
THE V DISTRIBUTED SYSTEM 

The V distributed System was developed at Stanford University as ,part of 
a research project to explore issues in distributed systems. Aspects ‘of the 
design suggest important directions for the design of future operating 
systems and communication systems. 

DAVID R. CHERITON 

The V distributed system is an operating system de- 
signed for a cluster of computer workstations connected 
by a high-performance network. The system is struc- 
tured as a relatively small “distributed” kernel, a set of 
service modules, various run-time libraries and a set of 
commands, as shown in Figure 1. The kernel is distrib- 
uted in that a separate copy of the kernel executes on 
each participating network node yet the separate copies 
cooperate to provide a single system abstraction of 
processes in address spaces communicating using a base 
set of communication primitives. The existence of multi- 
ple machines and network interconnection is largely 
transparent at the process level. The service modules 
implement value-added services using the basic access 
to hardware resources provided by the kernel. For in- 
stance, the V file server implements a UNIX-like file 
system using the raw disk access supported by the 
kernel. The various run-time libraries implement con- 
ventional language or application-to-operating system 
interfaces such as Pascal I/O and C stdio [Zl]. Most V 
applications and commands are written in terms of 
these conventional interfaces and are oblivious to the 
distributed nature of the underlying system. In fact, 
many programs originated in non-distributed systems 
and were ported with little or no modification-the 
original source was simply linked against the V run- 
time libraries. 
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The development of V was motivated by the growing 
availability and functionality of relatively low-cost 
high-performance computer workstations and local net- 
works. Our basic hypothesis was that an operating sys- 
tem could be developed that managed a cluster of these 
workstations and server machines, providing the re- 
source and information sharing facilities of a conven- 
tional single-machine system but running on this new, 
more powerful and more economical hardware base. 
This hypothesis contrasts with the conventional single 
mainframe approach to supporting a user community. It 
also contrasts with the personal computer approach in 
which the focus is on individual use; the sharing of 
information and hardware resources between com- 
puters may be difficult, if not impossible. The main- 
frame solution is less extensible, less reliable and less 
cost effective than appears possible with good use of a 
workstation cluster. However, the conventional per- 
sonal computer approach fragments the hardware and 
software base, wastes hardware resources and makes 
system management difficult. As an extreme example, 
an engineering firm might require a simulation package 
be available to each of its personnel. Each of its per- 
sonal computers would require the disk space, memory 
capability and processing power to run the simulation 
(as well as possibly the license to do so). Yet, the utili- 
zation of hardware and software would be much lower 
than for a conventional timesharing solution, possibly 
resulting in a higher cost. Moreover, the personal com- 
puter solution would be slower for the cases in which 
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the full power of the mainframe would have been 
available, such as running the simulation at night. 

A first tenet in our design philosophy is that high- 
performance communication is the most critical facility 
for distributed systems. By high performance, we mean 
providing fast exchange of significant amounts of data 
matching in essence the requirements of conventional 
file access. Slow communication facilities lead to poor 
performance and a proliferation of elaborate techniques 
for dealing with these limited facilities, analogous to 
the effect of slow and expensive memory on operating 
systems technology in the 1960s and 1970s. Fast com- 
munication allows the system to access state, such as 
files, without concern for location, thereby making true 
network transparency feasible. This is analogous to the 
liberating affect that low-cost memory has had on oper- 
ating systems and applications since the late 1970s. Not 
only are the resulting systems faster, they are also sim- 
pler because there is no need to highly optimize the use 
of communication as a scarce resource. 

A second tenet of the design philosophy is that the 
protocols, not the software, define the system. In partic- 
ular, any network node that “speaks” the system proto- 
cols (or a sensible subset) can participate, independent 
of its internal software architecture. Thus, the chal- 
lenge is to design the protocols that lead to a system of 
performance, functionality, reliability and even secu- 
rity required for the system goal. Given the protocols, 
their implementation is essentially a software engineer- 
ing and programming problem. This uniform protocol 
approach is a central theme in the international stan- 
dards effort for so-called open systems interconnection 
but is less recognized in the distributed operating 
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FIGURE 1. The V Distributed Operating System 

systems research community. The uniform protocol 
approach in combination with our belief in the impor- 
tance of performance requires protocols that are both 
fast and general purpose; the development of such pro- 
tocols has been central to our work. 

A final major tenet is that a relatively small operating 
system kernel can implement the basic protocols and 
services, providing a simple network-transparent pro- 
cess, address space and communication model. The rest 

of the system can then be implemented at the process 
level in a machine and network independent fashion. 
Our goal is for the kernel to provide a software backplane 
analogous to what a good hardware backplane provides 
for hardware systems. That is, it provides slots into 
which one can plug modules, power to run those mod- 
ules, and communication facilities by which these 
modules can interact, accommodating a wide range of 
configurations. The design of the system bus and back- 
plane determines many of the major system design de- 
cisions and is thus largely responsible for the technical 
success or failure of the system. With system bus and 
backplane design, the maximum number and size of 
the slots, the nature and totality of the power, and the 
flexibility and performance of the communication facil- 
ity determine the possible hardware systems that can 
be build on this chassis. A board designer is limited by 
these system bus attributes. (On the positive side, a 
board designer need only design to interface to the 
backplane in order to have his board interface to the 
rest of the system, at least at the hardware level.) Our 
research goal was to understand how to provide a simi- 
lar base for a distributed operating system running a 
cluster of workstations, recognizing the performance 
and functionality requirements of a range of configura- 
tions and applications, and the reliability, security and 
maintainability benefits to keeping the kernel as small 
as possible. 

In the course of this work, two additional ideas signif- 
icantly affected the design. First, the handling of shared 
state was recognized as the primary challenge of dis- 
tributed systems. Shared memory is the most natural 
model for handling shared state. Shared memory can be 
implemented across multiple machines i.e., by caching 
referenced data as virtual memory pages and imple- 
menting a consistency protocol between the page frame 
caches on different machines. The major disadvantage 
is the cost of consistency operations when contention 
arises. Thus, we have been investigating efficient 
mechanisms for implementing consistency between 
network nodes, software structuring techniques that 
reduce contention and non-standard forms of consis- 
tency that are less expensive than conventional consis- 
tency, so-called problem-oriented shared memo y. 

Second, we recognized that modern systems often 
deal with groups of entities, the same as they deal with 
individual entities. Examples include the group of users 
working on a project and the group of processes at- 
tached to one terminal. Group support is accentuated 
further in distributed systems where the sets of file 
servers, network nodes, printers and other resources 
constitute additional groups, replacing the single in- 
stances of these resources in conventional systems. Ap- 
plied to the communication domain, interest in group 
communication has led to support in V for multicast’ 
and the development of various group communication 
protocols. 

’ Multicast is defined as sending to a specific subset of the hosts or processes as 
opposed to broadcast which is sending to all hosts or processes on the network. 
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It was not a goal of the research to develop new 
programming models or structuring methods for this 
environment. Conventional programming models are 
supported; only the underlying implementation is 
differlent. Thus, the V operating system appears to 
the application as a set of procedural interfaces that 
provide access to the system services. Each system- 
provided service procedure is part of one of the V run- 
time libraries. On invocation, the procedure performs 
the operation directly within the address space if possi- 
ble. Otherwise, it uses the kernel-provided interprocess 
communication (IPC) to communicate with V service 
modules to implement the operation. The implementa- 
tion OF get-byte operation, a performance-critical opera- 
tion in many application environments, illustrates this 
structure. 

The V get-byte operation first checks the correspon- 
ding I,/0 buffer in the invoking process’s address space 
to see if there is another byte available in the buffer. If 
so, it returns the byte immediately. (In fact, this routine 
is cornpiled in-line so the cost of the operation in the 
minimal case is a few microseconds.) If not, it sends 
a read request to the I/O service module in the file 
server associated with the open file, as shown in Fig- 
ure 2. In general, the performance of the I/O operations 
depends on the kernel providing efficient communica- 

THE V KERNEL AS A SOFTWARE BACKPLANE 
The V kernel provides a network-transparent abstrac- 
tion of address spaces, lightweight processes and inter- 
process communication. These facilities are analogous 
to those provided by a hardware backplane. The ad- 
dress space corresponds to a backplane slot; a program 
can be plugged into an address space independent of 
what is running in other address spaces just as a circuit 
board can be plugged in. The lightweight process cor- 
responds to the electrical power delivered by the back- 
plane; it is some portion of the power available in the 
system.’ Finally, interprocess communicatio:n corre- 
sponds to the data and control lines provided on the 
backplane bus, allowing slots to communicale. A good 
hardware backplane provides the slots, power and com- 
munication with the best possible performame, relia- 
bility and security for the money, and nothing else. 
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A similar minimalist philosophy was used in the design 
of the V kernel. 

\ / The basic notion of an operating system kernel that 

FIGURE 2. Get-byte Invoking a Remote Read Operation 

tion between the application and the various I/O ser- 
vice modules (such as the file servers). It also depends 
on the interfaces implemented by these service mod- 
ules and the I/O run-time procedures operating effi- 
ciently on top of the communication facility. For 
example, the buffered implementation of get-byte 
means that the kernel is not invoked on most get-byte 
calls and a large data transfer is made when the kernel 
IPC is invoked, reducing the overhead per byte trans- 
ferred. Finally, the various I/O modules must provide a 
common interface so that the I/O operation can access 
any one of these modules without special code for each 
different type thereby handling the wide variety of files 
and devices available in modern systems. Finally, oper- 
ations that use character-string names, such as the file 
open operation, require a way to locate the file based 
on the name plus an efficient identifier for the client 
and the server to use once the file is opened for read 
and write operations. 

This article describes how V supports efficient file 
access and other operating system services in terms of 
the V interprocess communication, I/O, naming and 
memory management. 

only provides an interconnection mechanism for con- 
necting applications to service modules, and avoids im- 
plementing the services directly is quite old. For in- 
stance, Brinch-Hansen [5] developed such a system, the 
RC 4000, in the late 1960s. This system, one ‘of the first 
academically reported message-based systems, was 
characterized by an elegant design and problematic 
performance. Other systems followed, including Thoth 
[9, 141, DEMOS [3] and Accent [28], but performance 
remained a key concern. A major focus of ou.r research 
with the V kernel has been exploring ways to achieve 
good interprocess communication performance. 

