
proach [20] using code-level flow analysis tools.

Formal methods do not makc thc system secure by thcm-
selves. Successful proof that our specifications mcet sccurity
policy does not guarantee that thcre are no lurking imple-
mentation bugs. However, thc use of formal mcthods sig-
nificantly improves thc overall quality of the security ker-
nel. Whcn combined with thc inforind testing procedures of
Section 5.3, thc use of formal methods improves thc assur-
ance that thc sccurity featurcs arc cffcctive. Indccd, the vcry
act of formally specifying the sccurity kerncl in Ina J o has
already dctcctcd scvcral kcrncl bugs, both bccause of con-
straints imposcd by proof procedurcs, and because the pro-
cess of codc corrcspondcncc provides a thorough method for
reviewing the TCB code and inforind design specifications.
The separation of duties bctwccn the softwarc cnginrcr and
the vcrificr, by itself, providcs valuable extra assurancc, evcn
if no proofs wcrc cvcr done.

5.5 Configuration Control
Wc maintain strict configuration control on many itcms, in-
cluding dcsign documcnts, trustcd kernel codc, tcst suites,
user documcnts, and vcrification documcnts. All of our code
is maintained undcr the VAX DEC/Code Management Sys-
tem (CMS) to maintain a history of cach change to cach
module. Sccurity rcvicws chcck cach item against the specific
NCSC critcria rcquircnicnts (71 it fulfills and chcck among
thc itcms for internal corisistcncy. Itcms that have been re-
viewed are storcd on a mastcr pack that is physically pro-
tcctcd a,gairist modification.

Our hardwarc, firmware, and softwarc devclopmcnt tools
are devclopcd by othcr groups within the corporation. We
review hardware and firmware ECOs, prior to supporting
thcm in the VAX sccurity kcrncl. NCW vcrsions of software
development tools arc testcd on a stand-alone laboratory sys-
tem prior to use on the kernel dcvelopmcnt machinc. Wc usc
only thc standard, released vcrsions of software dcvelopmcnt
tools, thc samc versions that have bccn checked out for ship-
ment to our customers. With rare cxccptions, no ficld-test
versions arc pcrnii t tcd on the kernel dcvclopment machine.

5.6 Trusted Distribution
The end uscr of a security kernel must have somc assurancc
that no one has tampered with or substituted countcrfeit
copics of the hardware and software that make up the system.
Hardware and software have different trustcd distribution
requirements.

5.6.1 Hardware Trusted Distribution

To assure that the hardware systems would arrive at the
customer’s site meeting the trusted distribution criteria, we
have devcloped a security-seal program. If someonc tam-
pered with the seal, evidence would be providcd of the at-
tempted entry. A locking dcvice would combine with thc se-
curity scaling procedures to ensure a trusted shipment. Full
individual accountability would be providcd, including logs
of the dclivery.

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

5.6.2 Software Trusted Distribution

Installation of an A1 system involvcs achieving a trustcd
state. The steps to do this on VAX 8800 hardware are coin-
plex. The console processor software and CPU microcode
must be installed and cryptographically checksummed with
stand-alone software to detect any possible tampering. If a
secure site loses its trusted state for any reason, they must re-
install the console software and the CPU microcode. Trusted
state could be lost just by running an untrusted operating
system or hardware diagnostics on the system.

Next, the trusted code is installed via untrusted code
(VMS) and the result is cryptographically checksummed to
verify that the untrusted code has not tampered with the
trusted code. The result of the checksum is checked against
a message authentication code to verify correct installation.
The checksumming software is shipped separately from the
rest of the software, so that a single failure of the trusted dis-
tribution system could not compromise both the checksum
program and the authentication code.

For software, there would also be an option of using trusted
couriers instead of the separate delivery paths.

6 Production-Quality Kernels
A production-quality security kernel is designed to protect
and ensure the quality of real-world information. This sec-
tion describes some of thc differences between research and
production-quality security kernels that are required to meet
general user requirements, as well as to satisfy the NCSC cri-
teria for an A1 operating system.

6.1 Producing the Kernel
The primary tools for creating a security kerncl are compil-
ers. Quality compilers must work for large programs, pro-
duce efficient object code, and be rcliably supported. We
sacrificed programming language elegance in favor of com-
pilers with a strong track record: the VAX PASCAL and
PL/I compilers. We maintained contact with the compiler
developers throughout the dcvelopment, and they providcd
much needcd hclp to us, including occasional changes to the
actual compiler code.

