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Abstract

The problem of choosing a good parameter setting for a better generalization per-
formance in a learning task is the so-called model selection. A nested uniform design
(UD) methodology is proposed for efficient, robust and automatic model selection
for support vector machines (SVMs). The proposed method is applied to select the
candidate set of parameter combinations and carry out a k-fold cross-validation to
evaluate the generalization performance of each parameter combination. In contrast
to conventional exhaustive grid search, this method can be treated as a deterministic
analogue of random search. It can dramatically cut down the number of parameter
trials and also provide the flexibility to adjust the candidate set size under computa-
tional time constraint. The key theoretic advantage of the UD model selection over
the grid search is that the UD points are “far more uniform” and “far more space

filling” than lattice grid points. The better uniformity and space-filling phenomena
make the UD selection scheme more efficient by avoiding wasteful function evalua-
tions of close-by patterns. The proposed method is evaluated on different learning
tasks, different datasets as well as different SVM algorithms.
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1 Introduction

In recent years, support vector machines (SVMs) with linear or nonlinear ker-
nels (Vapnik, 1995; Cristianini and Shawe-Taylor, 2000) have become one of
the most promising learning algorithms for classification as well as regression
(Smola and Schölkopf, 2004). However, poor choice of parameter setting can
dramatically decrease the generalization performance of SVMs. The problem
of choosing a good parameter setting for a better generalization ability is the
so called model selection. It will be desirable to have an effective and automatic
model selection scheme to make SVMs practical for real life applications, in
particular, for people who are not familiar with parameters tuning in SVMs.
In this article, we develop a nested uniform design methodology for model
selection in SVMs, which allows users to find a good parameter combination
efficiently and automatically. We focus on selecting the regularization parame-
ter and the Gaussian kernel width parameter. This problem can be treated as
finding the maximum (or minimum) of a function which is only vaguely spec-
ified and has many local maxima (or minima). One standard method to deal
with the model selection is to use a simple exhaustive grid search over the pa-
rameter space. It is obvious that the exhaustive grid search can not effectively
perform the task of automatic model selection due to its high computational
cost. Therefore, many improved model selection methods have been proposed
to reduce the number of trials in parameter combinations (Keerthi and Lin,
2003). Chapelle et al. (2002) use a gradient-based approach to find the mini-
mizing parameter setting for error bounds made by leave-one-out procedure.
There are also other gradient-based approaches in the literature (Larsen et
al., 1998; Bengio, 2000). Although the gradient-based methods present im-
pressive gain in time complexity, they have a great chance of falling into bad
local minima. In contrast to conventional exhaustive grid search, our proposed
method can be treated as a deterministic analogue of random search known
as quasi-Monte Carlo (Niederreiter, 1992). We first give a heuristic for setting
up a two-dimensional search box in the parameter space, which is able to au-
tomatically scale the distance factor in the Gaussian kernel. Regardless of the
search scheme, it is always important to set up a proper search region. Once
the search region is determined, we apply the 2-stage uniform design method-
ology to select the candidate set of parameter combinations and perform a
k-fold cross-validation to evaluate the generalization performance of each pa-
rameter combination. The 2-stage uniform design procedure first sets out a
crude search for a highly likely candidate region of global optimum and then
confines a finer second-stage search therein. We test our method on different
learning tasks and different datasets, as well as on several SVM algorithms.
Numerical results and comparisons show that our method can effectively find
a good parameter combination in a few trials. Our model selection scheme is
robust and efficient and can be carried out fully automatically. The nice fea-
ture of our model selection scheme is that it provides the flexibility to adjust
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the candidate size under computational cost constraint. In practice, it can be
combined with variants of SVM implementations easily.

The article is organized as follows. Section 2 provides a brief introduction
to formulations of SVMs for classification and regression. The model perfor-
mance measure is discussed in Section 3. Section 4 presents the uniform design
methodology. Section 5 describes our nested uniform design scheme for model
selection. All numerical results are presented in Section 6. Section 7 concludes
the article.