Interprocess Communication 
The kernel interprocess communication facility was 
designed to provide a fast transport-level service for 
remote procedure calls, as characterized by file read 
and write operations. A client Send operation sends a 
request to a server and waits for, and returns, the re- 
sponse. The request corresponds to a (remote) call 
frame and the response corresponds to the return re- 
sults. The timing of this operation with respect to the 
receiving process is shown in Figure 3. The server may 

‘We use process in its usual sense as a locus of control that can logically 
execute in parallel with other processes. Lightweight means that each process 
does not carry the weight of a separate address space. That is, ihere can be 
multiple processes per address space. each such process sharing the same 
address space descriptor. The terms thread and task have been ,used as well. 
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execute as a separate dedicated server process, receiv- 
ing and acting on the request following the message 
model of communication, That is, the receiver executes 
a Receive kernel operation to receive the next request 
message, invokes a procedure to handle the request and 
then sends a response. Alternatively, the server may 
effectively execute as a procedure invocation executing 
on behalf of the requesting process, following the re- 
mote procedure call model. In the message model, the 
request is queued for processing should the addressed 
process be busy when the request is received. The 
client process is oblivious to which model is used by 
the server because the client process blocks waiting for 
the response in both cases. The message model appears 
preferable when the serialization of request handling is 
required. The procedure invocation model is preferred 
when there are significant performance benefits to con- 
current request handling. 

The interconnection provided by the V kernel is il- 
lustrated in Figure 4. A Send to a service module is 
trapped into the local IPC module if the service module 
is local. Otherwise, it is processed by the network IPC 
module, using the VMTP transport protocol [12] to 
communicate with the remote kernel and remote 
service module. 

I VMTP Network Traffic 

FIGURE 4. Local and Remote Interconnection 
using V IPC 

Fast interprocess communication in V is achieved by: 
using relatively simple and basic interprocess commu- 
nication primitives; by using a transport protocol that is 
carefully designed to support these primitives; by op- 
timizing for the performance-critical common cases; 
and by internally structuring the kernel for efficient 
communication. Here we will focus on specific, illus- 
trative techniques we have used to achieve good per- 
formance. 

One example of the simplicity of the IPC is the 
request-response behavior of the operations. The client 
actions of sending a request and receiving a response 
are combined into the single Send primitive. This com- 
bination results in one kernel operation for the com- 
mon case of a remote procedure call, reducing the re- 
scheduling overhead and simplifying the buffering 
(because the request data can be left in the client’s 
buffer and the response data can be delivered directly 
into this buffer). It also simplifies the transport-level 
protocol because both error handling and flow control 

exploit the response to acknowledge a request and au- 
thorize a new request. 

Another example is the support for fixed-sized mes- 
sages (of 32 bytes) with an optional data segment of up to 
16 kilobytes. As recognized by Almes [l] in his remote 
procedure call implementation using V, the short mes- 
sage is analogous to the general-purpose registers of a 
processor for local procedure calls: they introduce some 
extra complexity to handle well but the resulting per- 
formance benefits justify the effort.3 The handling of 
the fixed-length messages is optimized at the kernel 
interface, kernel buffering and network packet trans- 
mission and reception. Given that more than 50 percent 
of our message traffic fits into these short messages [19], 
this optimization seems appropriate. 

Network IPC performance benefits from the use of 
the VMTP transport protocol, which is optimized for 
request-response behavior. In particular, there is no ex- 
plicit connection setup or teardown. In the common 
case, a message transaction consists of a request packet 
and a response packet, the response acknowledging the 
request. Communication state for a client is established 
upon receiving a request from that client. It is updated 
on each subsequent request, providing for duplicate 
suppression as well as caching of information about the 
client, including authentication information. VMTP 
also includes the short fixed-size message in the VMTP 
header, aiding the efficiency of handling small mes- 
sages. In addition, VMTP supports multicast, datagrams, 
forwarding, streaming, security and priority. Although 
VMTP was designed to support efficient V network 
IPC, we believe it is largely independent of V and suit- 
able for more general use. For instance, we have a 
UNIX kernel implementation of VMTP that exhibits an 
8 millisecond return trip time and 1.9 Mbps data rate 
between two Microvax II UNIX machines sharing an 
Ethernet. We are attempting to export our experience 
with efficient request-response protocols by proposing 
VMTP as a candidate for a standard transport protocol 
in the context of the Department of Defense’s Internet. 

Finally, we have structured the kernel to minimize 
the cost of the communication operations. For example, 
every process descriptor contains a template VMTP 
header with some of the fields initialized at process 
creation. Using this header, the overhead of preparing 
a packet as part of a Send operation is significantly re- 
duced. In particular, there is no need to allocate a de- 
scriptor or buffer for queuing on the network output 
queue. The fixed-size message is transferred from ap- 
plication to processor registers to the appropriate por- 
tion of the process descriptor which is then queued 
directly for network transmission, as illustrated in Fig- 
ure 5. Consequently, the elapsed time for transmission 
of a datagram request is less than 0.8 milliseconds on 
a SUN-3/75 workstation. Reception of the response is 
essentially the reverse of these actions. 

V IPC performance is given in Table I by the elapsed 

31nterestingly. processor registers can be used to great benefit to implement 
efficient IPC [5]. In fact, the X-byte message is contained in 8 of the general- 
purpose registers on kernel trap in both the Vax and MC 68000 implementa- 
tions of V. 
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FIGURE 5. Transmission of a 32-byte Request 

time for the Send operation and the corresponding data 
transfer rate with various amounts of segment data. 
(These times were measured with two SUN 3/75’s con- 
nected by 10 Mbit Ethernet.) The first row gives the 
time for a basic message transaction exchanging the 
82-byte short message and a null segment process to 
process. The remaining rows reflect the effect of in- 
creasing data segment size in a message transaction, 
both in increased elapsed time and increased effective 
data transfer rate. In each case, the second column 
gives the elapsed time to send a %?-byte request and 
receive a 82-byte response with a segment of data of the 
size specified in column 1. (These measurements were 
made with the server idle and insignificant processing 
time between the time the server receives the request 
and returns the response.) Table I only lists the times 
for different sizes of responses, as would occur for file 
reads, a performance-critical operation. Multi-packet 
requests with a minimal response, such as arise with 
file w:riting, are almost identical in cost. 

TABLE I. V Network IPC Elapsed Time (in milliseconds) 

OptrCatlOlI Time Data Rate 
(data in Kbytes) fmiltiieconds) (Mblts/sl?o.) 

0 2.54 0.10 
1 3.93 2.08 
4 11.2 2.92 
8 17.8 3.68 

12 23.0 4.27 
16 30.0 4.37 

Local IPC performance is considerably faster. For 
instance, a 82-byte request-response to a local server 
process is 0.480 milliseconds on a SUN-3/7X, and a 
request with an 8 kilobyte response is 2.7 milliseconds 
versus 17.8 milliseconds for the remote case. However, 
our primary focus has been on the performance of net- 
work interprocess communication. The local IPC per- 
formance is regarded as an incidental benefit when 
modules happened to be co-resident on the same host. 

There are additional optimizations which would im- 
prove the network interprocess communication further. 
However, major improvements appear to require signif- 
icant advances in network interface design; this is one 
focus of our current research. Moreover, with the level 
of performance of interprocess communication we have 

achieved, the system performance appears more de- 
pendent on other factors, such as the effectiveness of 
local and remote file caching. For example, with only a 
15.1 millisecond difference between accessing a 8 kilo- 
byte block locally versus remotely, it is faster to access 
a copy of the block at a remote server that has the data 
in its RAM cache than to read it from a local disk. 

Process Groups and Multicast Communication 
Groups of processes arise in a number of settings in V, 
exploiting the provision of multiple processes per user, 
per service and per program. Examples include the 
group of file servers, the group of processes executing a 
job, and the group of processes executing a single paral- 
lel program. V supports the notion of a process group as 
a set of processes identified by a group identifier (cho- 
sen from the same space as process identifie:rs). A group 
can have any number of members scattered across any 
number of hosts. A process can belong to multiple 
groups. 

/ 

FIGURE 6. Multicast Communication with Multiple 
Responses 

The kernel supports a variety of operations on pro- 
cess groups including the ability to send to a group of 
processes and receive multiple responses to the request. 
This multicast communication behavior is ilmstrated in 
Figure 6. Besides providing multi-destination delivery, 
this facility provides logical addressing using the extra 
level of indirection in the name mapping introduced by 
the process group identification. For example, there is a 
statically assigned, well-known process group identifier 
for the group of file servers. This well-known identifier 
can be used to send a message to a particular file 
server, using additional discriminating information in 
the message. 

The multicast facility in V is used in a number of 
ways. Multicast is used to map character string names 
in the naming protocol, as described in the section on 
Naming and illustrated in Figure 6. Multicast is used to 
transmit clock synchronization information in the V 
time servers. Multicast is used to request as well as 
distribute load information as part of the distributed 
scheduling mechanism. Multicast is also used as part 
of the V atomic transaction protocol and is used in 
the replicated file update protocol. The level of multi- 
cast traffic has been measured in V at slightly less than 
1 percent [19]. Each new use of multicast seems to 
generate significantly more unicast traffic so we do not 
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expect the relative amount of multicast to increase ap- 
preciably in the future. However, like a fire extin- 
guisher, the value of multicast is not entirely repre- 
sented by frequency use. It has been our experience 
that when it is used, multicast is extremely useful. 

A group Send optionally includes a qualifier in the 
message indicating that the message should only be de- 
livered to those members of the destination group that 
are co-resident with the process specified in the quali- 
fier. In its most common (and originally motivating) 
use, a client uses this facility to address a message to 
the manager of P, where P is a process specified in the 
qualifier, knowing only the identifier for the group of 
such managers. For example, process management is 
handled in a distributed fashion by the group of process 
managers, one per host. Thus, a suspend operation on a 
process P is sent to the group of process managers with 
a co-resident qualifier specifying process P, thereby de- 
livering the request to only the manager in charge of 
that process, not the entire group. In this fashion, the 
client is able to address the right manager knowing 
only the (well-known) group identifier for this group 
and the process identifier of the process on which it 
wishes to act. The kernel simply routes the request to 
the host address for P. One can also specify a process 
group identifier as the co-resident qualifier, in which 
case the message is delivered to all members of the 
destination group that are co-resident with group 
specified by the co-resident qualifier. 

The process group mechanism and multicast commu- 
nication are used to implement distributed and repli- 
cated implementation of services. The kernel-resident 
servers that manage processes, memory, communica- 
tion and devices are good examples of such distributed 
services. 