A second tool, a symbolic dcbugger/crash dunip annlyzcr,
is needcd to develop and debug the system. It would also be
needed by users and support personnel to diagnose problcms,
and by users who might wish to add functions to the kcrncl.

A production-quality security kernel must have adcquate
performance to justify its purchase in thc face of other op-
tions such as multiple separate computers or periods pro-
cessing. To help ensure attention to performance, we do our
own development work on a VAX security kernel systcm.
Performance-critical paths wcre writtcn in a high-levcl lan-
guage and then re-written in assembly language for speed.
We have meters to find performance-critical routines, and
a rudimentary performance monitor to gather statistics on
CPU and 1/0 usage.

Bug tracking mcchanisms arc needed both to satisfy NCSC
configuration management guidclincs, and to give us a means
to respond to problcms on a timely basis. They also provide
a means to check against our definition of quality: having no
security bugs and no bug that keeps production work from
running. Statistics on the number of bugs and their scvcrity
provide concrete feedback on stability.

6.2 Documentation
A real security kernel requires extensive docuincntation for
its users and for its system and sccurity managcrs. These
documents must not only mect thc content requircmcnts of
the NCSC; they must also bc clear and understandable to
both novicc and sophisticated customers. The VAX sccurity
kcrnel documcntation set consists of ninc manuals and a ref-
ercnce card. Thc manuals includc a user's guidc, guidcs to
both system security and systcm managcmcnt, a command
reference manual, both basic and advanced programmer's
manuals, an installation guide, a master indcx, and rclcase
notes. These manuals have bccn written to the samc qual-
ity standards as tlic manuals for the VMS and ULTRIX 32
operating systems.

7 Comparison with KVM/370
While the VAX sccurity kerncl supcrficially bcars a strong
rescmblancc to KVM/370, in that both systems crcatc vir-
tual machines that run at differcnt access classcs, thc intcrnal
structurcs of tlic two systcms arc vcry differcnt.

Most significantly, KVM/370 was designed as a rctrofit
to the existing VM/370 product, with a specific goal of
leaving at lcast half of the original code intact [l l] . As
a result, KVM/370 was structurcd as shown in Figure 6.
The KVM/370 security kcrnel uscd a variation on srlf-
virtualization to create a scrics of NKCPs (Non-Kerncl Con-
trol Programs), each at a distinct mandatory access class.
The NKCPs ran unmodificd VM/370 codc to crcatc niulti-
plc virtual niachincs that then ran thc CMS (Coiivcrsational
Monitor System), a singlc-user operating system dcsigncd
to run in a virtual machine. The disadvantagc of this ap-
proach is that many functions exccutcd by a virtual ma-
chine rcquircd two context switchcs, first into the NKCP
and tlicn into the security kcrncl. By comparison, VAX se-
curity kcrnel achicvcs a higher performance lcvcl by allowing
the virtual machines to communicate directly with thc sc-
curity kernel. This makes the VAX security kcrncl largcr
than the KVM/370 sccurity kerncl, but we belicve that tlic
performance gains justify thc incrcasc in sizc."

KVM/370 never implementcd support for VMOSs that
supportcd virtual mcmory. It implcmcnted demand paging
within its TCB. By contrast, the VAX sccurity kernel lcavcs
virtual mcmory support to the VMOSs. As discusscd in

"This comparison is not strictly fair to KVM/370 bccaiise tlic
KVM/370 team was requircd to maintain compatibility and a large
body of original code from VM/370, whilc the VAX security kcrncl
tcam had thc libcrty of dcsigning and coding from scratch.

15

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

Non-Kemel
Control Programs
(NKCPs)

I I

Real
Machlne I

Printa

Figure 6: KVM/370 Configuration

Section 3.7, eliminating demand paging rcduccs kcrnel com-
plexity and improves performancc at the cost of limiting thc
number of simultaneously active virtual machines.

Anothcr major diffcrcncc is that KVM/370 has a very lim-
itcd interface for system managcment and sccurity rnanagc-
mcnt functions. For example, new uscrs cannot bc addcd
during online operation. By contrast, the VAX security kcr-
ne1 offers a full complement of system and security managc-
ment tools, such as arc rcquircd in a gencral-purposc systcm.
(See Scction 4.)