A word about our notation is given below. All vectors will be column vectors
unless otherwise specified or transposed to a row vector by a superscript T .
For a matrix A ∈ Rm×d, Ai is the ith row of A. A column vector of ones of
arbitrary dimension will be denoted by 1. For A ∈ Rm×d and B ∈ Rd×l, the
kernel K(A,B) maps Rm×d × Rd×l into Rm×l. In particular, if x and y are
column vectors in Rd then, K(xT , y) is a real number, K(A, x) = K(xT , AT )T

is a column vector in Rm and K(A,AT ) is an m × m matrix.

2 Support Vector Machines

In this section we give a very brief introduction to nonlinear SVMs for clas-
sification and regression. A nonlinear SVM model can be defined by a kernel
mixture. One of the most popular kernel functions is the Gaussian kernel (also

known as the radial basis function) defined by K(uT , v) = e−γ‖u−v‖2
2 , where

u, v ∈ Rd, and γ is the width parameter of the Gaussian kernel. The value of
K(uT , v) represents the inner product of Φ(u) and Φ(v) in some high dimen-
sional feature space F , where Φ(·) : Rd 7→ F is a nonlinear map that we do not
have to know explicitly in SVM formulations. Besides, values of K(uT , v) drop
off at a rate determined by ‖u − v‖2

2 and γ. Note that the parameter γ is the
key performance factor for SVMs (Lee and Mangasarian, 2001a, 2001b; Lee,
Hsieh and Huang, 2005). It is also well known in statistical kernel smoothing
literature that the kernel window size, corresponding to 1/

√
2γ here, plays

a major influential role for the final appearance of the fitted curve or model
(Silverman, 1986). Too large or too small of a γ value will lead to overfitting
or underfitting, respectively. We will give a method for determining a search
range for γ in Section 5.

2.1 SVMs for Classification

Consider the problem of classifying points into two classes, A− and A+. Given
a training dataset {(xi, yi)}m

i=1, where xi ∈ X ⊂ Rd is the vector of the ith
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input data point and yi ∈ {−1, 1} is its class label, indicating one of the two
classes, A− and A+, to which the input point belongs, we represent these data
points by an m×d matrix A, where the ith row Ai corresponds to the ith input
data point. We use alternately Ai (a row vector) and xi (a column vector) for
the same ith data point depending on the convenience. The SVM classifier
f(x) is of the following form:

f(x) = αT DK(A, x) + b =
m

∑

j=1

yjαjK(Aj, x) + b, (1)

where K(zT , x) is a kernel function, and D is an m×m diagonal matrix with
class labels, yi’s, along its diagonal. Conventionally, the coefficients αj are
obtained by solving the following dual maximization problem:

max
α∈Rm

−1
2
αT DK(A,AT )Dα + 1T α

subject to 1T Dα = 0,

0 ≤ α ≤ C1,

(2)

where [K(A,AT )]ij = K(Ai, A
T
j ). The term b in (1) can be determined by

the Karush-Kuhn-Tucker (KKT) conditions (Vapnik, 1995; Cristianini and
Shawe-Taylor, 2000). Most of the SVM packages, such as LIBSVM (Chang
and Lin, 2005) and SVMlight (Joachims, 2002), implement SVM by solving
the maximization problem above. An alternative smoothing strategy (Lee and
Mangasarian, 2001b) has been proposed and solved by a fast Newton-Armijo
algorithm that converges globally and quadratically.

2.2 ǫ-Insensitive Support Vector Regression (ǫ-SVR)

In the regression problem, yi ∈ R is the response observed at xi. The aim is to
find a linear or nonlinear regression function, f(x), tolerating a small error in
fitting the training dataset. This can be achieved by utilizing the ǫ-insensitive
loss function that sets an ǫ-insensitive “tube” around residuals. The tiny errors
that fall within the tube are discarded. Also, applying the idea of SVMs, the
function f(x) is made as flat as possible in fitting the training dataset. Similar
to the formulation of SVM classification, we consider a function f(x) of the
following form:

f(x) = uT K(A, x) + b =
m

∑

j=1

ujK(Aj, x) + b. (3)
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The coefficients u and b can be determined by solving an unconstrained min-
imization problem given as follows:

min
(u,b)∈Rm+1

1

2
uT u + C1T |ξ|ǫ, (4)