Kernel Servers 
The kernel provides time, process, memory, communi- 
cation and device management in addition to the basic 
communication facilities. Each of these functions is 
implemented by a separate kernel module that is repli- 
cated in each host, handling the local processes, ad- 
dress spaces and devices, respectively. Each module is 
registered with the interprocess communication facility 
and invoked from the process level using the standard 
IPC facilities, the same as if the module executed out- 
side the kernel as a process, as illustrated in Figure 7. 
As illustrative examples: a new process is created by 
sending the request to the kernel process server; a 
block is read from the disk by sending a request to the 
kernel device server; a process is added to a process 
group by requesting this action from the communica- 
tion server; and a new address space is created by send- 
ing to the kernel memory server. 

Replicating these modules in each instantiation of the 
kernel and interfacing to these modules through the 
standard IPC mechanism has several significant advan- 
tages. First, operations on local objects, the common 
case, are performed fast because the operation is han- 
dled entirely by the local server. Also, the implementa- 

tion of each module is simplified because each instance 
of the server module only manages local objects, not 
remote objects. Second, a client can access the kernel 
servers the same as the other servers (using the same 
IPC-based network-transparent access), allowing the 
use of remote procedure call mechanisms and run-time 
routines that support the high-level protocols. For ex- 
ample, the device server implements the same I/O pro- 
tocol as other process-level servers and can be accessed 
using the same I/O run-time support. Use of the IPC 
interface also minimizes the additional kernel mecha- 
nism for accessing remote kernel servers. Third, the 
use of the IPC primitives to access these servers avoids 
adding additional kernel traps beyond that required by 
the IPC primitives. Besides avoiding a proliferation of 
“system calls”, this design simplifies the job of imposing 
and verifying integrity and security requirements for 
the kernel. Fourth, this design separates the IPC from 
other kernel services so that the IPC mechanism, the 
performance-critical portion of the system, can be 
tuned independently of these other less performance- 
critical services. Finally, the invocation mechanism is 
general in that additional kernel server modules can be 
added, as might be required in high-performance real- 
time control systems. 

Some portion of each of these services must be in- 
cluded in the kernel to guarantee the integrity of the 
extended machine implemented by the kernel, and be- 
cause interrupts must be handled (at least to some de- 
gree) by the kernel on most architectures. The V kernel 
provides a definition of each facility based on maxi- 
mizing performance, minimizing complexity in the 
kernel and maximizing the reliability and security at- 
tributes of the system. 

\ / 
Node J Node K 

FIGURE 7. Invocation of a Kernel Sewer 

Time 
The kernel time service maintains the current time of 
day (in Greenwich Mean Time-GMT) and allows a 
process to get the time, set the time and delay for a 
specified period of time. There is also an operation to 
wake up a process that is delaying. The synchroniza- 
tion of time service with other nodes is implemented 
outside the kernel by a process that uses V IPC to coor- 
dinate with its counterparts on other machines. The 
kernel implementation of the time service provides the 
accuracy of reading the time and delaying required for 
real-time systems yet does not include the complexity 
of a kernel-level time synchronization protocol and 
mechanism. 

March 1988 Volume 31 Number 3 Communications of the ACM 319 



Special Section 

Process Management 
The kernel process server implements operations to 
create, destroy, query, modify and migrate processes. 
The primary sources of complication in process man- 
agement for conventional operating systems are process 
initiation, process termination, process scheduling and 
exception handling. The V kernel minimizes the kernel 
process management mechanism as follows: 

First, process initiation is separated from address 
space creation and initialization (which is discussed in 
the next section), making the creation of a new process 
simply a matter of allocating and initializing a new 
process descriptor. 

Second, process termination is simplified because 
there are few resources at the kernel level to reclaim; 
most operating system resources, such as open files, are 
managed at the process level by various server mod- 
ules. Moreover, the kernel makes no effort to inform 
servers when a process terminates, further simplifying 
termination. Each server is responsible for associating 
each resource it allocates with a client process and 
checking periodically whether the client exists, re- 
claiming the resource if not. For example, the file 
server has a “garbage collector” process that closes files 
that are associated with deceased processes. Standard V 
run-time routines executed by the client on normal 
exit inform the servers to release resources, minimizing 
the accumulation rate of these “dangling” resources in 
servers in the common case. In our experience, the 
garbage collection code in the servers is not significant 
and the garbage collection overhead is minimal. 

Third, scheduling is simplified by the kernel provid- 
ing only simple priority-based scheduling. A second 
level of scheduling is performed outside the kernel by a 
dedicated scheduler process that manipulates priorities 
to effectively implement timeslicing among interactive 
and background processes. A number of high priority 
levels are reserved for real-time processes and operate 
independent of the scheduler. The priority-based 
scheduling in the kernel provides simple, efficient 
low-level dispatching yet is an adequate basis for the 
higher-level scheduling. Besides simplifying the kernel 
code, implementing the higher-level scheduling outside 
the kernel makes the full kernel facilities, including the 
interprocess communication, available to the process- 
level scheduler. For example, the process-level schedu- 
ler uses multicast communication with the group of 
such scheduler processes to implement distributed 
scheduling of programs within the workstation cluster. 

The kernel scheduling policy requires the kernel en- 
sure that all K processors are always running the K 
highest priority processes at any given time. This policy 
is implemented exactly in a uniprocessor system. How- 
ever, with multiprocessors, the policy appears to incur 
excessive overhead. In particular, with a strict imple- 
mentation of this policy, it appears necessary to check 
the priority of the process being executed by each pro- 
cessor at the point that a process is made eligible for 
execution. In our multiprocessor implementation, a 
process is associated with a processor and its ready 
queue. ‘The low-level dispatching deals only with the 

priority of processes associated with that processor and 
its ready queue. A periodically invoked kernel proce- 
dure balances the processing load across the processors 
by migrating processes between processors, Iwhich in- 
volves simply changing their associated readly queue. 
Further experience with our multiprocessor implemen- 
tation is required to determine the adequacy of this 
approach. 

Finally, to avoid the full complexity of exception 
handling in the kernel, the process management mod- 
ule simply causes the exception-incurring process to 
send a message describing its problem to the exception 
server, a server provided at the process level, as illus- 
trated in Figure 8. The exception server then takes 
over, using the facilities of the kernel and other higher 
level servers to deal with the process. For example, the 
standard behavior in V is for the exception server to 
invoke an interactive debugger. With this design, a 
powerful, flexible and network transparent exception 
handling mechanism can be implemented at the pro- 
cess level with little kernel complexity. 

/ 

Kernel .A 
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FIGURE 8. Exception Handling 

Process migration was retrofitted into V as part of 
Theimer’s Ph.D. thesis project [33]. Modifications to the 
kernel were relatively modest. Support was provided 
for extracting kernel-level process information from the 
originating host and initializing processes and address 
spaces with the same information in a new host. Also, 
the ability to freeze and unfreeze processes was added 
to control the modifications to the address space during 
migration. The ability to suspend a process in execution 
was already available by setting the process to a special 
low priority. The process migration work did, however, 
point out a number of problems with the kernel design, 
as described in the section on Kernel Design Mistakes. 

It appears that removing any kernel-level process 
management facilities from the V kernel would result 
in significant loss of performance, function and integ- 
rity. For example, a run-time or user-level implementa- 
tion of lightweight processes, in place of the kernel 
implementation, would preclude real parallel execution 
of these processes on a multiprocessor machine (be- 
cause the kernel processor scheduling would not know 
about these processes) as well as introduce the ineffi- 
ciencies of two-level dispatching and data tra.nsfer. 
Moreover, the V kernel implementation of lightweight 
processes is quite simple, essentially following the same 
approach as used in Thoth [9]. The space cost of a 
process is reduced by concentrating all per-address 
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space information in a separate address space descrip- 
tor, with only per-process information plus a pointer to 
the address space descriptor located in the process de- 
scriptor, as suggested in Figure 9. In this figure, three 

virtual address space 

Address 

process 

\ descriptors / 

FIGURE 9. Process and Address Space 
Descriptors 

processes are contained in one virtual address space. 
The space cost is further reduced because of the sim- 
plicity of the interprocess communication facilities and 
other state required in the process descriptor. Also, the 
kernel is structured so that there is a kernel stack per 
processor, not per process. The simplicity of the kernel 
operations means that a process does not need to main- 
tain state on a kernel stack when it blocks as part of 
kernel operation, 

Currently, the V process descriptor is 260 bytes, an 
acceptable cost given the low cost of memory. How- 
ever, the current size is larger than strictly necessary 
because of on-going experimentation with various ex- 
tended facilities that use extra fields from time to time. 
The time to create and then destroy a process in V is 
4.6 milliseconds on a Microvax II. This time includes 
the time to allocate a fixed-size stack in the (existing) 
address space, perform the kernel initialization of the 
process descriptor and then delete the process descrip- 
tor and deallocate the stack. 

Memory Management 
The kernel must implement some level of memory 
management to protect its integrity and that of pro- 
cesses from accidental or malicious corruption or un- 
authorized access, given that encapsulation in virtual 
address spaces is the primary form of protection used 
by V, and supported by the hardware for which V is 
intended. Also, page faults are signaled initially to the 
kernel. 

In the V kernel memory management system, re- 
cently extended to support demand paging [ll], an ad- 
dress space consists entirely of ranges of addresses, 
called regions, bound to some portion of an open file (or 
UIO object in the parlance). A reference to a memory 
cell of a region is semantically a reference to the corre- 
sponding data in the open file bound to this region. The 
kernel serves solely as a binding, caching and consist- 
ency mechanism for regions and open files. A page fault 
is simply a reference to a portion of a region that is not 
bound at the hardware level to a cached copy of that 
portion of the bound object. On a page fault, the kernel 
maps from the virtual address to a block in the bound 
UIO or open file, and then either locates that block in 

the kernel page frame cache or else causes the faulting 
process to send a read request requesting the data block 
to the server implementing the open file. Physical 
memory is managed as a cache of pages from these 
open files. This behavior is illustrated in Figure 10. 
Consistency is an issue because the block may be 
stored in multiple page frame caches simultaneously. A 
simple ownership protocol is used in conjunction with 
a lock manager at the backing server to implement con- 
sistency. 

Using this virtual memory system, creation and ini- 
tialization of address spaces for program execution con- 
sists of allocating an address space descriptor and then 
binding the program file into this address space. The 
actual transfer of the program file pages and mapping 
into the address space is handled on demand as the 
process references portions of the new address space. 
Thus, there is no special mechanism in the kernel for 
program loading. In addition, the kernel memory server 
supports file-like read/write access to address spaces 
using the system-standard LJIO interface, allowing the 
use of the normal I/O run-time procedures to read and 
write the address space. This access is used by the 
debugger to display and modify the debuggee’s address 
space. The V IPC access allows the debugger to run 
remotely relative to the debuggee with no special provi- 
sion in the debugger. In the non-demand paged configu- 
ration of the kernel, this facility is also used by the 
migration program to copy the address space to be 
migrated. 

