SPRING 2000
COMPUTER SCIENCES DEPARTMENT
UNIVERSITY OF WISCONSIN—MADISON
PH.D. QUALIFYING EXAMINATION

Computer Architecture
Qualifying Examination
Tuesday, February 8, 2000

3:00 - 7:00 PM
Room 226 Noland Hall
GENERAL INSTRUCTIONS:
1. Answer each question in a separate book.
2. Indicate on the cover of each book the area of the exam, your code number, and the

question answered in that book. On one of your books list the numbers of all the
questions answered. Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are
available if needed.

SPECIFIC INSTRUCTIONS:

Answer all of the following SIX questions. The questions are quite specific. If, however,
some confusion should arise, be sure to state all your assumptions explicitly.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless,
the exam sometimes contains misprints and ambiguities. If you are convinced a problem
has been stated incorrectly, mention this to the proctor. If necessary, the proctor can
contact a representative of the area to resolve problems during the first hour of the exam.
In any case, you should indicate your interpretation of the problem in your written
answer. Your interpretation should be such that the problem is non-trivial.



1. Population Count Implementation

Population count is an operation that appears in some computers to facilitate code break-
ing. The population count of a value is the number of ones in the value’s binary represen-
tation. The population count for 01101011, for example, is 5.

(a) Use gates (e.g., NOT, AND, NAND, XOR, OR, and NOR) to design a combinational
implementation of a population count operation on a 16-bit input. You will be graded
for correctness first and clarity of hierarchical design second.

(b) What is the number of gate delays through your design?

(c) Discuss (but do not implement in detail) what techniques you might use for imple-
menting a low-latency population count for a wide input value (e.g., 128 bits).

2. Multithreading

Multithreading is a concept that has been around for several decades. For several years,
for a variety of reasons (both technical as well as non-technical) it was not considered via-
ble technology for mainstream processor designs. Recently Compaq announced that its
next-generation mainstream microprocessor design will use multithreading.

(a) Discuss the pros and cons of different types of multithreading, highlighting the rea-
sons used by architects of mainstream processors to justify their decision not to use
multithreading.

(b) Discuss recent trends that have convinced some processor architects to adopt multi-
threading for mainstream processors.

3. Performance and Simulation

Trace-driven simulation is a well-established technique for studying performance of uni-
processors. Recently a second technique — execution-driven simulation — has become a
popular alternative, because it provides certain advantages over trace-driven simulation.
An example of execution-driven simulation is the SimpleScalar simulator.

(a) What are the relative advantages of trace-driven and execution-driven simulation of a
uniprocessor?

(b) Why is it that execution-driven simulation has only recently become a popular alter-
native for uniprocessors?

(c) How do the trade-offs between the two methods change when multiprocessor simu-
lation is involved?



4. Shared Memory Implementations

Shared-memory is a programming abstraction that can be implemented in a variety of
ways. Most companies have chosen to support this abstraction by building custom hard-
ware that implements a cache coherence protocol (e.g., the Sun UltraEnterprise 10000 and
SGI Origin2000). Conversely, many researchers (and some companies) have explored
using software-based mechanisms to implement coherence protocols on industry stan-
dard hardware (e.g., Rice TreadMarks).

Discuss the trade-offs of software versus hardware implementations of shared memory.
How does this affect the choice of coherence protocol? How does it affect other design
decisions? How does it affect performance over a wide range of applications?

5. Virtual Address Synonyms

Virtual address synonyms occur when the operating system maps two or more virtual
addresses to the same physical address. These virtual addresses may be in the same or
different virtual address spaces. Virtual address synonyms can cause problems in some
types of cache designs.

(a) Explain what types of caches may have problems and explain the problems that may
occur.

(b) Discuss alternative hardware techniques to avoid these problems. Discuss the pros
and cons of these alternatives.

(c) Discuss alternative software techniques to avoid these problems. Discuss the pros
and cons of these alternatives.

6. System-on-a-Chip Memory Systems

Consider a future chip that includes a single processor surrounded by all of system mem-
ory. Due to communication delays (due in part to physically laying out memory), 1% of
the memory can be accessed in 1 clock cycle, 9% in 9 cycles, 21% in 10 cycles, 30% in 11
cycles, and 40% in 12 cycles. The 1-cycle memory is intended to be used as cache, but the
remaining memory will constitute the main memory of the system, i.e., there is no off-
chip main memory.

There are several possibilities regarding the memory systems. (i) You might partition the
memory by speed, making visible to the programmer and the operating system the vari-
ous degrees of latency. (ii) You might simply specify that the main memory speed is vari-
able, specifying the minimum, maximum, and average latency. (iii) You might simplify
the control logic by waiting for the worst-case delay, thereby providing the result in con-
stant time.

(a) Describe the relative merits of each of these approaches.

(b) Which method would you recommend for the system being designed?