where |ξ|ǫ ∈ Rm, and (|ξ|ǫ)i = max{0, |f(xi) − yi| − ǫ}, which are the ǫ-
insensitive fitting errors. The positive control parameter C here weights the
trade-off between the fitting errors and the flatness of f(x). Conventionally,
problem (4) is reformulated as a convex quadratic programming problem
(Smola and Schölkopf, 2004). A smoothing strategy for the ǫ-SVR is derived
and solved, again, by a fast Newton-Armijo algorithm (Lee, Hsieh and Huang,
2005). When dealing with large data problems, classification or regression, a
reduced kernel technique for support vector machine (RSVM) can be applied
to cut down the computational cost as well as the model complexity (Lee
and Mangasarian, 2001a; Lee and Huang, 2007). In our numerical study, the
reduced kernel approximation will be applied to some experiments.

3 Performance Measure for SVM Model Selection

The most common performance assessment method is probably the k-fold
cross-validation (Stone, 1974) and the leave-one-out procedure. Both require
that the learning engine be trained multiple times in order to obtain a perfor-
mance measure for each parameter combination. In a k-fold cross-validation,
the training data is randomly split into k mutually exclusive subsets (the folds)
of approximately equal sizes. The resulting SVM model (i.e., the decision rule
or the regression function) is obtained by training on k − 1 subsets and then
the model is tested on the remaining one subset. This procedure is repeated
k times and in this fashion each subset is used for testing only once. By av-
eraging the test errors over the k trials it gives an estimate of the expected
generalization error. The leave-one-out procedure can be viewed as an extreme
form of the k-fold cross-validation with k equal to the number of examples.
Although the leave-one-out is known as an unbiased estimation method, it is
computationally much more expensive than a k-fold cross-validation.

One standard method to deal with the model selection problem is to use a
simple grid search on the parameter domain of interest. In this article, we con-
sider the parameter space consisting of the regularization parameter C and the
Gaussian kernel width parameter γ. For ǫ-insensitive support vector regres-
sion, we leave the parameter ǫ as user pre-specified. That is, our search region
is a two-dimensional box. It is obvious that the exhaustive grid search can not
do automatic model selection effectively due to its high computational cost.
For example, for a grid search with 20×20 mesh parameter combinations (400
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trials) in a 5-fold cross-validation, it will take 2000 times of SVM trainings
to select the best parameter combination. Therefore, many improved model
selection methods have been proposed to reduce the number of trials in para-
meter combinations. Chapelle et al. (2002) use a gradient-based approach to
find the minimal error bound made by leave-one-out procedure. To show the
model performance of some various parameter combinations, Figure 1 plots
the 5-fold average test set accuracy for three public available datasets, banana,
waveform and splice in a three dimensional surface, where the x-axis and
the y-axis are log2 C and log2 γ, respectively. The z-axis is the 5-fold average
test accuracy. Each mesh point in the (x, y)-plane stands for a parameter com-
bination and the z-axis indicates the model performance measure. It is easy
to see that there are many local maxima. Thus, the gradient-based methods
have a great chance of being trapped into (bad) local maxima. Also these plots
show that these surfaces have low-degree of regularity, which further hinders
the use of gradient-based methods.
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Fig. 1. Three examples of search space of model selection

Below we introduce the use of nested uniform designs (UDs) for model selec-
tion in SVMs. Basically the UD finds good representative points uniformly
scattered over the parameter domain to replace the lattice grid points for a
much more efficient parameter search.

4 Uniform Design (UD)

The uniform experimental design is one kind of space filling designs that can
be used for computer and industrial experiments. The UD seeks its design
points to be uniformly scattered on the experimental domain. Suppose there
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are s parameters of interest over a domain Cs. The goal here is to choose a
set of m points Pm = {θ1, . . . , θm} ⊂ Cs such that these points are uniformly
scattered on Cs. Let F (θ) be the cumulative uniform distribution function
over Cs and Fm(θ) be the empirical cumulative distribution function of Pm.
Let the L2-discrepancy of nonuniformity of Pm be defined as

D2(C
s, Pm) =





∫

Cs

|Fm(θ) − F (θ)|2 dθ





1/2

. (5)

Here we consider only the case that Cs is a cube and for convenience a unit
cube, i.e., Cs = [0, 1]s. The search for UDs with minimum L2-discrepancy is
an NP-hard problem. Approximation is used to find low-discrepancy design
close to the minimum discrepancy UD. A modification to the L2-discrepancy
is the centered L2-discrepancy, which considers the uniformity not only of Pm

over Cs, but also of all the projection uniformity of Pm over Cu, where Cu

is a |u|-dimensional unit cube involving only |u|-many coordinates. The UD
tables in the UD-web are all constructed under the centered L2-discrepancy.
See Fang and Lin (2003). These are the UDs that we will employ in this article.