’ Virtual I 

FIGURE 10. Page Fault Handling 

An efficient file caching mechanism is provided 
using the virtual memory caching mechanism in con- 
junction with a process-level cache directory server. 
The process-level server maps file open requests onto 
locally cached open files. Client read and write opera- 
tions on a cached file use the standard UIO interface to 
the page cache data implemented by the kernel mem- 
ory server and are satisfied from the page frame cache 
when the data is in the cache, otherwise reading the 
data into the page cache from the file server imple- 
menting the real file. Using this mechanism, a one kil- 
obyte read operation satisfied by data in the local page 
frame cache takes 2.3 milliseconds on a Microvax II, as 
compared to 8.7 milliseconds to read the page from the 
backing file server (also a Microvax II], assuming the 
file server and network are not loaded. The virtual 
memory mechanism has added 3,306 lines of code and 
13.6 kilobytes to the size of the V kernel, out of a 
previous size of 13,006 lines and 86 kilobytes. 
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The cost in space and complexity is outweighed by 
the performance and functionality provided by the 
kernel-based memory management. In particular, the 
system is able to make efficient use of large RAM con- 
figurations, particularly for diskless workstations, be- 
cause there is a single cache, namely the page frame 
cache, for both file and program pages. Thus, the over- 
heads of copying between caches, duplicating data be- 
tween caches and allocating physical memory between 
caches are eliminated. Also, processes are able to access 
the cached data using either the mapped I/O or file 
read/write paradigms with the efficiency of a direct 
kernel access path to the data. This design effectively 
provides a degenerate kernel-based file system that 
only :implements the performance-critical file opera- 
tions, namely file reading and writing. Directory man- 
agement, disk space allocation, access control and other 
conventional and complicated file system functions are 
placed at the process level, thereby minimizing kernel 
complexity for this facility at no significant cost in per- 
formance. 

Device Management 
The device server implements access to devices sup- 
ported by the kernel, including disk, network inter- 
face, mouse, frame buffer, keyboard, serial line and 
tape. The device server module itself is device- (and 
machine-) independent code that interfaces between 
the process-level client and the driver modules for the 
individual devices. The device server implements the 
UIO interface described in the I/O section at the client 
interface (on top of the standard V IPC primitives), al- 
lowing client processes to use the standard I/O run- 
time support for device I/O. 

The V kernel device support is designed to provide 
efficient, reliable, machine-independent and secure de- 
vice a.ccess while minimizing the amount of kernel de- 
vice support. Process-level servers implement extended 
abstractions using these basic interfaces. Some amount 
of device support must be provided in the kernel be- 
cause device interrupts go to the kernel, some device 
control operations are privileged, and kernel control of 
some device operations is required for kernel integrity. 
As an example of the latter, a faulty or malicious pro- 
cess could initiate a disk DMA operation that would 
overwrite the kernel unless the kernel has control over 
the DMA controller. Without this control, no guaran- 
tees could be made of the kernel’s correct operation 
without verifying all such modules outside the kernel, 
an unacceptable requirement for reliable and secure 
systems. 

The! kernel interface to the mouse illustrates one 
such minimal interface and the partitioning of function 
between the kernel and process levels. The mouse ap- 
pears as an open file that contains the x and y coordi- 
nates and the button positions of the mouse. A process 
reading from the mouse file is suspended until a change 
has occurred in these values since the last time the 
mouse file was read. The kernel mouse handling code 
performs the polling and interrupt handling of the de- 
vice interface to keep the file data up to date. With this 

interface, no process activity need result until the 
mouse moves or has a button change position. How- 
ever, the normal events associated with mouse changes, 
including moving the cursor, popping up a menu, and 
such like are all performed at the process level. The 
efficiency of the V lightweight process mechanism 
allows the cursor tracking, rubberbanding and other 
real-time display functions to be implemented at the 
process-level with entirely acceptable performance. 

As another example, the disk interface provides ac- 
cess to each drive as a raw block device, an array of 
integer-indexed data blocks. The file server implements 
files using this interface. 

Network connections are handled similarly. For 
example, the kernel provides a block interfalce to the 
Ethernet, providing the ability to read and write raw 
Ethernet packets. The Internet server at the process 
level implements TCP/IP, UDP and X.25. 

As a final example, a graphics frame buffer is han- 
dled as a block device of size corresponding to the 
memory area of the frame buffer. Using the virtual 
memory system, the frame buffer can be ma.pped into 
the user process’s address space and accessed directly. 
Thus, the (process-level) V display server is able to ac- 
cess the frame buffer with the same efficiency as if it 
were kernel resident. Because devices use the UIO 
interface and the virtual memory system binds UIO 
objects into address spaces, no special provision is 
required for these types of devices. 

Kernel Design Mistakes 
The kernel design as presented so far may appear as a 
straight-forward success story. The reality is that the 
design has been (and continues to be) an iterative pro- 
cess in which new ideas are tried out and old mistakes 
are (painfully) thrown out. The following are some ex- 
amples of “dirty laundry.” 

The original design structured process identifiers 
with a “logical host” subfield, which was used to 
simplify allocation of process identifiers and mapping 
process identifiers to the right host. Howeve:r, as 
pointed out by the work of Theimer et al. [3.3], this 
mechanism imposed unreasonable restrictio:ns on the 
process migration facility because all processes associ- 
ated with a logical host had to be migrated together. It 
also led to complexity in the kernel to handle multiple 
logical hosts per physical host. At the time of writing, 
this subfield has been eliminated and we are working 
to get the process migration facility working again after 
the revisions. In the revised design, an individual pro- 
cess can be migrated although normally one would 
migrate all processes in an address space along with the 
address space itself. 

The original design also minimized the use of network- 
level broadcast or multicast. Basic naming was pro- 
vided by a special purpose GetPid function which 
mapped logical process identifiers to actual process 
identifiers using broadcast4. The primary use was to 

‘This function originated in Thoth where it was also used as 1 he basis for the 
system naming mechanism. 
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locate a name server. Process identifier allocation used 
another specialized broadcast mechanism. These mech- 
anisms required highly specialized code in the kernel 
which was repeatedly found inadequate or incorrect. 
The introduction of multicast and process groups elimi- 
nated these design mistakes from the kernel and the 
problems with these special-purpose mechanisms. 
However, the concept of local process groups was intro- 
duced at the same time, and this too turned out to be a 
significant problem. A local group is one in which all 
members of the group are local to one host. Local 
groups were recognized for the optimization of being 
able to unicast to the one host to communicate with the 
group, as opposed to the normal multicast transmission. 
However, with the introduction of process migration, a 
process group that started out local to one host could 
not be guaranteed to stay that way without restrictions 
on migration or additional complications in the kernel. 
Moreover, local groups were being used with some con- 
tortions to address the managers of particular processes; 
this use has now been replaced with the co-resident 
addressing mechanism. The kernel support for local 
groups has now been removed, simplifying the group 
management and migration code significantly. 

higher-level protocol used with the IPC facilities so that 
programs, subsystems and modules can interact at a 
larger grain than individual messages. It imposes a 
standard structure and interpretation on the contents of 
the messages that are exchanged. This application-level 
implementation of I/O contrasts with the conventional 
approach in which I/O is implemented as a kernel- 
resident module of significant size and complexity. 

A key issue in an I/O system is the uniformity of the 
interface. An application should be able to bind dynam- 
ically to any one of a wide range of I/O services, rather 
than having to be written specifically for a particular 
I/O service. This property is particularly important in 
a distributed system in which extensibility is important 
and heterogeneity is common. For example, a distrib- 
uted system may include multiple file servers running 
different file system software with different file attri- 
butes. The challenge is to define a uniform I/O inter- 
face that maximizes performance and functionality in 
the distributed environment across a wide range of 
I/O-like services. 

As a final example, process and memory manage- 
ment were originally provided in the kernel by a single 
server pseudo-process, receiving request messages and 
replying in the message model of a server. Because the 
kernel otherwise executes as a shared (but protected) 
library of procedures invoked by the process level, this 
server structure required considerable specialized code, 
exhibited poor performance and suffered from subtle 
errors. In recognizing that one could easily support the 
remote procedure invocation model in the basic IPC 
mechanism, we revised the kernel server invocation to 
use procedural invocation, thereby eliminating the spe- 
cialized message handling code for the kernel server. 
Subsequently, partitioning these services across multi- 
ple servers corresponding to process, memory, device 
and communication management improved the modu- 
larity of the kernel. 

V uses the UIO interface [lo] as its system-level I/O 
interface (as opposed to the application-level interface, 
which is implemented by the run-time I/O library in 
terms of the UIO interface). In the UIO model, I/O is 
accomplished by creating a UIO object that corresponds 
to an open file in conventional systems. Read, write, 
query and modify operations are then performed on 
this UIO object. The UIO interface specifies the syntax 
and semantics of these procedures; a presentation pro- 
tocol specifies the mapping of the procedure parameters 
onto IPC messages, analogous to the calling conventions 
used by compilers. Programming language I/O opera- 
tions, such as the C getc and putt operations, are 
mapped onto the UIO operations by the run-time 
libraries for the language. 

In general, one great luxury we have in a university 
research environment is the time to revisit and revise a 
design that we have made to work. The incorporation 
of fresh insights into the design allows our understand- 
ing of good kernel design to iteratively improve, with 
real testing of this supposedly improved design at each 
stage. After all, as a research effort, our role is to build 
an improved understanding of kernel design, not just 
an improved kernel. The iterated kernel design also 
provides the base on which to explore the next level of 
research ideas, many of which are inspired by, and 
made possible by, the V kernel facilities. 

The UIO interface departs from conventional system 
I/O interfaces in several ways. First, the UIO interface 
uses a block-oriented data access model. That is, a UIO 
object is viewed as a sequence of data blocks that are 
read or written, rather than a byte stream. The block 
model supports access to I/O services in which multi- 
byte units have semantic significance, such as arises 
with network packets, database records and terminal 
input lines. The block concept is also used in other 
services to indicate to the client an efficient unit of 
transfer and buffering for reading and writing. Multi- 
block reading and writing is also supported by some 
servers. 