Whilc pcrformance comparisons are very tricky to niakc,
thc rclativc pcrformance of the VAX security kcrncl seems
better than that of KVM/370. KVM/370 reports [ll] per-
formance rangcs from 10% to 50% of VM/370, dcpcnding
on the workload. By contrast, thc VAX security kcrncl ex-
hibits performancc ranges from 30% to 90% of VMS capacity,
again depending on the workload. Thc KVM/370 mea.sure-
mcnls were of an untuned system, while thc VAX sccurity
kcrncl measiircmcnts wcrc of a system with a limitcd amount
of tuning. The KVM/370 compa.risons wcrc to VM/370, it-
self a virtual-machine monitor with pcrformance degradation

compared to a nativc opcrating system. Thc VAX security
kernel comparisons wcrc to the nativc VMS operating sys-
tcrn. KVM/370 reportrd a niinibcr of dcsirablc performa1ic.e
optimizations that had not been donc, a,rid likcwise, wc know
of a niimbcr of optimizations that have not yrt been applied
to VAX scciirity kcrnel because of limited dcvclopmcnt rc-
sources.

8 History of the Project
The idea of a virtual-iriacliiric nionitor security kcrncl for the
VAX, siniilar in concept to KVM/370, was first conccivcd
by Paul Kargcr and Stcvc Lipncr in a Mcxican rcstaiirant in
Palo Alto, CA, immcdiatcly after thc 1981 Syniposiiim on
Security and Privacy. An initial tlcsigri study [17] c011~1iid~d
in 1982 that such a security kcrnel would be practical for thc
VAX architccturc.

The sccnrity kcrncl was initially prototypcd on a VAX-
11/730 system. Thc VAX 11/730 CPU [34] was partirularly
attract i vc bccansc i t was ver ti call y microprogr a mnird, arid
its microcode was excciitcd from a writcablc control storc

16

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

(WCS) that could be reloaded from magnetic tape cassettes.
This environment was ideal for experimenting with alternate
microcode extensions to the VAX architecture, although the
CPU itself was quite slow.

The VMS operating system first successfully booted in a
virtual machineon 19 July 1984. That version of the security
kernel was a research prototype and was not a production-
quality system. It was extremely slow (due in part to the
choice of the VAX-11/730 and in part to the initial soft-
ware design that emphasized quick development and exten-
sive self-checking, but not performance), and its user inter-
face was extremely crude.

Once the VMM security kerncl prototype was running re-
liably on the VAX-l1/730 and we had accomplished some
performance tuning (that improved system performance by
at least an order of magnitude), we then began investiga-
tion of what a production-quality version would be like. The
extensions to the VAX architecture were re-implemented on
the VAX 8800 family of CPUs to provide a high-performance
base for the system. Like the VAX-11/730, the VAX 8800
CPU [24] runs its microcode from a writeable control store
(WCS), SO modifications were possible. The VAX 8800 mi-
crocode is organized horizontally, rather than vertically, and
the microcode is pipclined, so the actual implementation of
the extensions was much more complex than for the VAX-
11/730.

Going from the research prototype to the practical version
also gave us the opportunity to revisit a number of design
decisions. In particular, the extensions to the VAX arch-
itccture to support virtualization were simplified, in part
due to the limitcd availability of microcode memory in the
VAX 8800. A performance study of the VAX security ker-
nel prototype revealed that some of our architectural exten-
sions did not provide the expectcd performance gains, while
other extensions would be more valuable. For example, the
prototype design included complex microcode assistance for
delivering exceptions and interrupts to the virtual machines,
but these microcode assists proved not to be useful, and a
much simplcr scheme was implcmentcd for the VAX 8800.
Similarly, pcrformance measuremcnts of the prototype re-
vealed that VAX opcrating systcms (and VMS in particular)
use the MTPR instruction to change thcir interrupt priority
lcvcl (IPL) much more frequently than anyone had expected.
Thcrefore, the software was changcd to optimize this particu-
lar path, and microcode assistance was considered, although
not implemented in this version.

The move to the production-quality kernel also marked
the dcvelopment of such features as user and systcm man-
agcment interfaces, auditing, and error logging. The proto-
type kernel, as a rcsearch kcrncl, had no need of such tools,
but a real A1 system must have them, so that the end uscrs
can manage and rcliably run real applications on the system.

By January 1988, the kerncl was sufficiently stable that
some engineers could begin doing their development work on
a VM. Also in January 1988, the first VAX security kerncl
was installcd outside the kcrncl dcvelopment group. That
system was installed in the European ULTRIX Engineer-

ing Group in Reading, England for porting the ULTRIX-32
operating system to a virtual machine. ULTRIX 32 first
booted in a virtual machine on 15 February 1988, only two
months after detailed design for the port began, and less
than one month after a working VAX security kernel system
was available for use in Reading.

