Instructions

For the Breadth Exam, answer questions 1 through 4. For the Depth Exam, answer ques-
tions 1 through 7. The questions are quite specific. If, however, some confusion should
arise, be sure to state all your assumptions explicitly.

D

2)

3

Breadth Exam

There are severa design decisions that have to be made when designing a cache
memory system. One of these decisions has to do with what should be done on a
write operation that does not hit in the cache. With a write-allocation policy, the
cache line to which the write miss occurred is brought into the cache, while with
ano-write-allocation policy the write is propagated to memory without changing
the contents of the cache.

Does the choice of a write-through or a write-back cache influence whether a
write-allocation policy should be used? If a write-allocation policy has been
chosen, does its choice influence the choice of a write-through vs. write-back
cache?

A conditional branch instruction may be expressed in the form
if A op B goto label

where op is arelation between A and B. The most general case allows A and B
to have any (integer) value, while arestriction might be that B is zero. Likewise,
op might be any of the six possible relations, or it might be restricted to as few as
two.

Explain the trade-offs that would determine the set of branch instructions that
might be present in a new architecture.

Architectures have allowed instructions of (a) one size (e.g., MIPS, SPARC), (b)
afew sizes (IBM 360/370) or (c) many sizes (DEC VAX). What are the advan-
tages and disadvantages of these alternatives?

(4)

()

The 16-bit microprocessors introduced in the late 70s had the capability to handle
unaligned operands directly, while the 32-bit microprocessors introduced more
recently with new architectures have much more restricted abilities to deal with
unaligned variables.

Draw a block diagram of the logic necessary to implement arbitrary byte-
alignment of 32-bit memory reads and writes from a memory that is 32-bits wide.
What parts of this logic can eliminated by providing only primitives that require
software support for unaligned data?

Depth Exam

You are in the process of implementing a computer with a conventional RISC
instruction set (e.g., MIPS, SPARC, or DLX). Your initial microarchitecture has
a 5-stage pipeline:

[IF | 1D | EX | MEM | WB |

The functions of each pipeline stage are:

IF Fetch an instruction from the instruction cache
ID Decode instruction
EX Execute ALU instructions or compute effective address
MEM Accessthe datacacheand TLB
wWB Write ALU or load result to register file

However, after initial attempts to map this microarchitecture onto the given
implementation technology, you discover that the data cache access time is the
critical path. This critical path is seriously increasing the machine’s cycle time.
To compensate for this problem, you are considering changing the microarchitec-
ture by pipelining cache accesses. Specifically, you are considering splitting the
MEM stage into a TAG stage, during which the cache tags and TLB are
accessed, and aDATA stage, during which the cache data are read or written.

This change will affect the cycle time, average number of cycles per instruction,
effectiveness of some compiler optimizations, and the implementation complex-
ity. Discuss the pros and cons of making this change. How will you decide
whether or not to make this change?

(6)

(7)

In addition to storing operands in the memory address space, several instruction
set architectures also provide a much smaller storage space inside the CPU. In
the past this storage space has consisted of as few as one element — an accumu-
lator. Today, many architectures provide for 32 storage elements (or registers)
for integer operands, and even 32 separate registers for floating-point operands.

What factors have led to an increase in the number of storage elements and what

are their impact on the instruction-set architecture? What factors could cause a
reversal of thistrend?

Some architectures have provided support for a fast context switch after every
instruction (e.g, the HEP Computer System).

(@) How does one support a context switch that takes ‘‘zero time'’ (or at least
less than one instruction time)?

(b) What are the advantages and disadvantages of this approach?

(c) How do longer memory latencies affect the design and merits of this method?