I/O 
Input and output are conventionally regarded as pri- 
mary services of the operating system, the means by 
which a program communicates with its environment. 
In V, a program communicates with its environment, 
including other programs, using the interprocess com- 
munication facilities. The V I/O system is really just a 

Second, the UIO interface is a stateful interface. The 
UIO object represents state that must be initialized 
prior to other I/O operations, must be reclaimed when 
no longer needed, and must be recreated for recovery 
after a I/O manager crash. The stateful interface is 
required to handle I/O services such as pipes, windows 
and network connections (to name but a few) which 
only exist when “open” and are not amenable to the so- 
called stateless techniques used in WFS [31] and NFS 
[SO]. The stateful interface also provides a mechanism 
for handling the client I/O state associated with locking 
and recovery required to support atomic transactions. 
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Finally, the UIO interface divides functionality into 
cctmpulsoy, optional and exceptional functionality. The 
compulsory functionality represents the lowest com- 
mon d.enominator, roughly corresponding to a (sequen- 
tially accessed) read-only or write-only stream. The op- 
tional functionality allows individual I/O services to 
make extended functionality available when feasible 
and necessary for the particular service. For example, 
file service should provide random access, not just se- 
quential access. I/O services indicate extended func- 
tionality in the UIO interface using standard attributes 
of the UIO object. for example, the STORAGE and 
RAND’OM-ACCESS attributes indicate that the UIO 
object implements storage5 and random access 
respectively. The attributes allow a client to check that 
the UIO objects it is using have the required facilities 
for its operation, avoiding discovery by failure at some 
inconvenient point in its execution. The attributes also 
allow :some important optimizations to be made in the 
I/O runtime library. Finally, a control function pro- 
vides a standard escape for invoking specialized I/O 
operations, such as device-specific operations. 

The UIO interface is implemented by a wide range of 
V services, including files, pipes, Internet protocols, 
multi--window displays, devices and printers. In addi- 
tion, several other services use the UIO interface to 
provide access to directories of information that they 
maintain, even though the service itself may not fit into 
the I/O paradigm. For example, the V program man- 
ager (or team server) implements a directory of the cur- 
rently executing programs in this fashion. 

TABLE II. UIO Reading: Time per Kilobyte on Microvax II 
fin milliseconds) 

Server Location ga&-byta Disk (bytes) Disk(bhcks) PC. 

Local 6.23 9.91 3.47 1.79 
Remote 6.23 14.63 8.18 6.34 

The cost of the UIO interface for byte-stream and 
block-stream access is indicated by Table II. The get- 
byte column lists the basic processing time for calling 
the V version of the UNIX getc 1024 times (to return 
1024 bytes), not including any filling or flushing of 
the local buffer. (This measurement corresponds to 
160.5 kilobytes per second or 6.08 microseconds per 
byte.) The next column gives the elapsed time per kil- 
obyte to do a 1 kilobyte read using 1024 getc operations 
(includ.ing the cost of reading the 1 kilobyte read from 
the file server). The third column lists the elapsed time 
for a 1 kilobyte block read (without getting each byte) 
from the V file server. The final column indicates the 
basic interprocess communication cost portion of these 
operations. If we view the UIO interface overhead as 
the cost of reading minus the cost of the basic IPC 
operation as a percent of the total time (factoring out 

‘A UIO object with the STORAGE attribute guarantees that a block that is 
reread returns the same data as before unless it has been overwritten in the 
interim. 

the get-byte overhead in the former case because it 
should be the same (or worse) in any byte stream I/O 
implementation), the overhead for the UIO interface is 
11 percent for byte stream I/O and 22 percent for block 
stream I/O for remote I/O. The UIO overhead includes 
the cost of generating UIO request messages and pro- 
cessing responses at the client end as well as the 
processing of client UIO requests (including (extracting 
the request data from the buffer pool) at the server end. 
Because these overhead costs are essentially independ- 
ent of the amount of data requested, reading in 8-16 
kilobyte units reduces this overhead to negligible lev- 
els, further supporting the conclusions of a previous 
report [25] that 8-16 kilobyte reading appears more effi- 
cient than larger or smaller sizes of transfer unit. 

The UIO interface illustrates another important 
principle in distributed system design: separation of 
system-level interface from application interface. The 
UIO interface is a system-level interface, optimized for 
performance, reliability, security and flexibility. An 
I/O run-time library implements the application 
abstraction in terms of the system-level interface. For 
example, the get-byte I/O interface provided in C and 
Pascal is implemented by the run-time library in terms 
of a local buffer and the UIO block read and write 
operations to fill and flush this buffer, as was illustrated 
in Figure 2. The distinction between the system and the 
application interfaces takes on greater importance in 
distributed systems than previous centralized systems 
because of the following: 

The “system call” in a distributed system may entail 
communication with a remote node and thus incur 
far greater cost than in a centralized system. Thus, 
adding function to the run-time libraries t.o reduce 
the frequency of remote system calls (thus further 
separating the application and system interfaces) sig- 
nificantly improves performance. 
Server processing is a critical system resource be- 
cause servers typically support a large collection of 
clients. Migrating the processing load from the serv- 
ers to clients by adding to the run-time routines 
offloads the shared servers and improves overall sys- 
tem performance. 
The reduced cost of semiconductor memory has all 
but eliminated the importance of using system serv- 
ice modules as a mechanism for run-time code 
sharing. 

We have taken these considerations into account in 
designing the UIO interface and plan to explore these 
issues further in other areas of V run-time support. 

NAMING 
A number of system operations, such as file open, 
query and modify, take a character-string name to spec- 
ify the object on which to act. The system needs to 
provide character-string naming with flexible user- 
level name specification, efficient mapping, binding and 
unbinding plus support for hierarchical structure, in- 
cluding directories and the current working directory 
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feature in UNIX [29]. In addition, a modern system 
is expected to provide extensibility to new user- and 
application-defined objects. A distributed system must 
address this problem, recognizing that the objects may 
be implemented by many different nodes in the system. 
The naming problem is not restricted just to character 
string names; an operating system must provide a way 
to refer to a variety of different objects, including pro- 
cesses, address spaces, communication ports, and open 
files using compact binary identifiers. The V naming 
facility is based on a three-level model, structured as 
character-string names, object identifiers and entity 
identifiers. 

Character-string Names 
In the V design, we observed the most efficient naming 
design from a communication standpoint is to have 
each object manager implement names for its own set 
of objects. For example, each file server implements its 
own directory system. Then, operations on objects 
specified by name can be handled directly by the object 
manager without communication with a name server, 
provided only the client can determine which object 
manager to contact, given an arbitrary name. This ap- 
proach takes advantage of the fact that a name is gener- 
ally only mapped as part of an operation on the object. 
For example, a file name is generally only mapped to 
the file as part of opening the file, removing it or query- 
ing or modifying its file attributes. This approach has 
several significant advantages in addition to efficiency. 
First, consistency between objects and the directory 
entries for the objects is simplified because both are 
implemented by the same server. The design also elimi- 
nates the need for a client-visible unique object identi- 
fier as an identifier returned by a separate name server 
and passed to the object manager, as is required in the 
alternative design. Second, this design results in the 
object directory being replicated to the same degree as 
the objects being named, because the directory is repli- 
cated when the manager is replicated. Thus, a client 
never suffers from an object manager being available 
but effectively inaccessible because of a name server 
failure. Finally, this design facilitates incorporating 
“foreign” or independently developed services, which 
typically already have their own directory system and 
(sometimes) their own syntax. With the merits of this 
approach, our work has focused on the design of an 
efficient, reliable and secure mechanism that ties these 
individual object manager directories into a system- 
wide name space and directory system. The result is 
the V naming protocol which we describe next. 

Each object manager mounts its object directory (or 
directories) into the global name space by picking a 
unique global name prefix for the object directory and 
adding itself to the name handling (process) group. 
Uniqueness may be ensured by a human administrator, 
by a global name server, or by sending to the name- 
handling group to check for duplicates. A client pro- 
gram can then locate the appropriate object manager 
for a given character string name by multicasting the 

QueryName operation to the name handling group, as 
suggested in Figure 6. Only the appropriate server 
responds. 

Each V program maintains a cache of name prefix 
to object manager bindings that eliminates most of the 
multicast queries. This cache is initialized on program 
initiation to avoid startup name cache misses in the 
common case, similar to the way that environment 
variables in UNIX are initialized by the shell on pro- 
gram initiation. With this cache mechanism, we mea- 
sure that only 0.3 percent of the name lookup opera- 
tions result in a multicast query operation. It should be 
noted that the use of multicast to locate the object man- 
agers means that a name lookup (for a valid name) 
always succeeds if the network is working and the ob- 
ject manager implementing the object is operational. 

A problem with this basic design arises with the 
mapping of invalid names or names for which the asso- 
ciated object manager is inaccessible. The client simply 
does not receive a response to its multicast query and 
thus cannot determine whether the name is invalid or 
simply inaccessible at this time. To address this prob- 
lem, we combine our decentralized approach with a 
highly resilient global naming system, as described by 
Lampson [22]. The decentralized approach provides ef- 
ficient, resilient name mapping for performance-critical 
operations such as file opens. The global directory 
mechanism provides a highly available database indi- 
cating which portions of the global name space actually 
correspond to object managers. It also can be used to 
avoid multicasting “globally” on a name cache miss. 

Several other issues arise with this design, including 
efficient handling of current working directories, imple- 
mentation of name aliases, handling of object directo- 
ries partitioned across multiple servers and detection 
of counterfeit name query responses. The interested 
reader is referred to a forthcoming report [16] for fur- 
ther discussion of this work. 

One can view the V directory system as implement- 
ing a shared memory to store the name bindings using 
caches and multicast, analogous to the techniques used 
in a shared-memory multiprocessor machine. The serv- 
ers provide primary site storage for the bindings while 
the client name caches correspond to per-processor 
caches. The major difference is the way in which con- 
sistency is handled. Multiprocessor machines rely on 
an efficient, reliable broadcast facility at the hardware 
level plus a write-broadcast or ownership protocol [2]. 
The V name caches rely on on-use detection of stale 
data, relying on the fact that names are only mapped as 
part of an operation invoked at the object manager. For 
example, a client may discover that a cache entry is 
stale when it uses the entry to map a file name to a 
particular server. It then deletes this cache entry and 
uses the multicast query name operation to get an 
up-to-date entry. 

