SPRING 1993
COMPUTER SCIENCESDEPARTMENT
UNIVERSITY OF WISCONSIN—MADISON
PH. D. QUALIFYING EXAMINATION

Computer Architecture
Depth Examination

Monday, February 8, 1993
3:00 - 7:00 PM
113 Psychology

GENERAL INSTRUCTIONS:
1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and the question
answered in that book. On one of your books list the numbers of all the questions answered. Do not
write your name on any answer book.

3. Return all answer booksin the folder provided. Additional answer books are available if needed.

SPECIFIC INSTRUCTIONS:

Answer all of the following seven questions. The questions are quite specific. If, however, some confu-
sion should arise, be sure to state all your assumptions explicitly.

POLICY ON MISPRINTSAND AMBIGUITIES:

The Exam Committee tires to proofread the exam as carefully as possible. Nevertheless, the exam some-
times contains misprints and ambiguities. If you are convinced a problem has been stated incorrectly, men-
tion this to the proctor. If necessary, the proctor can contact a representative of the area to resolve prob-
lems during the first hour of the exam. In any case, you should indicate your interpretation of the problem
in your written answer. Y our interpretation should be such that the problem is nontrivial.

(D

)

Floating-Point Numbers

Consider the |IEEE 754 floating-point standard 32-bit, single-precision format. Recall that this format
has a sign bit, 8 bits for a biased exponent (the bias is 127), and 23 bits for the fraction (mantissa).
Thereisan implied leading bit (or hidden bit).

(a) What are denormalized numbers? How are they represented in this format?
(b) Show an arithmetic operation on normalized numbers that results in a denormalized number.

(c) Which of add, subtract, multiply, and divide, on normalized numbers, can result in a denormalized
number?

(d) What are the implications of denormalized numbers for the hardware design of the floating-point
unit? Why?

Vector Registers
Several machines implement vector instructions. Some, including the Cray-1, use vector registers.

(d) What are vector registers? How are vector instructions implemented in machines without vector
registers?

(b) How does the tradeoff between using and not using vector registers change as latency to main
memory increases? Why?

3

Pipeline Hazards

Consider the 5-stage DL X pipeline below (figure 6.9 from Hennessy and Patterson, but with load ports
in muxes) Show how the following instruction sequence flows through the pipeline by filling in the
table on the next page. Be sureto hand in thetable.

format: opcode rd, rsl, rs2

ADD rl, r2,r3
AND rl, rl, r4
LOADW r2, rl, #32
SUB r4, r2, rl
OR r5,rl, r2

Register File

T I i
[Vv
Mux A | | Mux B

Load Data (from MEM)

IR (Constant)

| ALUoutl

v Effective Address (to MEM)
| ALUout2

]

For the IF, ID, EX, MEM, and WB fields, write in the opcode of the instruction currently in that stage.
If abubbleisintroduced by astall, write *‘bubble’” .

For RA and RB, write in the register number (e.g., r2) that is being read on the A (B) port of the regis-
ter file. Registers are read during the ID stage. Assume that registers are written (WB) before being
read (1D).

For RD, write in the register number (e.g., r2) that is being written to the destination port of the regis-
ter file. Registers are written during the WB stage.

For ALU, writethe ALU operation (e.g., ADD, AND, etc.) occurring during that cycle.

For MUXA and MUXB, specify which multiplexor input should be selected: RA, RB, ALUoutl,
ALUout2, LoadData, IR.

For MUXD, specify which multiplexor input should be selected: ALUout2 or LoadData.

If the pipeline stalls in cycle i, mark the STALL field in cyclei to indicate that the pipeline does not
advance. You should still fill in the other required fields. If the pipeline stalls, explain why in the
NOTES section below the table.

If afield depends upon a previous or subsequent instruction (i.e., an instruction that is not a part of the
5 instruction sequence above), mark it witha’-". If thefieldisa"don’t care", then mark it with an X.

Student Number

CA Qualifying Exam

BE SURE TO HAND IN THISPAGE

Question 4

Cycle

EX

MEM

WB

RB

RD

ALU

MUXA

MUXB

MUXD

STALL

ADD

i+1

AND

ADD

r2

r3

i+2

i+3

i+4

i+5

i+6

i+7

i+8

i+9

i+10

NOTES:

(4)

(i)

(i)

(iii)

(iv)

ALU Design

Background Superscalar processors take a sequential instruction stream and try to execute multiple
instructions in parallel. Some superscalar processors issue multiple instructions in the same cycle only
if the candidate instructions are of different types. For example, the IBM RS/6000 can issue one
integer, one floating point, one *‘conditional’’, and one branch instruction in the same cycle. Other
superscalar processors can issue two instructions of the same type if and only if they are independent.
For example, some processors can execute two integer instructions in the same cycle if and only if
there is no data dependence between the two instructions.

