
SPRING 1993
COMPUTER SCIENCES DEPARTMENT

UNIVERSITY OF WISCONSIN—MADISON
PH.D. QUALIFYING EXAMINATION

Computer Architecture
Depth Examination

Monday, September 20, 1993
3:00 − 7:00 PM

2365 Computer Sciences

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and the question
answered in that book. On one of your books list the numbers of all the questions answered. Do not
write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if needed.

SPECIFIC INSTRUCTIONS:

Answer all of the following six questions. The questions are quite specific. If, however, some confusion
should arise, be sure to state all your assumptions explicitly.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tires to proofread the exam as carefully as possible. Nevertheless, the exam some-
times contains misprints and ambiguities. If you are convinced a problem has been stated incorrectly, men-
tion this to the proctor. If necessary, the proctor can contact a representative of the area to resolve prob-
lems during the first hour of the exam. In any case, you should indicate your interpretation of the problem
in your written answer. Your interpretation should be such that the problem is nontrivial.



1. Implementing condition codes

Consider an ALU and condition code logic for a hypothetical 16-bit computer implementation.

ALU.
Inputs: A(15:0), B(15:0), ADD, and 2SC, where bit 15 is most significant;
Outputs: C(16:0), a 17-bit result;
Function: Produces C(16:0) using addition (ADD==1) or subtraction (ADD==0) of
two’s complement (2SC==1) or unsigned numbers (2SC==0).

CC-logic.
Inputs: to be determined by you;
Outputs: ZERO, NEGATIVE, and OVERFLOW;
Function: ZERO is 1 if the result is 0, NEGATIVE is 1 if the result is less than
zero; OVERFLOW is 1 if truncating the result back to 16 bits produces a number that
is not the correct sum or difference.

Your task is to design the CC-logic.

(1) What are the minimum number of inputs that can you use? Do not use any logic outside
of the ALU and CC-logic blocks.

(2) Unambiguously specify the logic functions for ZERO, NEGATIVE, and OVERFLOW
using equations or gates so that an implementor need not know how two’s complement
and unsigned numbers are represented.

2. Parallel Computing

Consider the execution of the following Fortran code fragment on the ILLIAC-IV (with 64 PEs).

DO 10 I = 2, 64
10 A(I) = A(I-1) + B(I)

(1) Explain how the above code fragment would be executed (in parallel, of course). List the
number of steps, and the actions of the PEs at each step. You need only give the pseudo-
code, illustrating the main actions at each step; ILLIAC-specific details are not important.

(2) How many words pass through the network during the algorithm? State any assumptions
that you make.



3. Precise Exceptions

(1) Define the conditions necessary for an exception to be considered precise.

(2) Explain which types of exceptions are straightforward to make precise and which types
can be more difficult. Which implementation techniques make maintaining precise
exceptions more difficult? Explain why.

(3) What are the general philosophical approaches to making exceptions appear precise?

(4) Smith and Pleskun describe several techniques for implementing precise interrupts in
pipelined processors. How does a history buffer differ from a future file? Which of the
general approaches does each employ?

4. Memory Order

Consider a multiprocessor organized in the style of the IBM RP3: a “dance hall” architecture with
no data caches. Memory accesses are achieved through a network. Both the network and the
memory system exhibit long delay relative to a processor’s instruction execution time. For pur-
poses of this problem, assume that instructions are never modified.

The network delivers memory requests in order between a given processor and a given memory
module. To assure Sequential Consistency but minimize delay, it is planned to use a write buffer.
After a store instruction is issued, the address and data are always stored in the write buffer
(assume there is always sufficient space), and eventually forwarded through the network to
memory. Later an acknowledge signal is received from the memory system, indicating that the
write request and data have been received by the memory system.

The write buffer logic controls when both loads and stores are injected— i.e., a request is permit-
ted to enter the network — and must delay injections as necessary to guarantee sequential con-
sistency. The following questions pertain to this write buffer control logic.

(1) When a store instruction has been injected, but not yet acknowledged, can a succeeding
store instruction to the same address be injected without delay?

(2) When a store instruction has been injected, but not yet acknowledged, can a succeeding
store instruction to a different address be injected without delay?

(3) When a store instruction has been injected, but not yet acknowledged, can a load instruc-
tion to the same address be satisfied from the data in the write buffer?

(4) When a store instruction has been injected, but not yet acknowledged, can a load instruc-
tion to a different address be issued and injected without delay?



5. Processor/Memory Tradeoffs

You are the chief architect for a company whose main business is the manufacture of DRAMs.
Your marketing department is looking for ways to capture new markets by incorporating addi-
tional logic onto a DRAM chip, giving it increased capabilities.

One market they are considering is text retrieval, where the application is to search unordered text
for a particular string, possibly including complex wild-card expressions. For example, text
retrieval technology is frequently used by Wall Street firms to search incoming news reports for
mention of company names, etc. Currently, most text retrieval systems are software systems that
are very slow, requiring expensive hardware systems to perform the search in real-time. Your
marketing department has decided that this market is sufficiently large to justify a new product
development, and has asked you to come up with a design.

The marketing department has proposed a range of design options, each of which is a different
way to implement the desired functionality. All three options are single, standalone chip designs
that require little or no glue logic.

Option 1 is to add a “full RISC processor” to the DRAM chip.

Option 2 is to add a “very small processor” to each bit of storage in the DRAM array(s). These
processors would, by necessity, be SIMD processors controlled by some on-chip control unit.

Option 3 is to add a “small processor” for each column, or group of columns, in the storage
array(s). These processors could be somewhat bigger than in option 2, but must presumably still
be SIMD processors.

(1) Evaluate each of these options, taking into account cost, cost/performance, peak and sus-
tained performance, ease of programmability, and any other factors that you think are
relevant.

(2) Which of these options do you think has the most promise? Why?

(3) Would you recommend that your company build one of these chips? Why or why not?

6. Interconnection Networks

You are responsible for designing the network for a large-scale parallel machine, with 1024 pro-
cessing elements. It has been decided that the processors of the machine will be multi-threaded,
and will use multiple contexts to tolerate latencies. You have narrowed down the choice to: (i) a
1024×1024 Omega network or (ii) a 32×32 mesh network.

(1) What are the issues that influence your choice of the network, and why?

(2) Use these issues to argue in favor of using the mesh network.

(3) Use these issues to argue in favor of using the Omega network.

(4) Which network would you recommend?


