
Instructions

For the Breadth Exam, answer questions 1 through 4. For the Depth Exam, answer ques-
tions 1 through 7. The questions are quite specific. If, however, some confusion should
arise, be sure to state all your assumptions explicitly.

Breadth Exam

(1) Caches and Virtual Memory

a) What is a virtual address synonym or alias? How can they occur?

b) Why can synonyms cause problems in a cache indexed using virtual addresses?

c) Consider a 64-kilobyte, 4-way set-associative cache, with 128-byte blocks. The
cache tags are derived from the physical address. We wish to access the 64-entry
2-way set-associative translation lookaside buffer (TLB) in parallel with this cache.
How large must the page size be to prevent synonyms from being a problem?
SHOW YOUR WORK.

d) Sketch the cache and TLB. Be sure to show the number of bits in each field in the
cache and TLB. Show the comparators. Be sure to explicitly label which bits from
the addresses are used on each signal (i.e., which bits are used to index the cache
and TLB, which bits are used for the tags, etc.). Assume the virtual and physical
addresses each contain 32 bits, and are labeled VA<31:0> and PA<31:0> respec-
tively.

(2)Floating-point numbers

A floating-point format specifies how bits from a word are interpreted. Often bits
are partitioned into sign, mantissa, and exponent fields and the radix is not explicitly
represented.

a) In some floating-pointing formats, such as IEEE single- and double-precision, the
most significant bit of the mantissa is not explicitly represented. For what choices
of format is this optimization not possible? What number(s) require special
interpretation with this optimization? Explain.

b) Some floating-pointing formats, such as IBM 360/370, use radix sixteen rather than
radix two. Give one important implementation advantage of radix sixteen over
radix two.

c) Most floating-point adders can shift one input mantissa (and adjust its exponent)
before adding and can shift the resulting mantissa after adding. Why might both
these shifts be necessary?



(3) Instruction Pipelines

The typical instruction pipeline in most modern microprocessors with a load/store
instruction set is as follows:

�������������������������������������������������������������������������
IF ID EX MA WB

�������������������������������������������������������������������������
�
�

�
�

�
�

�
�

�
�

�
�

where the stages are:

IF: Instruction Fetch
ID: Instruction Decode
EX: Execute in ALU
MA: Memory Access
WB: Write Back

a) List the two most important factors that degrade the throughput for such instruction
pipelines. For each of the factors, suggest some ways of overcoming the degrada-
tion.

b) What advances must be made in hardware and/or software to efficiently utilize an
instruction pipeline of high degree, e.g., 8 segments or higher?

(4) Processor and Memory Performance

a) The base CPI (clocks per instruction) for a 32-bit CPU with a perfect memory sys-
tem (all memory references are serviced in a single cycle) is 1.5. Find the CPI with
a memory system containing a single 16KB direct-mapped, write-back (copy-back)
cache with a miss ratio of 0.05.

Make the following assumptions. Since instructions and data references share the
same cache, all data references stall for one cycle to gain access to the cache. 15%
of the instructions are loads, and 6% are stores. There are 16 bytes per line (block).
The cache fetches words of a line in address order, and the CPU stalls until all the
words of the block arrive. There is no write buffer. Assume the memory latency is
6 clocks, the transfer rate is 4 bytes per clock cycle, and that 50% of the lines
(blocks) in the cache are dirty. (The latency is the time from the start of the request
until the first word has been received).

b) Two schemes for improving the performance of the memory system are suggested.
Which one has a higher impact on performance? Why?

(i) The accessed word is fetched first on a cache miss, and the CPU is stalled
only until the accessed word arrives. Assume that the CPU does not exe-
cute any other load or store instructions, i.e., has no need for the cache,
until the remaining words have arrived in the cache.

(ii) A large write buffer is inserted so that write backs to memory do not cause
any stalls.



Depth Exam

(5) An addressing mode has a side effect if it causes some change to the architectural
state of the machine in addition to its primary function. For example, an autoincre-
ment mode on a register causes the value of the register to be updated, regardless of
the other effects of the instruction that uses the addressing mode. Therefore it has a
side effect.

The VAX-11 architecture, designed in the 1970s has a very rich set of addressing
modes, many of which have side effects. In addition, almost any addressing mode
can be used in conjunction with any of the 16 general-purpose registers. For exam-
ple, the autoincrement addressing mode can be used with R15, the program counter.

Load/Store architectures, such as the MIPS R2000 and the Sun SPARC, developed
in the 1980s, have very few addressing modes. Moreover, the limited addressing
modes in these machines do not have side effects. For example, the R2000 has only
a displacement (register + offset) mode, and the SPARC uses both displacement and
an index (register + register) mode. The more ‘‘complex’’ modes with side effects,
such as autoincrement, are discarded completely.

More recently, the IBM RS/6000 and the HP Snake series of machines have reintro-
duced the use of some ‘‘complex’’ addressing modes with side effects. For exam-
ple, the HP Snake has the autoincrement addressing mode, and the IBM RS/6000
has a load update addressing mode (which can be viewed as a generalization of the
autoincrement mode), with their load/store instructions (the architectures are still
register-register load/store architectures).

What are the reasons that addressing modes with side effects, such as autoincre-
ment, were discarded in the earlier load/store architectures, and why have they reap-
peared in some of the more recent ones? Which other addressing modes do you
think might appear? Why, or why not?

(6) Cache memory is effective in a uniprocessor because it exploits temporal and spa-
tial locality.

a) Explain how a cache exploits temporal locality.

b) Explain how a cache exploits spatial locality.

c) What are the implications of these two types of locality for implementing a shared-
bus, shared-memory multiprocessor, i.e., a "multi"? If workload is important,
explain how.



(7) While several multiple-instruction-multiple-data (MIMD) parallel computers have
been designed using today’s powerful microprocessors, single-instruction-multiple-
data (SIMD) machines tend to use custom logic for instruction fetch and control.
There are at least two ways to use microprocessors in a SIMD machine:

Method 1: Build logic to respond to each microprocessor’s instruction fetch with
the correct instruction regardless of the instruction fetch address.

Method 2: Have every microprocessor execute an identical copy of the program.

a) Discuss the problems that must be overcome to use Method 1.

b) Discuss the problems that must be overcome to use Method 2.

c) Discuss the relative merits of building a SIMD machine with Method 1, Method 2,
or the traditional method of using custom logic for instruction fetch and control.