For implementing the uniform design in SVM model selection problem, the
following steps are necessary:

(1) Choose a parameter search domain, determine a suitable number of levels
for each parameter (or factor in design terminology).

(2) Choose a suitable UD table to accommodate the number of parameters
and levels. This can be easily done by visiting the UD-web.
http://www.math.hkbu.edu.hk/UniformDesign

(3) From the UD table, randomly determine the run order of experiments
and conduct the performance evaluation of each parameter combination
in the UD.

(4) Fit the SVM model.
(5) The last step is a knowledge discovery step from the built model. That

is, to find the best combination of the parameter values that maximizes
the performance measure.

For a detailed discussion, literature review and recent development on uniform
design, see Fang and Lin (2003).

5 Nested Uniform Designs for Model Selection in SVMs

We describe our search strategy based on nested UDs (Niederreiter and Peart,
1986; Fang et al., 2000; Fang and Lin, 2003) to reduce the number of trials
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in parameter combinations. Regardless of the search scheme, it is always im-
portant to set up a proper search region. Many numerical experiments and
past experience have indicated that the width parameter γ is the key factor in
SVMs model selection . Hence, the appropriate γ range must be made prior to
parameter search. We note that the function value of the Gaussian kernel not
only depends on γ but also on the distance between two data points. The mag-
nitude of the distance between a pair of data points also depends on the input
space dimension. Here, we propose a heuristic for determining the search range
of γ, which is able to automatically scale the distance factor in the Gaussian
kernel. Let A∗

ī and A∗
j̄ be a pair of the closest distinct points in the training

dataset and let ρ = ‖A∗
ī −A∗

j̄‖2
2, i.e., ρ = minAī 6=Aj̄

‖Aī −Aj̄‖2
2. We confine the

kernel function value of this pair of points to the range [0.150, 0.999]. That is,

0.150 ≤ e
−γ‖A∗

ī
−A∗

j̄
‖2
2 = e−γρ ≤ 0.999, (6)

which can be converted to Lγ ≤ γ ≤ Uγ with

Lγ = − ln(0.999)

ρ
≈ 10−3

ρ
and Uγ = − ln(0.150)

ρ
≈ 1.90

ρ
. (7)

The lower bound for γ, leading to a lower bound for underfitting, comes from
the inequality e−γρ ≤ 0.999, which basically says that the window parame-
ter γ should be able to sustain the closest neighboring pair to have at most
0.999 similarity measure but not higher. Pairs of data with similarity mea-
sure greater than 0.999 are considered “being lumped together” by the kernel
smoothing with lower bound width parameter Lγ. The upper bound for γ can

be transformed into a lower bound for σ via σ =
√

1/(2γ). Then,

minAī 6=Aj̄
‖Aī − Aj̄‖2√

2 × 1.90
≤ σ.

The denominator is roughly about 2. That is, in terms of σ, the kernel win-
dow size is at least about half of the minimum nearest neighbor distance. The
k-nearest neighbor kernel smoothing with k = 1/2 is highly overfitting (Sil-
verman, 1986). In brief, the lower bound value Lγ will lead to inadequately
underfitting, while the upper bound value Uγ will lead to highly overfitting.
Thus, the search range [Lγ, Uγ ] has covered the extent from underfitting to
overfitting.