However, these restrictions limit the effective parallelism, and hence performance, that these proces-
sors can achieve. To improve performance, some recent superscalar processors can issue two (or
more) instructions of the same type, even though they are dependent. For example, the TI SuperSparc
can issue the following two instructions in the same cycle:

ADD r1,r2,r3 i.e,rl<--r2+r3
ADD r4,r1,r5 i.e,rd<--r1+r5

Note that the destination register of the first instruction (rl) is a source register for the second instruc-
tion.

The Problem In this problem, you will design an 8-bit arithmetic unit capable of:

1) Executing two independent add operations, or
2) Executing two dependent add operations where the first source operand of the second instruction is
the result of thefirst instruction (as above).

The arithmetic unit has four 8-hit inputs (A1, A2, B1, B2), two 8-hit outputs (S1, S2), two carry-outs
(CO1, C0O2), and a 1-hit input control signal (ADEP) which indicates that a dependence exists. If the
operations are independent, then (C01, S1) = A1 + Bl and (CO2, S2) = A2 + B2. If ADEP is asserted
(equa 1) then the result of the first add operation (S1) should be used in place of input A2 to the
second add operation. Note that S1 and CO1 must still be computed even if there is a dependence.

The components you have to use are:

A fast carry-lookahead adder that takes two 8-bit inputs, a carry-in, and produces an 8-bit output and a
carry-out. The delay from any input to any output is 8 gate delays.

An 8-bit wide 2:1 multiplexor that, based on a select input, selects one of two data inputs to pass to
the output. The delay from any input to any output is 2 gate delays.

An 8-bit wide 3:2 carry save adder that takes three 8-bit inputs and reduces them to two 8-bit outputs.
The delay from any input to any output is 2 gate delays.

Two-input AND, OR, NAND, and NOR gates, plus an inverter. The delay from any input to any out-
put is 1 gate delay.

Design the arithmetic unit using these parts (you may use as many of each type as necessary). You
will be graded first on correctness, second on minimizing the critical path, and finally on gate count.
Be sure to state the critical path through your circuit.

()

(6)

(7)

Disk arrays.

Assume you wish to implement adisk array of n+c disksthat can recover data after the failure of i
disks. Consider only one n-bit data word x<n- 1, 0> where one bit of X is stored on each of n
disksand c check bits are stored on the other ¢ disks.

(@ Let i =1. What isthe minimumvalue for ¢? Why? Show how bit x<0> isrecovered if its disk
fails.

(b) Let i =1. Assume al disks are working and a user wishes to write just bit x<0>. What is the
minimum number of disk writes your system must do? Why?

(c) Let i =3. Assume al disks are working and a user wishes to write just bit x<0>. What is the
minimum number of disk writes your system must do? Why?

WAR and WAW hazards.

Consider designing a machine that uses all kinds of aggressive, dynamic techniques to make its peak
IPC (instructions per cycle) much greater than one. Your job isto design the general-purpose register
file and associated logic so that instructions rarely stall due to write-after-read (WAR) and write-after-
write (WAW) hazards on general purpose register accesses.

Discuss your design options and the tradeoffs between them.

Request Combining

One of the most important characteristics of the NY U Ultracomputer is its ability to do request com-
bining.

(8) What is request combining?

(b) Why do the Ultracomputer people consider request combining to be central to the design of a
large-scale parallel computer?

The Thinking Machines CM-5 supports a limited form of request combining as a part of its control
network. The control network is a simple binary tree (actually a 4-ary tree but ignore this detail).
Requests to be combined are submitted into the (separate) control network. All processors must parti-
cipate in a combining operation. Combining takes place as follows. Each processor submits a value
to be combined into the network and then waits for its result. The network carries out the requisite
operation, and generates the results for the individual processors. Results are returned to the proces-
sors only when they are guaranteed to be valid. That is, all processors have submitted their requests
into the network, and sufficient time has past since the last request was submitted so that the network
outputs are valid.

Compare the limited form of combining of the CM-5 to the more general approach of the NYU Ultra-
computer.

(c) Discuss the pros and cons of the two approaches including: (i) hardware cost and complexity, and
(i) functionality and usability

(d) Under what conditions, workload, design constraints, etc., would you pick one over the other.