By August 1988, VAX security kernel builds were bcing
done on virtual machines, and by early 1989, essentially all
software development work was being done on the kernel.
By Spring of 1989, the kernel was sufficiently stable that
the VAX 8800 that had been running a conventional VMS
time sharing systcm for the kernel developers was rclcased
for other purposes.

9 Conclusions

The VAX security kernel is a working, production-quality
VMM security kernel with performance sufficient to support
a large number of time-sharing uscrs. It is sufficiently fast
and stable that it supports its own development team. It
supports vast amounts of existing user software that has been
written for both the VMS and the ULTRIX-32 opcrating
systems, and it supports both operating systems running
simultaneously on the same CPU. VAX security kcrnel is
currently (as of February 1990) in the Design Analysis Phase
with the National Computer Security Center (NCSC) for an
A1 rating. As a research project in what is required to build
a practical security kernel, it has been a major success.

The development of VAX security kernel has been long
and arduous, and we have learned a number of lessons dur-
ing that time. Performance of a security kernel is extrcmely
important, and getting good performance is very hard. It
requires detailed analysis of what portions of the kernel are
performance-critical and a willingness to redesign those por-
tions for performance and possibly re-code them in assembly
language or to provide microcodc performance assistance.

Building the system twice, once as a research prototype
and once as a research study of a production-quality systcm,
was extremely valuable. The second time around, we were
able to apply some of the pcrformance lessons learncd by
adjusting our microcode assistance, and we dcvelopcd thc
user and management interfaces that are essential in a rcal
system.

Dcvcloping a system to A1 standards is very hard work.
Some of thc A1 requirements can directly conflict with per-
formancc and usability goals, and the testing and rcview
rcquiremcnts are very time consuming. Furthcrmore, the
export controls imposed on A 1 systems can seriously rcduce
the potential market for a system, making it difficult to re-
cover the costs in achieving the A1 rating. On the othcr
hand, the discipline requircd to mcct A1 requircments dcfi-
nitcly improves overall software quality and reliability.

17

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

10 Acknowledgements
A great many peoplc have bcen involvcd in making the VAX
security kernel a success, and spacc does not permit men-
tioning them all here. The VAX-l1/730 prototype was dc-
veloped by a team of Paul Karger, Andrew Mason, Clif-
ford Kahn, and Sara Thigpen. The VAX- 11/730 microcode
extensions wcre done by Timothy Leonard. Other cngi-
neers on the project have included Carol Anderson, Dennis
Argo, Mark Bokhan, David Butchart, Tom Casey, Georgette
Champagne, Ed Childs, Ron Crane, Dennis Elfstrom, John
Ferguson, Alison Gabriel-Reilly, Rumi Gonda, Ray Govotski,
Ellen Gugel, Judy Hall, Allen Hsu, Wei Hu, Les Kcndall, Bill
Kindel, Charles Lo, Marie McClintock, Jeff Mclanson, Linda
Nasman, Tai-Chun Pan, Steve Pirikoski, Tony Priborsky,
John Purretta, Dan Raizcn, Paul Robinson, Paul Sawyer,
Ken Sciden, Gabriel Shapira, Rod Shepardson, Rich Simon,
Stcve Stennett, Henry Teng, Tom Tierney, Susie Troop, and
Mary Ellen Zurko. Verification work has bcen done by Chuck
Dermody, David Ellis, Russ Marsden, Ray Modccn, David
Wittenbcrg, and John Wray with assistance from Eve Cohen,
Theresa Haley, Sue Landauer and Terry Vickers B e n d of
Trusted Information Systcms and Jcff Thomas of Aerospacc
Corporation. The technical writers have included Elena As-
chkcnasi, Doug Bonin, Elisabcth Guth, John Hurst, Bruce
Laru, and Pamela Norton. In addition, the contributions of
managcrs, supervisors, ficld test coordinators, cornpilcr writ-
ers, members of the VMS and the European ULTR.IX Engi-
neering groups, product mana.gcrs, customer service systems
engineers, marketing peoplc, operations staff, our illustrator,
and sccrctarics have all bcen critical to the project. Finally,
we must thank our team from tlic National Computer Secu-
rity Center for their participation throughout thc long de-
velopment effort and the rcfcrecs for their suggestions for
improving this paper.