Exploiting problem-specific characteristics to main- 
tain consistency dramatically reduces the cost of con- 
sistency maintenance for name caches compared to 
that required to guarantee strict consistency. Moreover, 
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placing the name cache in each program’s address 
space makes conventional consistency maintenance 
(across all executing programs) infeasible but makes the 
name cache access efficient. We have observed and ex- 
ploited similar benefits in a number of other situations, 
including distributed scheduling, time synchronization, 
atomic transaction management and distributed game 
programs. ProbIem-oriented shared memories [8] of this 
nature appear to have general applicability in distrib- 
uted rsystems as a compromise between shared memory 
with its conceptual appeal but high consistency cost 
over unreliable networks and ad hoc communication 
techniques with efficiency benefits but significant pro- 
gramming complexity. 

Object Identifiers 
Operations such as a file open map a character-string 
name to an object; this object is a LJIO in the case of file 
open operation. An efficient object identifier is used to 
refer to the object in subsequent operations, avoiding 
the overhead of character-string handling and lookup 
each time. V Object identifiers are structured as shown 
in Figure 11. The manager identifier is an IPC identifier 
that specifies the object manager or one of its ports that 
implements the object. The local-object-id specifies the 
object. relative to this object manager. Object identifiers 
are used to identify open files, address spaces and con- 
texts or directories. 

I manager-id I local-object-id I 

FIGURE 11. Object Identifier Structure 

With this structure, mapping an object identifier to 
its implementation is efficient because the embedded 
transport-level identifier for the object manager can be 
used by the client to efficiently access the correct man- 
ager module. The manager module then uses manager- 
specific mechanisms to map the second portion of the 
identifier to its implementation. Allocation of object 
identifiers is also efficient because the manager module 
can allocate a new unique identifier without interac- 
tion with other managers, the uniqueness being con- 
ferred by prepending its entity identifier. A similar 
argument applies for deallocation. 

Object identifiers are only used to identify objects 
whose lifetime does not exceed the lifetime of the serv- 
ice entity identifiers, because the entity identifier is 
invalidated when the process crashes. Also, an object 
manager is assigned a new entity identifier on reboot. 
This approach also avoids going to long identifiers to 
effectively guarantee against reuse, as would be re- 
quired if the identifiers were used for long-term objects 
such as files. For instance, in such a system, a user 
could present such a file identifier at some arbitrary 
time after the file had been deleted. The file server 
would have to avoid reusing this identifier to avoid the 
confusion that would otherwise ensue. Instead, object 

identifiers are used in V for transient objects such as 
open files. As mentioned earlier, permanent objects 
such as files are named using character-string names. 

An object manager may be replicated or distributed 
across multiple nodes. For example, processes as ob- 
jects are implemented by the distributed process server 
in the kernel, with a server instance on each node 
handling the processes currently local to that node. 
Similarly, a replicated file system maintains replicas of 
each file on each of several file server nodes. In both 
cases in V, the object manager as a whole is identified 
by a group identifier for the group of server instances, 
one per node, with separate individual identifiers for 
each instance. In the distributed case, a client may use 
the group identifier to identify the server ha.ndling the 
particular object of interest and subsequently use the 
instance identifier for the particular server, avoiding 
multicast to the group on every operation. For example, 
a client performing an operation on a proces,s can locate 
the particular server handling the process using the 
group mechanism and then use the identifier for that 
server for subsequent operations. When the object mi- 
grates or the specific object manager crashes, the client 
receives an error message on use of the individual 
server identifier and rebinds to the new instance using 
the group identifier. For example, a client reading a 
replicated file in the read-only mode defined in the 
UIO interface [lo] can rebind to another object mana- 
ger supporting another replica if the specific object 
manager it is using fails. Similarly, when a process is 
migrated, the kernel process server identity for the 
process changes. A client operating on this process has 
to rebind to the new process server. Alternatively, 
when the desired server is determined by its co- 
residency with a given process, the co-resident address- 
ing can be used in conjunction with the group address 
to address the particular server. This mechanism works 
with the same efficiency as when the individual server 
is addressed directly; it also automatically rebinds (at 
the IPC level) when a process migrates or a manager 
crashes. 

The group addressing is also used for operations that 
affect the entire replicated or distributed manager. For 
example, a write to a replicated file uses the group 
address to update every copy. The client uses its list of 
the individual servers and the responses it receives 
from these individuals to ensure that every replica ac- 
knowledges the write operation. 

This discussion should make it apparent that the ker- 
nel IPC naming, the process and process group identi- 
fiers, provide the basis for character-string naming and 
object identification. This third and lowest level of 
naming is discussed next. 

Entity, Process and Group Identifiers 
Entity identifiers are fixed-length6 binary values used 
to identify processes, groups of processes and transport- 

‘Entity identifiers are currently 32 bits. However. we are changing to use 
64bit identifiers. 
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level communication endpoints. The entity identifier is 
used with the V communication primitives to identify 
transport-level endpoints. Entity identifiers have also 
served in V as process identifiers because a process 
effectively has a single logical port on which to send 
and receive messages. 

A key property of entity identifiers that distinguishes 
them from the endpoint identifiers in other transport 
layer facilities is that they are host-address indepen- 
dent. That is, a process can migrate from one host to 
another without changing entity identifiers. This host 
independence requires large entity identifiers as well as 
a mapping mechanism from entity identifiers to host 
addresses. The V kernel maps entity identifiers to host 
addresses using a cache of such mappings along with a 
multicast mechanism to query the other kernels for 
mappings not found in the cache, analogous to the 
name mapping cache described in the section on 
Character-string Names. Group identifiers are mapped 
using an embedded subfield in each identifier that is 
hashed to a base multicast address used by V to gener- 
ate the multicast host address for the group. Thus, 
group identifiers are mapped many-to-one onto a range 
of multicast addresses (or host group addresses [13]). 
Host addresses are network- or internetwork-dependent 
and handled by a low-level module in the kernel, ren- 
dering most of the kernel and process-level V software 
network-independent. 

Another difficulty with host-address independent 
identifiers arises with allocation because guaranteeing 
uniqueness requires cooperation among all instantia- 
tions of the kernel. Moreover, to avoid confusion, the 
kernels must cooperate to ensure that an identifier can- 
not be reused too quickly after its last use7. Otherwise, 
the meaning of the identifier (which process it binds to) 
may change over time, leading to incorrect behavior by 
users of the identifier over this time period. In the origi- 
nal V design (coming from Thoth [g]), there were sim- 
ple mechanisms that attempted to provide what we call 
T-stability-an identifier does not get reused in less 
than T seconds. In redesigning the protocol for more 
general Internet use, we have gone to 64-bit identifiers 
to reduce the expected frequency of reuse. The diffi- 
culty of implementing T-stability in a distributed envi- 
ronment was not sufficiently recognized in an earlier 
report [12] and is the subject of further investigation. 

V SERVICES 
The V kernel facilities, the naming protocol and the 
UIO interface provide a basic framework for imple- 
menting a variety of services. A number of service 
modules have been designed and implemented that are 
of research interest in their own right. 

These service modules share a number of attributes 
in common. First, they are structured as multiprocess 
programs, exploiting the lightweight processes provided 
by the V kernel. Second, most of them implement the 

‘The finite size of entity identifiers and their dynamic allocation makes reuse 
necessary and inevitable. 

V naming protocol and UIO interface, the latter either 
because they implement open file-like objects or be- 
cause they implement an object directory that is ac- 
cessed using the UIO interface. Finally, client access to 
their services is provided entirely through the V IPC 
primitives. (We are currently working to extend some 
services to support the V atomic transaction protocol as 
well.) 

The pipe server implements UNIX-like pipes outside 
the kernel using the IPC primitives and the UIO inter- 
face. A pipe provides the “sex matching” that allows 
two clients to connect with the asymmetric intercon- 
nection provided by the UIO interface. In addition, 
pipes support buffering, multiple readers and multiple 
writers. Zwaenepoel studied this server [34] to investi- 
gate the performance penalty from using a process-level 
server as opposed to a kernel-level implementation. 
Measurements indicate the penalty is under 16 percent 
using 1 kilobyte data blocks. We have found the per- 
formance adequate for our uses of pipes, especially 
given that high performance IPC to servers is provided 
directly by the normal IPC primitives. Pipes are used 
primarily for relatively modest amounts of interpro- 
gram I/O activity. 

The Internet server implements the TCP/IP suite of 
protocols [27] using the basic network access provided 
by the kernel device server. Like the pipe server, the 
Internet server relies on the V kernel for lightweight 
processes, real-time scheduling, accurate timing and 
fast interprocess communication to achieve good per- 
formance without compromising its modular, multi- 
process structure. Lantz et al. [24] report on the per- 
formance of some applications using this server. The 
performance of this service is competitive with per- 
formance reported for the UNIX kernel implementation 
of TCP and the benefits of implementing this service 
outside the kernel are considerable. Besides allowing 
the kernel to be much smaller, the Internet server has 
been much easier to develop, debug and maintain than 
if we had done a kernel implementation. In addition, 
the Internet server is loaded on demand in V rather 
than permanently configured in the standard system. 
Finally, it is not uncommon for a remote terminal con- 
nection to execute with the terminal program local to 
the workstation but with the Internet server running 
on a second machine, possibly sharing the server with 
other clients. Because of the fast V IPC, the perfor- 
mance difference using a remote Internet server rather 
than a local instance is not generally noticeable, even 
for character echoing. 

The V file server was derived from the Thoth file 
system and uses the same file descriptor and block allo- 
cation disk data structures [g]. Most of our work with 
this module has focused on providing a buffering 
scheme that is well adapted to using large amounts 
of RAM. In particular, the buffer pool currently uses 
8 kilobyte buffers (which can be made larger), allowing 
large network and disk transfers with minimal over- 
head. (The contiguous allocation scheme of the file sys- 
tem results in most files being data contiguous on the 
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disk even though the block allocation unit is 1 kilo- 
byte.) Preliminary performance figures indicate signifi- 
cant benefits from this approach [16]. We have also 
been exploring the multi-process structuring of the file 
server with the goal of achieving efficient parallel exe- 
cution on the multiprocessor machines to which we are 
porting V. 

The printer server, developed by Tim Mann, exhibits 
several interesting properties, even though it was never 
a research project per se. First, it supports spooling of 
print jobs even though it runs on a diskless node, ex- 
ploiting V network IPC to write files to network file 
servers. (A new recently installed configuration sup- 
ports local spooling of files using a disk and a local 
instance of the file server.) Second, it supports multiple 
client protocols, allowing print files to be submitted 
using either V IPC and the UIO interface or using TCP 
connections. The latter access is implemented by the 
printer server running an instance of the Internet 
server. 