In practice, finding the closest distinct points in a massive training dataset is
very time consuming. We suggest the following scheme for the upper and lower
bound estimates based on a random subset. First, randomly sample a small
subset from the entire dataset, next calculate the upper and lower bounds
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using this random subset, and finally adjust the bounds by a multiplicative
factor (m/m̄)2/(4+d), where m̄ is the subset size and d is the dimension of x.
For assessing the search range of γ using a reduced set, it should be adjusted
accordingly to account for the effect caused by using only a fraction m̄/m of
data. It is well known in the nonparametric literature that an ideal window
width σ is of order σ = O(m−1/(4+d)), or equivalently γ = O(m2/(4+d)) (Stone,
1984; Silverman, 1986). Thus, if only a fraction m̄/m of data is used, a multi-
plicative factor (m/m̄)2/(4+d) adjustment should be adopted. This adjustment
factor is often close to one in the reduced set case with a moderate to large
sized d.

The SVMs regularization parameter C is another challenge in SVM model
selection. The parameter C determines the trade-off between minimizing the
training error and reducing the model complexity. The range of C depends on
the underlying SVM learning algorithm being used. Our empirical observation
suggests that the most appropriate C range for SVMs is between 10−2 and
104 except for the case of RSVM (Lee and Mangasarian, 2001a; Lee, Hsieh
and Huang, 2005). The justification is that the reduced kernel technique has
dramatically reduced the model complexity. Hence, it usually requires a larger
C to obtain a good resulting model. The appropriate C range for RSVM
is between 100 and 106. The conventional ǫ-SVR implemented in LIBSVM
will take a long CPU time to obtain the resulting model when C is large.
For this reason, we use the range of C between 10−2 and 102 in the ǫ-SVR
model selection experiment for LIBSVM. Once we have the two-dimensional
parameter search box we are ready for describing our nested UDs scheme.

One reminder for the reader is that the range for the search box is based on
several subjective choices of settings. It remains somehow arbitrary, but it is
probably the best one can do here. One simple remedy is, one can make the
search range conservative to include some extent of coverage for the first stage
UD search and then the “nesting mechanism” shrinks the range for the second
stage UD search. In other words, the method of nested designs first sets out
a crude search for a wide range of candidate region and then confines a finer
second-stage search therein.

Figure 2 shows the UD sampling patterns, where N runs means that we distrib-
ute N trial points of parameter combinations uniformly on the predetermined
search domain. Note that each log2 C or log2 γ value is used at most once in the
nested UD based method, and there is no point placed on the corners. These
characteristics are very important for efficient model selection. The corner
points on the search domain often cause the overfitting or underfitting phe-
nomena, and should be avoided. The parameter points from the UD sampling
patterns are wisely chosen by the number-theoretic methods (Fang and Wang,
1994) to make them “uniform” and “space-filling”. This UD methodology is
a deterministic analogue of random search known as quasi-Monte Carlo. It is
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Fig. 2. UD sampling patterns

known that a quasi-Monte Carlo method with judiciously chosen determinis-
tic points usually leads to a faster rate of convergence than a corresponding
Monte Carlo method and lattice grid method (Niederreiter, 1992).

We perform the UD based method in two stages. At the first stage, we use a
13-runs UD sampling pattern (see Figure 3) in the appropriate search range
proposed above. At the second stage, we halve the search range for each pa-
rameter coordinate in the log-scale and let the best point from the first stage
be the center point of the new search box. We do allow the second stage UD
points to fall outside the prescribed search box. Then we use a 9-runs UD
sampling pattern in the new range. The total number of parameter combina-
tions is 21 (the duplicate point, i.e., the center point at the second stage, is
trained and counted only once). Moreover, to deal with large sized datasets,
we combine a 9-runs and a 5-runs sampling pattern at these two stages, as
pictured in Figure 4. The total number of parameter combinations is reduced
to 13 (again, the duplicate point, i.e., the center point at the second stage, is
trained and counted only once), and the UD based method can still make the
resulting SVM model perform well. In next section, the numerical results will
show merits of the nested UD model selection method.