References

[5] Steven Blotcky, Kevin Lynch, and Steven Lip-
ner. SE/VMS: implementing mandatory security in
VAX/VMS. In Proceedings of the gth National Com-
puter Security Conference, pages 47-54, National Bu-
reau of Standards, Gaithersburg, MD, 15 -18 Septembcr
1986.

(61 Lyle A. Cox, Jr . and Rogcr R. Schell. Thc structure of a
security kernel for a 28000 multiprocessor. In Proceed-
ings of the 1982 Symposium on Security and Privacy,
pages 124 129, IEEE Computer Society, Oakland, CA,
27-29 April 1981.

[7] Department of Defense Trusted Computer System Eval-
uation Criteria. DOD 5200.28-~STD, Department of De-
fense, Washington, DC, Dcccrnbcr 1985.

[SI E. W. Dijkstra. The structure of the THE multi-
Communications of the ACM, programming system.

11(5):341 346, May 1968.

[9] Lcster J . Fraim. SCOMP: a solution to the multilevcl
security problem. Computer, 16(7):26- 34, July 1983.

[IO] Morrie Gasser. Building a, Secure Computer Syste.n.
Van Nostrand Reinhold Company, New York, NY, 1988.

[ll] B. D. Gold, R. R. Lindc, and P. F. Cudney. KVM/370
in retrospcct. In Proceedings of th,e 1984 Sym.posium
on Security and Privacy, pagcs 13 -23, IEEE Computer
Socicty, Oakland, CA, 29 April - 2 May 1984.

[I21 B. D. Gold, R. R. Lindc, R. J . Peclcr, M. Schaefer,
J . F. Schcid, and P. D. Wa.rd. A security retrofit of
VM/370. In AFIFS Conference Proceedings, Volume
48, 1979 Nationa.1 Computer Con,ference, pages 335
344, AFIPS Prcss, Montvale, NJ, 1979.

[131 Robert P. Goldbcrg. Architectural Principles for Vir-
tual Computer Systems. Ph. D. thcsis, Division of Engi-
nccring and Applicd Physics, Harvard Univcrsity, Carn-
bridgc, MA, Fcbruary 1973. Published as ESD-TR-73-
105, HQ Electronic Systems Division, Hanscom AFB,
MA.

A Proposed Interpretastion, of th.e TCSEC for Virtual
Machine Architectures. Trustcd Information Systems,
Inc., Glenwood, MD, draft of 31 March 1989.

David E. Bell and Lmnard J . LaPadnla. C o m p t e r Se-
curity Model: Un,ified Ezposition a.nd Multics In,terpre-
ta.tion. Technical R.eport ESD T R -75 -306, The MITRE
Corporation, Bcdford, MA, HQ Electronic Systems Di-
vision, Hanscom AFB, MA, dnnc 1975.

T. A. Bcrson and G. L. Barksdalc, J r . KSOS ~~

devclopnicnt methodology for a sccurc operating sys-
tem. In AFIPS Conference Proceedings, Volume 48,
1979 Nation,al Computer Conference, pagcs 365 371,
AFIPS Prcss, Montvalc, N.7, 1979.

Icenncth J . Biba. Integrity Con,siderations for Secure
Com,puter Systems. Technical R.cport ESD T R 76 372,
The MITRE Corporation, Bedford, MA, HQ Electronic
Systems Division, Hanscom AFB, MA, April 1977.

[I41 Guide fa VMS System Secvrzfy. Order No. AA LA40B
TE. Digital Equipnicnt Corporation, Maynard, MA,
June 1989.

[151 Philippe A . Janson. U.sin.g Type Extension to Or,qanize
Virtual Memory A4echanisms. Ph. D. thcsis, Dcpart-
mcnt of Electrical Enginccring and Computer Science,
MIT/LCS/TR 167, Laboratory for Computer Science,
Massachusetts Institiitc of Technology, Cambridge, MA,
September 1976.

[IS] Paul A . Karger. Computer security research at Digi-
tal. In Proceedings of th,e Third Semin,ar on th,e DoD
C o m p t e r Security Initiative Program, pagcs E 1
6, National Bureau of Standards, Gaithersburg, MD,
18 20 November 1980.

E

18

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

[17] Paul A. Karger. Preliminary Design of a VAX-11
Virtual Machine Monitor Security Kernel. Technical
Report DEC T R - 126, Digital Equipment Corporation,
Hudson, MA, 13 January 1982.