The team server’ or program manager handles the 
execution of programs on its host machine. It provides 
an interface between client programs and the kernel 
when initiating the execution of a program. It also im- 
plements time-slice scheduling of programs with fore- 
ground, background and “guest” priority classes. In ad- 
dition, it serves as a process-level exception handler, 
invoking the interactive debugger on faulting programs. 
It also maintains a real-time database of information on 
programs in execution and resource consumption sta- 
tistics for programs and the host itself. Using this infor- 
mation, it participates in the distributed scheduling of 
programs within the cluster of machines constituting a 
V domain. Finally, it handles program termination and 
assists with process migration (although most of the 
logic is handled by a separate program). We plan to 
further exploit this process-level module to explore a 
variety of issues in distributed scheduling both of single 
node as well as multi-node distributed parallel pro- 
grams. 

The V display server implements multi-window facil- 
ities using a bitmap display, a commonplace facility in 
modern workstation systems. Like the other servers, it 
makes good use of the processes and efficient interpro- 
cess communication. For instance, mouse tracking is 
performed by a helper process that sends updates to the 
displa:y server to reposition the cursor. The display 
server also represents an early effort to provide a high- 
level graphics representation at the client interface. 
This high-level representation significantly reduces the 
data rates for transmitting structured data. More impor- 
tantly, it allows some operations to be performed local 
to the display server, rather than relying on application 
facilities. For instance, the display server supports mul- 
tiple views, zooming and redraw, making these facili- 
ties available for all applications. Further details on this 
work are described by Lantz and Nowicki [D]. 

Work continues on new servers, including a log 

‘The term team is used in V, as it was in Thoth. to refer to a set of processes 
sharing the same address space. 
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server for optical disk [ZO], an atomic transaction server 
and a time synchronization server. 

THREE CLASSES OF V APPLICATIONS 
Operating systems of the past have been generally tar- 
geted for (interactive) timesharing, batch processing or 
real-time control. V ambitiously attempts to handle all 
three classes of applications. 

The multi-user workstation cluster, illustrated in Fig- 
ure 12, is the distributed systems equivalent of the con- 
ventional interactive timesharing system. It differs in 
that a user’s workstation provides most of his process- 
ing resources in addition to display, keyboard and 
mouse. The backend hosts or mainframes are reduced 
to serving primarily (or possibly, exclusively) as file 
servers and computation servers. Using the ‘d system, 
each node runs a copy of the kernel plus various server 
programs. Each node with secondary storage may run 
the V file server software and offer file service. The 
kernel’s interprocess communication makes this service 
and others available in a network-transparent fashion 
to all nodes on the network. 

FIGURE 12. Multi-user Workstation Cluster 

V also deals with the issue of the processing re- 
sources of the cluster being fragmented across the pro- 
cessors of the nodes, instead of being concentrated in 
the single processor of a conventional timesharing sys- 
tem. In particular, a user can transparently run a pro- 
gram on another node in the cluster to make use of 
available computing cycles. In practice, we see no per- 
ceptible difference even running character-at-a-time in- 
teractive editors such as emacs remotely on another 
workstation. Using an experimental scheduler, V runs 
each program on the least loaded node in the cluster, 
thereby automatically distributing the load. With a 
workstation per person, we observe a very law average 
load per workstation, similar to what has been observed 
for telephones and personal automobiles. As a conse- 
quence, pooling the resources of the workstation cluster 
is surprisingly effective, eliminating the need to dedi- 
cate a pool of processors as computation servers, at least 
in our environment. Besides saving on the base hard- 
ware investment, this sharing of resources makes the 
latest and fastest workstations in the cluster available 
to everyone. 

Several aspects of V are essential to make this facility 
practical besides fast, network transparent interprocess 
communication. First, the kernel encapsulates a pro- 
gram in an address space so that it is no more a threat 
to other programs when run on the same machine than 
when it is run on a different machine. Thus, a user 
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need not fear that guest programs will crash his ma- 
chine or damage his programs or storage. Second, the V 
scheduler runs guest programs at lower priority to min- 
imize the interference they can cause local programs. 
This priority affects all aspects of a program’s execution 
including access to the processor(s), network interface, 
servers, etc. Thus, the primary point of contention is on 
the use of physical memory. We do not expect this 
contention to be significant for systems with large 
amounts of memory, as expected in the future. Finally, 
V provides the ability to migrate a running program to 
another node, allowing a user to offload guest programs 
entirely. This also allows the load from long running 
programs to be redistributed. 

FIGURE 13. Multi-satellite Star Computation 

With these facilities, a workstation cluster can have 
all the advantages of a centralized timesharing system, 
including shared file system, shared processing re- 
sources and multi-user community services. In fact, the 
total processing capacity often far exceeds that of many 
current timesharing systems. For example, a cluster of 
25 J-megabyte Digital Microvax II workstations is 
roughly 25 MIPS of processing power with a total of 
100 megabytes of memory. This configuration is far less 
expensive than a conventional mainframe of compar- 
able capacity. It also provides better interactive support 
(including bitmap display and mouse) and it almost 
never completely crashes. The major potential disadvan- 
tage of the workstation cluster is the difficulty in har- 
nessing a significant portion of the 25 MIPS to work on 
one program. 

programmable in the multi-satellite star model and sig- 
nificant performance benefits were achieved over using 
a single processor. Although the speedup for some pro- 
grams, such as matrix multiplication, did suffer from 
the communication overhead, the major significant 
problem was the superfluous processing that often 
arises as a result of parallelizing the computation. We 
also observed the V multicast facility was a useful way 
to distribute intermediate results within the computa- 
tion, cutting down on this extra processing to some 
degree. 

Distributed Parallel Machine 
Modern workstations such as the Digital MicroVAX, 
the Apollo and the SMI SUN provide cost-effective 
computation power in the l-10 MIPS range and are 
destined to get cheaper and faster, benefiting from the 
economies of mass production and VLSI technology. A 
cluster of such machines would be a cost-effective way 
to configure a powerful computation engine if only one 
could write programs that could make good use of the 
computational resources in the form provided, namely, 
multiple processors and no physically shared memory. 

We conclude from this preliminary study that a 
workstation cluster running V has much the same com- 
putational power for many problems as a shared mem- 
ory multiprocessor. The key issue appears to be under- 
standing how to program applications to execute in 
parallel, with the differences between a shared memory 
and distributed parallel machine less significant, at 
least for many applications. Overall, it appears feasible 
to extract a considerable amount of the latent process- 
ing power in a workstation cluster for heavy duty com- 
putation. Additional understanding of parallelism and 
language support is required. The V operating system 
facilities seem adequate although further improve- 
ments in the network interprocess communication per- 
formance would be of benefit. 

Some recent work by Michael Stumm and myself 
[la] is directed at understanding how to structure pro- 
grams for this environment and investigating the ade- 
quacy of the V facilities for such distributed parallel 
programs. We structured several programs in what we 
call the multi-satellite star model, logically depicted in 
Figure 13. The application is structured as follows: 

l A set of application-level instruction sequences we 
call subtasks. 

l A satellite processing module that executes subtasks. 
l A master module, called star central, that allocates 

subtasks to satellite processors, generates new sub- 
tasks based on the results of other subtasks and 
detects sufficient conditions for termination. 

We have programmed several example problems using 
this model, including the traveling salesman problem, 
alpha-beta search, zero-finding and matrix multiplica- 
tion. In each case, we found the problem was easily 

The star central node serves in part as a form of 
shared memory in which the global state of the parallel 
computation can be maintained. We are experimenting 
with the distributed shared memory provided between 
nodes by the virtual memory system, as described in 
the earlier section on Memory Management. Judging 
by the experience reported by Li [26], we expect this 
approach to be applicable to a significant class of dis- 
tributed parallel programs, providing shared memory 
similar to that available in a shared memory multipro- 
cessor, differing primarily in the performance penalty 
for contention. 

We originally considered having a pool of dedicated 
computation server machines to support remote and 
distributed parallel computation-a so-called processor 
pool. However, we found the utilization of the worksta- 
tion resources with a workstation per person to be suffi- 
ciently low that additional processors were not re- 
quired. Moreover, we observe that each new generation 
of workstations is so much faster than the previous 
generation that a dedicated pool of previous generation 
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processors would likely get less use than a few idle 
workstations of the current generation. In essence, 
these observations point out the merit of software mak- 
ing good use of the current generation of hardware so 
that the administration of the computing cluster can 
save its money for the next generation of hardware. To 
allow for this evolution as well as accommodating het- 
erogeneity within one generation, V handles program 
execution with different processor types and machine 
configurations. Currently, the two major types of archi- 
tectures it handles are the VAX and the SUN. The VMP 
machine [li’] represents a third type. 

Distributed Real-time Control 
A third class of applications for V is real-time control. 
A distributed implementation of a real-time control 
system has the well-known advantages of extensibility, 
cost-effective performance, reliability and security. 
However, it also has the advantage of allowing each 
node to be physically co-located with the equipment it 
is monitoring and controlling even though the equip- 
ment may be physically distributed, such as in a fac- 
tory or a battleship. This co-location minimizes com- 
munication requirements, simplifies equipment 
placement and configuration and improves reliability 
and security in dangerous environments. 

A distributed system also provides multiple proces- 
sors so that there can be, in the extreme, one processor 
for each sensor or actuator, eliminating the scheduling 
contention and scheduling algorithm complexity re- 
quired for real-time response in centralized single-pro- 
cessor real-time systems. This configuration is illus- 
trated in Figure 14. The primary problem for a distrib- 
uted real-time system is that of maintaining the shared 
state of the system across multiple nodes within the 
real-time requirements of the system. 

I I 1 I I 

FIGURE 14. Distributed Real-time Control 

Several extensions to the interprocess communica- 
tion in V support efficient distributed state update. 
First, V supports a datagram message as a degenerate 
form of message transaction. Combining this facility 
with multicast, a process can send out periodic updates 
to the other controlling nodes in the system without 
blocking for retransmission, timeout or waiting for a 
response. A single multicast datagram thus updates all 
other nodes with high probability at the cost of a single 
transmission to the updater, as shown in Figure 15. The 
recipients of these datagram updates can notice when 
they fail to receive an update from a particular node for 
some t:ime and explicitly request an update or take 
other corrective action. However, receipt of a subse- 

quent datagram update normally compensates for the 
loss of a previous datagram. We have implemiented this 
technique successfully using V in the context of a dis- 
tributed multi-player game program [a] as well as in a 
student project which implemented control of a (simu- 
lated) robot arm. In addition, Tektronix has been using 
V as the basis for distributed instrumentation.. We were 
recently given a demonstration of a distributed oscillo- 
scope with the display separated from the sensor by an 
Ethernet, with the V IPC providing communication be- 
tween the sensor program and the display program. 

