
COMPUTER SCIENCES DEPARTMENT
UNIVERSITY OF WISCONSIN—MADISON

PH.D. QUALIFYING EXAMINATION

Computer Architecture
Qualifying Examination

Fall 2013

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and
the question answered in that book. On one of your books list the numbers of all
the questions answered. Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are
available if needed.

SPECIFIC INSTRUCTIONS:

Answer all of the following SIX questions. The questions are quite specific. If, however,
some confusion should arise, be sure to state all your assumptions explicitly.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless,
the exam sometimes contains misprints and ambiguities. If you are convinced a problem
has been stated incorrectly, mention this to the proctor. If necessary, the proctor can
contact a representative of the area to resolve problems during the first hour of the exam.
In any case, you should indicate your interpretation of the problem in your written
answer. Your interpretation should be such that the problem is non-trivial.

1. Caches for Bandwidth and Energy

Hardware caches were introduced in the 1960s to reduce average memory latency, at the
expense of a small increase in worst-case latency.

a) In the 1980s with the emergence of shared-memory multiprocessors, computer
architects began focussing on how caches affect memory bandwidth, i.e., the
read and write traffic between cache and main memory. Explain why caches
tend to reduce average memory bandwidth but can increase bandwidth for some
worst-case workloads. Discuss how cache design choices affect memory
bandwidth.

b) Today energy has become an increasingly important design consideration.
Explain how caches affect the energy required by a computation. Discuss both
typical and worst-case workloads.

c) Discuss how caches in an energy-optimized memory hierarchy may be different
than those in a performance-optimized hierarchy.

2. Memory Consistency Models

A memory consistency model is a very important consideration in the design of a
shared-memory multiprocessor.

a) What is a memory consistency model, and why is it important?

b) Sequential consistency (SC) and Release consistency (RC) are two different
memory consistency models. What are these models? Give an example to
illustrate how they differ.

c) How do the SC and RC models differ from a programmer’s perspective? From a
compiler writer’s perspective?

d) How do the SC and RC models differ from an implementation and performance
perspective: (i) with speculation, and (ii) without speculation?

3. Speculative Lock Elision and Transactional Memory

Intel and IBM have recently announced processors that implement best-effort hardware
transactional memory. Best effort means that the transactions can always fail (in fact, a
legal implementation of a begin transaction instruction is a noop). Even though
transactions are not guarantee to succeed, this hardware will enable programmers to
exploit speculative lock elision.

a) Explain what speculative lock elision is and how it can increase concurrency in a
parallel or multhithreaded shared memory program.

b) Explain why best-effort transactional memory hardware is easier to implement
than other hardware transactional memory systems.

c) What limitations and pitfalls do best-effort transactional memory systems pose?

4. Memory data-dependence speculation

Consider memory data-dependence speculation in a uniprocessr executing instructions
out of program order.

a) What does memory data-dependence speculation seek to do, i.e., exactly what
speculation is done?

b) Why was memory data-dependence speculation considered unimportant until
the last decade or so?

c) Since each dynamic instruction could be unique, what phenomenon does
memory data-dependence speculatation rely upon to be effective? (Hint: Caches
rely on temporal and spatial locality.)

d) Describe one reasonable implementation (either from your reading list or
outside) of a memory data-dependence speculation system. You may use a
diagram if you like. Your explanation should describe its operation – it is not
necessary for you to explain every possible scenario of dependences that could
occur and how speculation/mis-speculation recovery works.

5. Instruction Set Architecture (ISA)

The design and features of an instruction set has long been an important aspect of
computer architecture. There have been many different design philosophies for
instruction sets, which include RISC, CISC, and vector instructions.

a) Why was ISA design historically considered to be an important aspect of
computer architecture?

b) How important has ISA design been in recent years (e.g., the last decade)? Be
sure to include a detailed discussion of the reasons and arguments supporting
your answer.

c) Given the current (and projected future) trend towards ubiquitous, low-power
computing devices that are constantly connected to remote computers, how do
you expect ISA design to evolve in the future?

6. Future technology

Over the past four decades, society has benefited from exponential performance scaling
that has resulted in large part from Moore’s Law and Dennard Scaling. Due to the
slowing down of transistor voltage scaling (i.e., the end of Dennard Scaling) many have
argued for a shift from (only) conventional CPUs toward alternatives like specialized
processors (e.g., cryptographic and compression engines and audio/video codecs),
accelerators (e.g., GPUs and vector units), approximate computing (e.g., low or
imprecise arithmetic), and better-than-worst-case designs (e.g., Razor). Make a case for
both points (a) and (b) below.

a) These paradigms (either in combination or one alone) are likely to sustain the
continued performance growth under fixed power budgets for another 4 to 5
successive generations at least (i.e., 8 to 10 year). A generation is defined as a
scaling epoch (e.g., 24 months).

b) These alternatives do little to combat fundamental voltage scaling problems and
are merely one shot solutions that only target vanishingly small parts of the
application domain. They represent a desperate, but largely futile effort to
continue the performance scaling that was previously driven by Moore’s Law
and Dennard Scaling