[18] Paul A. Karger, Timothy E. Leonard, and Andrew H.
Mason. Computer With Virtual Machine Mode and
Multiple Protection Rings. United States Patent
No. 4,787,031, 22 November 1988.

[19] Richard A. Kemmerer. FDM ~ a specification and
verification methodology. In Proceedings of the Third
Seminar on the DoD Computer Security Initiative Pro-
gram, pages L- 1 ~ L 19, National Burcau of Standards,
Gaithersburg, MD, 18-20 November 1980.

[20] Richard A. Kemmcrer. A practical approach to idcnti-
fying storage and timing channcls. In Proceedings of the
1982 Symposium on Security and Privacy, pages 66-73,
IEEE Computer Society, Oakland, CA, 26 ~ 28 April
1982.

[21) Timothy E. Leonard, editor. VAX Architecture Refer-
ence Manual. Digital Press, Bcdford, MA, 1987.

[22] Stuart E. Madnick and John J . Donovan. Application
and analysis of the virtual machine approach to infor-
mation system security. In Proceedings of the ACM
SIGA RCH-SIGOPS Worhhop on Virtual Computer
Systems, pages 210 -224, Harvard University, Cam-
bridge, MA, USA, 26-27 March 1973.

[23] Stuart E. Madnick and John J. Donovan. Operating
Sy.stem.s. McGraw-Hill Book Company, New York, NY,
1974.

[24] Sudhindra N. Mishra. The VAX 8800 microarchitecture.
Digital Technical Journal, (4):20 33, February 1987.

(251 John Nagle. Update on the kcrnelixed security op-
erating system (KSOS). In Proceedings of the Third
Seminar on the DoD Computer Security Initiative Pro-
gram, pages Q-1 ~ Q-7, National Bureau of Standards,
Gaithersburg, MD, 18-20 November 1980.

[26] Gerald J. Popek and Robert P. Goldbcrg. Formal re-
quirements for virtualixable third gcncration architec-
tures. Communications of the ACM, 17(7):412-421,
July 1974.

[27] Gerald J . Popek and Charles S. Kline. The PDP-11 vir-
tual machine architecture: a case study. Operating Sys-
tems Review, 9(5):97 105, 19 21 November 1975. Pro-
ceedings of the Fifth Symposium on Operating Systems
Principles, University of Texas, Austin, TX.

[28] David P. Reed. Processor Multiplexing in a Layered
Operating System. S.M. thesis, Department of Electri-
cal Engineering and Computer Science, MIT/LCS/TR-
164, Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, July 1976.

[29] David P. Rccd and Rajendra K. Kanodia. Synchroniza-
tion with cventcounts and sequcncers. Communications
of the ACM, 22(2):115 123, February 1979.

[30] R. Rhode. Secure Multilevel Virtual Computer Systems.
Technical Report ESD-TR 74 370, The MITRE Cor-
poration, Bedford, MA, HQ Electronic Systems Divi-
sion, Hanscom AFB, MA, February 1975.

[31] Kenneth F. Sciden and Jeffrey P. Melanson. The audit-
ing facility for a VMM security kernel. In 1990 IEEE
Symposium on Research in Security and Privacy, IEEE
Computer Socicty, Oakland, CA, 7 9 May 1990.

[32] William R. Shockley, Tien F. Tao, and Michacl F.
Thompson. An overview of the GEMSOS class A1
technology and application experience. In Proceedings
of the 1 1 th National Computer Security Conference,
pages 238-245, National Bureau of Standards/National
Computer Security Center, 17- 20 October 1988.

I331 Michael Dennis Vahey. A Vzrtualizer EfJiciency Device
for Virtual Machines. M. S. thesis, University of Cali-
fornia, Los Angeles, CA, 1975.

[34] VAX~-l1 /730 Central Processing Unit Technical De-
scription. EK KA730-TD- 001, Digital Equipmcnt Cor-
poration, Maynard, MA, May 1982.

[35] VMS Analyze/Disk-Structure Utility Manual. Ordcr No.
AA LA39A-TE. Digital Equipment Corporation, May-
nard, MA, April 1988.

1361 J . Whitmore, A. Bcnsoussan, P. Grccn, D. Hunt, A.
Kobziar, and J. Stern. Design for Multics Security En-
hancements. Technical Report ESD-TR -74 176, Hon-
eywell Information Systems, Inc., HC) Electronic Sys-
tems Division, Hanscom AFB, MA, December 1973.

19

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:09 EST from IEEE Xplore. Restrictions apply.

