FALL 1999
COMPUTER SCIENCES DEPARTMENT
UNIVERSITY OF WISCONSIN—MADISON
PH.D. QUALIFYING EXAMINATION

Computer Architecture
Qualifying Examination
Monday, September 13, 1999
3:00 - 7:00 PM
2345 Engineering Hall

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and
the question answered in that book. On one of your books list the numbers of all
the questions answered. Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are
available if needed.

SPECIFIC INSTRUCTIONS:

Answer all of the following six questions. The questions are quite specific. If, however,
some confusion should arise, be sure to state all your assumptions explicitly.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless,
the exam sometimes contains misprints and ambiguities. If you are convinced a problem
has been stated incorrectly, mention this to the proctor. If necessary, the proctor can
contact a representative of the area to resolve problems during the first hour of the exam.
In any case, you should indicate your interpretation of the problem in your written
answer. Your interpretation should be such that the problem is nontrivial.



1. Error Correcting Codes (ECC)

Data words stored in DRAM memory are often protected by Single-bit Error Correcting
Double-bit Error Detecting (SECDED) codes. Today many error correcting codes operate on
64-bit data words.

i) Consider implementing a Single-bit Error Correcting (SEC) code (but not Double-bit
Error Detecting) on an unrealistically small one-bit data word. The code should detect/
correct errors for all data and check bits. Argue what is the minimum amount of data to
be stored for each word. Design a code that uses this minimum amount of storage.
What must be done when data is stored? What must be done when data is read?

ii) Repeat part (i) for a Single-bit Error Correcting (SEC) code for a two-bit data word.

2. Bus Protocols

This question concerns the design of system buses, which connect the CPU/cache to other
system components such as memory, I/O bridges, and other CPU/caches. These buses are
sometimes also called CPU buses or memory buses.

In uniprocessor-only systems, such buses were traditionally circuit-switched (also called
pended buses); only one transaction could be supported on the bus at a given time. In the
mid-1980s, as bus-based shared-memory multiprocessors became more common, architects
started using split-transaction buses (also called packet-switched). In such a bus, the bus is
released once a request is made so that other transactions can be made on the bus before
the response is received. (A pipelined bus is a special case of a split-transaction bus in
which the responses return and use the bus in the same order as the requests.)

i) Why did pended buses give way to split transaction buses in multiprocessors?

ii) Do you see any need for a split transaction bus for a modern high-performance unipro-
cessor if the processor is never intended to be used in a multiprocessor?

iii) How do you see such system buses evolving in the future?

3. Branch Prediction and Predicated Execution

Branch instructions are an important impediment to performance in superscalar proces-
sors. One technique to overcome branch impediments is the technique of dynamic branch
prediction. In this technique, a hardware predictor is used to predict the outcome of a
branch.

Another technique to overcome branch impediments is the used of predicated execution. In
predicated execution, the execution of an instruction is controlled by the value of a predi-
cate register, and branches can be eliminated by converting control dependences to data
dependences. (The conditional move instruction found in many recent architectures provides
a limited form of predicated execution.)

i) Describe one simple algorithm for dynamic branch prediction and the hardware
required to implement it.

ii) Why is branch prediction considered so important in the design of modern processors?

iii) How do you think branch prediction and predicated execution would interact if both
were present in an implementation of an architecture?



4. Utility of Address Translation

Virtual memory and virtual-to-physical address translation hardware were originally
developed as a means to permit the logical size of memory to exceed the physical memory
resources. Since then, the role of virtual address translation has expanded to provide pro-
tection between concurrent processes, so that one process cannot access the memory of the
other (without specific actions to permit such accesses). Address translation has been fur-
ther extended to support virtualization of other resources, including frame buffers and sys-
tem area networks.

i) Explain how address translation might be used to allow two processes on the same pro-
cessor node to selectively share parts of their virtual address space. Please draw a pic-
ture to illustrate.

ii) Explain how address translation might be used to allow two processes on the same pro-
cessor node to access a local I/O device (e.g., a frame buffer). What issues must be
addressed to make this work.

iii) Explain how address translation might be used to faciliate fast communication between
two processes on two different processor nodes. Please draw a picture to illustrate.

5. Cache Coherence Protocols

In a cache coherence protocol for a bus-based shared memory computer, a cache read miss
presents a dilemma for the cache controller: whether to fetch the enclosing cache line read-
only (Shared) or writable (Exclusive).

i) Explain the trade-off, and give two examples: (a) when the cache line might be opti-
mally fetched read-only, and (b) when it might be optimally fetched writable.

ii) If a cache controller requests the data read-only, the memory or responding cache con-
troller might nevertheless supply the data writable. What are the circumstances under
which a responding cache controller might want to do this? How might this case be sig-
nalled to the requesting controller?

iii) Suppose that the controller is designed to speculate whether the cache line it is fetching
should be fetched in read-only or writable state, based on characteristics of the pro-
gram. What kind of information might be collected and used to assist the controller in
speculating correctly?

6. Technology Trends and Architecture
Over the last two decades, the delay through and size of a MOS transistor has decreased
dramatically. Conversely, the delay to propagate a signal through an on-chip wire has
decreased at a much slower rate. If these technology trends continue, wire delays will soon
completely dominate transistor (logic) delays. One forecaster claims that by 2010, transis-
tors will be so fast and wires so (relatively) slow that a signal will only be able to propagate
to 64,000 transistors in a single clock cycle (this assumes that the clock frequency is set by
the time to pass through a fixed number of logic gates, e.g., 15 fan-out-of-four gates).

Assume this forecaster is correct and you are the chief architect of Company X’s proces-
sor family that will ship using that 2010 technology. Obviously you would like to achieve
good performance while retaining compatibility with Company X’s long-standing instruc-
tion set architecture (ISA). However, management has given you the freedom to introduce
a new ISA if that is what it takes to retain leading-edge performance. They will even con-
sider switching to a radically different computation model, if that’s what it takes to achieve
performance on important applications.

Consider and discuss the alternatives. Identify the key tradeoffs that should be analyzed
before making the final decision on the high-level architecture.

3



