
INSTRUCTIONS

Answer questions 1 through 4 for the Breadth Exam and answer questions 1 through 7 for the Depth
Exam. We RECOMMEND that students taking the Depth Exam spend the first two hours on questions 1
through 4, and the remaining two hours on questions 5 through 7. We have tried to make the questions
quite specific. If, however, some confusion should arise, be sure to state all your assumptions explicitly.

BREADTH EXAM

1. BCD Arithmetic

Binary coded decimal (BCD) encodes decimal numbers with four bits per decimal digit, where 0000
represents 0, 0001 represents 1, 0010 represents 2, ..., 1001 represents 9, and bit patterns 1010 to
1111 are not used. Assume that you are given gates (NOT, AND, OR, NAND, NOR, etc.) and a one-bit
full adder with three inputs (x, y, carry-in) and two outputs (sum and carry-out). Your
answers will be critiqued more for correctness and clarity, than for speed or gate count. Clearly separate
the interface specification from the implementation.

(a) Specify an interface to a one-digit decimal adder, ignoring carry-lookahead. Implement it (with
gates and one-bit full adders), ignoring carry-lookahead.

(b) Specify an interface for eight-digit decimal adder. Implement it using ripple carry between decimal
digits.

(c) Specify an interface to a one-digit decimal adder that allows a multi-digit adder to use carry-
lookahead between digits. Implement the new one-digit decimal adder using gates and one-bit full
adders.

2. Register Set Alternatives

Some architectures have a unified register set accessed by all instructions (e.g., VAX), some have
separate register sets for integer and floating-point instructions (e.g., DLX and MIPS), and some have
more than two register sets (e.g., Cray 1).

(a) Discuss the advantages and disadvantages of these alternatives, including the impact on implemen-
tation cost, instruction set design, and performance.

(b) Describe how the trend toward superscalar implementations will affect this tradeoff. Explain your
predictions.

3. Impact of New Technology on Virtual Memory

Consider the following hypothetical situation. A small Silicon Valley start-up company has just invented
a new technology called 3D storage. For $500 you can purchase one terabyte of non-volatile storage with
an access time (to the first byte) of 10 microseconds (NOT milliseconds) with a transfer rate for contigu-
ous data of 1 megabyte per second (one additional byte every microsecond).

How would this technology affect the use and implementation of demand-paged virtual memory?
Specifically,

(a) What effect, if any, would this have on the way page faults are handled? Why?

(b) What effect, if any, might this have on the page size? Why?

(c) In most virtual memory systems, main memory is organized as a fully-associative cache of pages.
Why might we consider a set-associative organization with this new storage device? Why not?

4. Branches and Instruction Scheduling

You are in the process of implementing the DLX instruction set with delayed branches (from Patterson
and Hennessy). Your microarchitecture has a 7-stage pipeline:

� ���
ITLB �� IF �� ID EX DTLB MEM WB� ���

FPEX1 FPEX2 FPEX3 FPWB� ���
��
�

��
�

��
�

��
�

��
�

The functions of each pipeline stage are:

ITLB Translate the PC into a physical address
IF Fetch an instruction from the instruction cache
ID Decode instruction, read registers, evaluate branch conditions
EX Execute integer ALU instructions or compute effective address

FPEX* Execute floating point instruction.
DTLB Translate the effective address into a physical address.
MEM Access the data cache
WB Write ALU or load result to integer register file

FPWB Write FP execution or load result to FP register file

The branch condition is not available until the end of the ID stage, therefore branches have a 3-cycle
branch delay. Code must be scheduled to fill these delay slots, inserting NOPs if necessary. Similarly,
load instructions do not return a value until the end of the MEM stage, therefore loads have a delay of 2
cycles. A hardware interlock will cause a stall if a later instruction uses the destination register of a load
that has not completed. Finally, floating-point execution occurs in a 3-stage pipelined execution unit.
The FP execution unit supports bypassing from the end of the FPEX3 stage, to the beginning of the
FPEX1 stage. A hardware interlock will stall a dependent instruction if necessary.