The method of nested UDs is not limited to 2 stages and can be applied in a
sequential manner and one may consider a finer net of UDs to start with. The
reason that we use a crude 13-runs or a 9-runs design at the first stage is that
it is simply enough for the purpose of model selection in the real data SVM
problems in our experiments. See Section 6 for more numerical details. The
nested uniform designs for model selection has some intrinsic connection with
the popular and widely used quasi-Monte Carlo methods (Niederreiter, 1992;
Fang and Wang, 1994). This UD quasi-random search can be considered as a
localization-of-search type algorithm (Niederreiter and Peart, 1986) to speed
up the decision of model selection in SVM.
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Fig. 3. The nested UD model selection with a 13-points UD at the first stage and a
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Fig. 4. The nested UD model selection with a 9-points UD at the first stage and a
5-points UD at the second stage

6 Numerical Results

In this section, we will apply our model selection method not only to differ-
ent datasets but also to different SVM packages, including LIBSVM (Chang
and Lin, 2005), SSVM (Lee and Mangasarian, 2001b), ǫ-SSVR (Lee, Hsieh
and Huang, 2005) and RSVM (Lee and Mangasarian, 2001a; Lee and Huang,
2007). LIBSVM is probably one of the most popular libraries for conventional
support vector classification and regression. SSVM and ǫ-SSVR are alternative
SVM implementations, which utilize a smoothing technique and are solved by
a fast Newton-Armijo algorithm. RSVM utilizes the reduced kernel approxi-
mation to reduce the computational complexity. We implement our model se-
lection method in MATLAB. All experiments are run on a personal computer
consisting of a 3.0 GHz Pentium-4 processor and a one-gigabytes memory.

In binary classification experiments, we follow the same procedures and datasets
in Keerthi and Lin (2003), Rätsch (1999), and Newman et al. (1998). All
datasets have their own partitions into training set and test set, and they are
directly used as given in the above mentioned references without any further
normalization or scaling. Table 1 shows the summary of binary classification
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datasets. The terms TrnA and TrnB stand for the numbers of positive and
negative training examples, respectively. Similarly, the terms TstA and TstB
stand for the numbers of the positive and negative test (validation) examples.
The number of input predictor variables is denoted by the term no. variables.

Problem Size

TrnA TrnB TstA TstB no. variables

banana 217 183 2159 2741 2

image 740 560 580 430 18

splice 483 517 1044 1131 60

waveform 132 268 1515 3085 21

tree 198 502 3050 8642 18

adult 395 1210 7175 22414 123

web 72 2405 1094 37900 300

Table 1
Summary of classification datasets.

For the model selection procedure in classification problems, a 5-fold cross-
validation is used to obtain estimates of generalization error in the training
set (TrnA+TrnB). For each dataset, the parameter pair (C, γ) with the small-
est 5-fold cross-validation error rate among all UD pairs are chosen as the
final parameter estimates and are used in SVM training with all the train-
ing set (TrnA+TrnB). The resulting model is used to predict the test set
(TstA+TstB), and the test set error rates are shown in Table 2. Note that the
test set does not enter the training and model selection procedures.

In Table 2, the term UD1 stands for the strategy of using 13 and 9 trial pairs
of UDs at the first stage and the second stage, respectively. The term UD2
denotes the strategy of using 9 and 5 trial pairs of UDs at the respective two
stages. The numbers of trial pairs of the Grid method and Keerthi and Lin’s
method are 441 and 54. However, we only use 21 or 13 total trial pairs in the
UD1 or UD2 method, respectively. Keerthi and Lin’s search scheme is confined
to a good parameter region and then do twice one-dimensional search therein,
while ours strikes for most economic scattering points through mathematically
rigorous number-theoretic approach. The Grid and Keerthi & Lin columns are
the test set error from Keerthi and Lin (2003). The UD1 and UD2 columns
are the average test set error ± standard deviation from 10 times repeated
experiments of our model selection method. We obtain comparable test set
errors for LIBSVM and SSVM. However, our proposed methods have used a
lot fewer trial pairs. The fewer trial pairs take less computing time in model
selection procedures. We further apply our model selection method to RSVM.
The RSVM randomly selects 5% training set to form the reduced kernel and
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Problem LIBSVM