Ita amlication I 

FIGURE 15. Distributed Real-time Updale 

In addition to datagrams, V also provides prioritized 
message transmission and delivery and conditional 
message delivery.g Of course, V also has strict priority- 
based scheduling, accurate time services and memory- 
resident programs, the other key requirements for 
supporting real-time applications.” 

Although the basic techniques we have described are 
not deep or even novel, the ability to run such applica- 
tions on top of a general-purpose operating system ker- 
nel is a departure from previous practice. We believe 
the increasing power of processors and networks and 
the improved understanding of the key operating sys- 
tem services allows general-purpose distributed systems 
such as V to serve as the base for a wide variety of 
most, if not all, real-time applications. The benefits of 
generality are great. 

Although these three classes of applications have 
been described separately, there is no reason that V 
cannot support all three concurrently on the same 
hardware configuration, provided that sufficient hard- 
ware resources are available. For instance, st:rict prior- 
ity scheduling and resident (non-paged) memory alloca- 
tion allows real-time processes to run independent of 
lower priority user and compute-bound processes. Even 
network access and message delivery are prioritized. 

This integration seems appropriate for the factory of 
the future where real-time control of the factory floor, 
office processing, and simulation of manufacturing 
processes and schedules are all computerized. Sharing 
the same hardware base for all activities reduces the 

‘Conditional message delivery means that the message is delivered only if the 
receiver is awaiting a message when the message arrives. 

lo Deadline scheduling can be accomplished by dynamic manipulation of 
process priorities. 
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hardware cost for the required performance and relia- and protoco1s.‘4 Besides allowing local protocol imple- 
bility, guards again& artificial information and func- mentations to be optimized for local communication, 
tionality barriers that can arise in less general systems this approach provides a firewall between a cluster and 
and provides for greater extensibility and reconfigura- the rest of the world. V is serving as a real-time kernel 
bility. We hope to explore this application area in the on which to implement this gateway as well as provid- 
future. ing a local network protocol. 

PRESENT STATUS AND FUTURE PLANS 
The V software has reached a reasonable level of utility 
and maturity.” It is being distributed under license by 
Stanford” and is in use at several other universities, 
research laboratories and companies. After several 
years of intense experimentation and extensions, we 
are engaged in a significant effort to revise and rebuild 
the system to correct design mistakes, improve the 
quality of the implementation and incorporate new 
insights. This investment is justified because V is a 
vehicle that allows us to explore research territory with 
far less effort than starting afresh building a system 
with each new project and research direction. The 
scale and maturity of V also provides our research with 
far greater credibility than work lacking experimental 
evaluation. Moreover, it allows our ideas to be incorpo- 
rated into a system in daily use, giving strong feedback 
on the real utility, efficiency and resiliency of these 
ideas in practice.13 We expect to have this reimplemen- 
tation effort reflected in the distribution of V software 
by this summer. 

There are several major directions in which research 
with V is progressing. First, we are interested in study- 
ing the operating systems issues in supporting parallel 
and real-time applications on shared memory multi- 
processor machines. Operating systems of the future 
should accommodate multiple processors with the 
same ease with which they currently accommodate (for 
example) multiple disk drives. To this end, we have 
modified V to run on a shared memory multiprocessor 
machine in a fully symmetric fashion. The target ma- 
chines include the DEC experimental Firefly multipro- 
cessor workstation [32] and VMP [17], a shared mem- 
ory multiprocessor machine we have designed and 
built. 

Further, we are exploring a number of aspects in the 
area of computer communication, most of which are 
direct outgrowths of our experience with the V distrib- 
uted system. We are designing a high-performance net- 
work interface to improve the performance of inter- 
process communication, with particular focus on the 
lOO- to loo@megabit networks of the future. Another 
project is developing a transport-level gateway that in- 
sulates the local cluster from the performance, reliabil- 
ity and security complexities of wide-area networks 

I1 This paper was written and formatted in draft form entirely using the 
V system. 

‘*Contact: Office of Technology Licensing, Stanford University, Stanford, CA 
94305 for licensing and distribution information. 

‘3Readers with experience with large systems will recognize that there is a 
significant cost to maintaining the approximately 200,000 lines of source 
codes that constitute this system. 

We are also attempting to export some of the V proto- 
cols into the computing community. There is a project 
to extend the DARPA Internet to support multicast [13]. 
In addition, we have been working to refine VMTP [12] 
into a protocol suitable for use as a general-purpose 
request-response (RPC) protocol.” We hope to offer a 
naming and an I/O protocol to the community in a 
similar fashion. More generally, we see the need for a 
standard distributed systems network architecture with 
a suite of protocols covering the functionality discussed 
here. We believe the V system, its protocols and their 
interrelation, have a significant contribution to make to 
the development of this network architecture. 

Finally, we are interested in the problem of distrib- 
uted information management: how to provide trans- 
parent access to structured and distributed information 
in an efficient, reliable and secure fashion. This prob- 
lem has many aspects. We have a project to understand 
how to provide an efficient general-purpose logging 
facility using the optical disk [20]. We are also experi- 
menting with a distributed atomic transaction man- 
agement protocol that attempts to make good use of 
multicast for efficient transaction commit as well as 
transaction logging. The UIO interface [lo] defines 
some approaches to structured file access, replication 
and locking to complete the picture. We are currently 
extending the V file server software to support these 
extended facilities, including atomic transactions and 
replication. Finally, we have been investigating 
approaches to caching structured information using the 
file caching mechanism and virtual memory system in- 
cluding the file server directories and database views 
that fit into the UIO model. 

These research directions are much easier to explore 
given that our research group has V at its fingertips. 

CONCLUSION 
V has been a tremendous learning experience for our 
research group as well as our students. From the basic 
tenets given in the introduction, we have evolved a 
working system and, in doing so, refined and extended 
the design and our understanding of distributed sys- 
tems. There are several points that other system design- 
ers should consider key aspects of this research and the 
V design. 

First, we focused on the performance of interprocess 
communication as a key issue. The performance level 
we achieved with the V IPC is critical to the current 
system’s utility. Moreover, every improvement in per- 

” The basic design is described in an early paper [6]. 

” A VMTP protocol specification and Unix 4.3 BSD kernel implementation 
are available from the Stanford Office of Technology Licensing. 
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formance extends the range of application of V (espe- 
c:ially in the real-time control arena) as well as making 
the current V applications, such as compilations, run 
faster. The potential for significant improvements in 
communication performance using faster networks, 
high-performance intelligent network interfaces and 
furthler protocol and kernel refinements makes the pos- 
sibilities for distributed systems structured along the 
lines of V exciting. 

Another hypothesis was that the protocols and inter- 
faces, not the software modules, define the system. 
Thus, we have focused in our work, and in this article, 
on thla design of protocols for data transport, naming, 
I/O, atomic transactions, remote execution, migration, 
time synchronization, etc. The implementation of these 
protocols and their use by a diversity of applications 
over a period of years (for the more mature protocols) 
has lead to considerable refinement of the designs. The 
result is a set of protocols which we believe provide a 
basis for standardization, not just concepts worthy of 
further exploration. While this focus on protocols and 
interf,aces may appear obvious to those involved in 
computer communication, it seems to be lost in many 
distributed systems efforts in the push to develop soft- 
ware. Ideally, the distributed systems research commu- 
nity should focus on the design and understanding the 
protocols and interfaces for distributed systems. The 
commercial software world can then focus on the pro- 
duction of high-quality software that implements these 
protocols and interfaces, taking confidence from the re- 
search work that the resulting modules and systems 
will meet performance, reliability, security and func- 
tionality requirements. 

Third, we held the hypothesis that a distributed 
kernel could provide a base for distributed systems, 
analogous to that provided by a backplane/chassis for 
hardware systems. Based on our experience with the V 
kernel, this approach is extremely successful. Construc- 
tion of a distributed system given such a base turned 
out to be much easier than we had originally antici- 
pated. In fact, some of our students are disappointed 
that there are not more distributed systems issues in 
the servers and the commands for V. For example, the 
file server software design is far more affected by con- 
siderations of large RAM buffer pools and provision for 
parallelism than handling of remote clients. However, 
the design of the kernel itself appears to be a difficult 
challenge. We continue to have inspirations leading to 
improvements that make some previous aspect of the 
design look naive and flawed. 

A underlying philosophy of our work was that per- 
forma.nce was of paramount importance. No one will 
use a slow system, independent of its elegance. In ex- 
ploring this direction, we were surprised at the intellec- 
tual challenge presented by performance. We were also 
surprised at the ease with which we could take a very 
fast design (once discovered) and package it in a form 
that is acceptably “clean” for application programmers. 
We nalw conjecture that, for every fast design, there 

exists an acceptably elegant design with comparable 
performance. That is, one need not significantly sacri- 
fice elegance for performance. However, performance 
has to be a driving consideration behind the design. In 
this vein, an unfortunate amount of the work on proto- 
cols today is dominated by standards efforts that place 
performance as one of the last considerations to be ad- 
dressed. While performance in the slow networks of 
yesteryear may have been secondary, the multi- 
hundred megabit, if not gigabit, networks of tomorrow 
make protocol processing overhead the com:munication 
bottleneck for years to come, in spite of increasing 
speeds of processors. While some may argue that these 
order of magnitude improvements in communication 
capacity are not needed, there appears no precedent in 
the history of computer systems of “unneeded capac- 
ity.” In fact, these quantitative leaps in computing and 
communication capacity have historically resulted in 
qualitative advances in our computing environment. 
We expect the next generation of computer communi- 
cation systems and distributed systems to ha.ve a com- 
parable effect. 

In summary, we have invested considerable time, 
money and effort in developing an experimental dis- 
tributed operating system to the point that we can use 
it for getting our work done, and we continue to pay 
dearly to maintain this work environment ai. this level. 
Nevertheless, the price is well worth it. The process of 
convincing a cluster of 50 computers to implement a 
design and subsequent stress testing of the design over 
periods of months of use have done much to separate 
the wheat from the chaff in our thinking. The feedback 
we have received from using the system and from other 
users of V has also been helpful and stimulating. We 
plan to push V into new areas of research as long as we 
have new ideas and the system continues to facilitate 
their exploration. 
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