(a) Schedule the following code to minimize the total execution time. Eliminate unnecessary NOP
instructions. You may NOT unroll the loop.

do 10 i = 1, 64
Y(i) = a * X(i) * X(i) + Y(i)

10 continue

LD F0, a
ADDI R4, R1, #512 ;last address to load

loop: LD F2, 0(R1) ;load X(i)
MULTD F2, F0, F2 ;a*X(i)
MULTD F2, F2, F2 ;a*X(i)*X(i)
LD F4, 0(R2) ;load Y(i)
ADDD F4, F2, F4 ;a*X(I) + Y(i)
SD F4, 0(R2) ;store into Y(i)
ADDI R1, R1, #8 ;increment index to X
ADDI R2, R2, #8 ;increment index to Y
SUB R20, R4, R1 ;compute bound
BNZD R20, loop ;branch if non-zero
NOP ;delay slot 1
NOP ;delay slot 2
NOP ;delay slot 3

Assuming no additional memory system delays (e.g., cache misses), how many cycles are required
per iteration?

(b) Consider extending the instruction set with canceling (a.k.a squashing) delayed branches. Explain
what these are, and how they might help. What additional complications do these branches intro-
duce?

(c) Reschedule the loop assuming a canceling delayed branch. Assuming no additional memory sys-
tem delays (e.g., cache misses), how many cycles are now required per iteration?

DEPTH EXAM

Answer questions 5 through 7 for the Depth Exam (in addition to questions 1 through 4 which you should
have already answered). The questions are quite specific. If, however, some confusion should arise, be
sure to state all your assumptions explicitly.

5. Fetch-and-Add and Combining

The NYU Ultracomputer people advocate fetch-and-add and combining.

(a) Assume that fetch-and-add(X,n) denotes a fetch-and-add of the memory location X with
the value n. Assuming X is initially 100, what are the possible results returned by fetch-
and-add(X,n), fetch-and-add(X,m) and load(X) executed by three processors at
approximately the same time? What are the possible final values of location X?

(b) What is combining? What is its potential benefit? How does combining affect you answer to part
(a)?

(c) Assume that compare-and-swap(old,new,X) stores the value new in the memory loca-
tion X only if X’s current value is old, and then returns a bit that’s set if the store was done.
Can two or more compare-and-swaps be combined? Why or why not?

6. Compilers and Aggressive Memory Systems

A uniprocessor load-store machine is being designed for very high performance. The memory system
contains two levels of cache memory in front of a large main memory that is heavily interleaved. The
caches are write-through and use first-in-first-out write buffers to reduce or eliminate stalls on a write.
The plan is for the hardware to guarantee correct handling of all memory WAW and WAR hazards, but to
ignore memory RAW hazards; it is up to the software to make sure that memory RAW hazards are not
violated, and to ensure the correct execution of programs. The software does so by inserting special syn-
chronization operations in the program. The synchronization operation is essentially a "fence" that
guarantees that all memory operations initiated before the fence appear to complete before any following
operations are initiated.

(a) Explain how the fence operation might be implemented in the memory system described above.
How can this fence operation reduce the cost or complexity of the memory system hardware?

(b) A simple-minded compiler could achieve correct execution by inserting a fence before each load
instruction. An optimizing compiler would attempt to eliminate redundant fence instructions.
What data types (e.g., scalars, arrays, pointers, and floating point) and what control flow constructs
(e.g., loops, conditional branches, and procedure calls) pose special problems? Give examples.

(c) Under what conditions would you expect this memory system to be a good idea? Do you predict
that this will be used in the future? Why or why not?

7. Memory Latency

Over the years, processor speed has increased much more rapidly than main memory speeds, resulting in
a situation where a main memory access requires many processor clock cycles (perhaps several tens or
hundreds).

(a) How does the fact that main memory is typically much slower than the processor impact the design
of the processor?

(b) Discuss several ways to overcome the problem of long main memory latency, detailing the advan-
tages and disadvantages of each approach.