Grid (441) Keerthi & Lin (54) UD1 (21) UD2 (13)

banana 0.1235 0.1178 0.1128±0.0038 0.1121±0.0054

image 0.0248 0.0248 0.0244±0.0013 0.0246±0.0025

splice 0.0970 0.1011 0.1044±0.0039 0.1017±0.0065

waveform 0.1078 0.1078 0.1071±0.0038 0.1120±0.0044

tree 0.1132 0.1246 0.1157±0.0047 0.1168±0.0041

adult 0.1614 0.1614 0.1618±0.0032 0.1602±0.0013

web 0.0222 0.0222 0.0210±0.0015 0.0212±0.0004

Problem SSVM RSVM

UD1 (21) UD2 (13) UD1 (21) UD2 (13)

banana 0.1219±0.0070 0.1185±0.0070 0.1229±0.0077 0.1239±0.0053

image 0.0307±0.0040 0.0279±0.0061 0.0437±0.0082 0.0429±0.0081

splice 0.1005±0.0019 0.1003±0.0030 0.1346±0.0041 0.1360±0.0053

waveform 0.1055±0.0035 0.1087±0.0053 0.1138±0.0040 0.1121±0.0039

tree 0.1171±0.0026 0.1189±0.0029 0.1193±0.0054 0.1178±0.0040

adult 0.1605±0.0020 0.1611±0.0021 0.1614±0.0019 0.1625±0.0016

web 0.0236±0.0014 0.0229±0.0020 0.0248±0.0014 0.0258±0.0020

Table 2
The average test set error rate of classification problems. The Grid and Keerthi &
Lin columns are the test set error from Keerthi and Lin (2003). The UD1 and UD2
columns are the average test set error ± standard deviation by 10 times repeated
experiments of our model selection method. RSVM randomly selects 5% training
set to form the reduced kernel. The number in parentheses denotes the number of
trial pairs.

also obtains comparable test set errors. Moreover, RSVM saves even more
computing time in every single training run.

In regression experiments, we follow the same procedures and datasets, Hous-
ing, Computer-Activity and Kin-fh, as in the article by Lee, Hsieh and Huang
(2005). We also randomly select 1000 rows from Comp-Activ and Kin-fh, re-
spectively, to form two smaller datasets: Comp-Active 1000 and Kin-fh 1000.
In these experiments, the 2-norm relative error is used to evaluate the discrep-
ancy between the predicted values and the observations. For an observation
vector y and its prediction ŷ, the 2-norm relative error is defined as follows:

‖y − ŷ‖2

‖y‖2

. (8)
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In order to evaluate how well each method generalizes to unseen data, we
split the entire dataset into two parts, the training set and the test set. The
training set is used to estimate the regression function; the test set, which is
not involved in the training procedure nor the model selection, is used to eval-
uate the prediction ability of the resulting regression function. We have also
used a stratification scheme in splitting the entire dataset to retain the “sim-
ilarity” pattern between training and test datasets. That is, we try to make
the training set and the test set to have similar observational distributions. A
smaller test error indicates a better prediction ability. We perform a 10-fold
cross-validation on each dataset and report the average test error in Table 4.

Problem Size

Training Test no. variables

housing 456 50 13

Comp-Activ 1000 900 100 21

Kin-fh 1000 900 100 32

Comp-Activ 7373 819 21

Kin-fh 7373 819 32

Table 3
Summary of regression datasets.

In Lee, Hsieh and Huang (2005), the reduced kernel approach has been used
for solving the two large datasets: Comp-Activ and Kin-fh. The term “N/A” in
Table 4 indicates that there are no full kernel numerical results reported in Lee,
Hsieh and Huang (2005). Their experiments have used a manual grid method
with many trial pairs for parameters. However, the UD-based automatic model
selection method can obtain comparable 2-norm relative errors for LIBSVM
and ǫ-SSVR in much smaller numbers of trial pairs. The number of trial pairs
is 21 in the UD1 method and 13 in the UD2. Moreover, the UD-based model
selection works well successful for ǫ-SSVR with the reduced kernel.

In summary, our numerical experiments show that our method can find a good
parameter combination in a small number of trial pairs. It can be applied to
different SVM packages such as SSVM, ǫ-SSVR, RSVM and LIBSVM. The
small overall standard deviations shown in Table 2 and Table 4 indicate the
robustness of our method. We also report in Table 5 the average CPU time
for a single training run.
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Problem LIBSVM

Lee UD1 (21) UD2 (13)

housing 0.1168 0.1206±0.0041 0.1196±0.0042

Comp-Activ 1000 0.0307 0.0317±0.0002 0.0322±0.0002

Kin-fh 1000 0.1403 0.1363±0.0004 0.1365±0.0004

Comp-Activ 0.0280 0.0284±0.0001 0.0287±0.0001

Kin-fh 0.1322 0.1319±0.0001 0.1319±0.0001

Problem ǫ-SSVR

Lee UD1 (21) UD2 (13)

housing 0.1171 0.1158±0.0026 0.1187±0.0033

Comp-Activ 1000 0.0300 0.0317±0.0002 0.0317±0.0003

Kin-fh 1000 0.1385 0.1356±0.0004 0.1358±0.0003

Problem RSVM

Lee UD1 (21) UD2 (13)

housing N/A 0.1619±0.0042 0.1632±0.0047

Comp-Activ 1000 N/A 0.0339±0.0007 0.0340±0.0009

Kin-fh 1000 N/A 0.1357±0.0003 0.1360±0.0004

Comp-Activ 0.0299 0.0287±0.0001 0.0289±0.0002

Kin-fh 0.1319 0.1321±0.0003 0.1321±0.0003

Table 4
The average 2-norm relative error (8) of regression problems. The Lee column is the
2-norm relative error from Lee, Hsieh and Huang (2005). The UD1 and UD2 columns
are the average error ± standard deviation by 10 times repeated experiments of
our model selection method. RSVM randomly selects 5% training set to form the
reduced kernel. The number in parentheses denotes the number of trial pairs.

7 Conclusion and Future Work

We have developed a nested uniform design methodology for model selection
in SVMs, which can find a good parameter combination in an efficient and
fully automatic way. We believe that this is a novel application of uniform
design in computer experiments. In practice, our proposed method can be
combined with any SVM packages easily. Further research will be applying
the nested uniform design methodology to model selection problems involving
more parameters, e.g., parameters in polynomial kernels or the ǫ-insensitivity
in ǫ-SVR. One advantage of using UDs, or nested UDs, over the grid search,
is that, as the dimension increases, the grid search is getting less feasible.
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Problem SSVM/ǫ-SSVR RSVM

UD1(105) UD2(65) UD1(105) UD2(65)

banana 0.348±0.013 0.423±0.020 0.005±0.000 0.008±0.001

image 15.180±0.213 45.670±17.575 0.068±0.001 0.069±0.002

splice 3.157±0.091 2.998±0.216 0.113±0.002 0.119±0.008

waveform 0.217±0.015 0.220±0.017 0.007±0.001 0.010±0.001

tree 1.579±0.100 1.670±0.042 0.016±0.001 0.020±0.001

adult 15.149±0.316 14.944±0.073 0.264±0.006 0.263±0.008

web 75.023±2.937 72.098±0.779 1.470±0.032 1.498±0.050

housing 0.545±0.015 0.562±0.009 0.009±0.000 0.009±0.000

Comp-Activ 1000 2.779±0.021 2.851±0.029 0.036±0.001 0.037±0.001

Kin-fh 1000 2.610±0.030 2.711±0.026 0.040±0.001 0.041±0.001

Comp-Activ N/A N/A 8.609±0.096 8.342±0.129

Kin-fh N/A N/A 6.756±0.167 6.946±0.373

Table 5
The average CPU time in second ± standard deviation by 10 times repeated exper-
iments. The number in parentheses denotes the number of SVM or SVR trainings
in a single experiment for model selection with a 5-fold cross-validation. RSVM
randomly selects 5% training set to form the reduced kernel.

However, the impact of dimensionality to UD is rather minor. UDs in high di-
mensional boxes can be looked up in the UD-web. The UD-web has tabulated
the UDs for dimensionality as high as 20-30. However, one should be cautious
for using high dimensional UDs. As the dimensionality increases, scattering
points becomes sparse, and it is true for UD points, too. Due to the efficient
UD model selection, we are able to build a web-based data analysis system
that will allow users to upload their datasets via web browsers, and the sys-
tem will return the resulting SVM trained models with testing results to the
users in a fully automatic way. The web-based data analysis system is avail-
able at http://dmlab1.csie.ntust.edu.tw/WDAS. The automatic UD-based
model selection is implemented in MATLAB, named “hibiscus” in the SSVM
toolbox available at: http://dmlab1.csie.ntust.edu.tw/downloads/.
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