
FALL 2000
COMPUTER SCIENCES DEPARTMENT

UNIVERSITY OF WISCONSIN—MADISON
PH.D. QUALIFYING EXAMINATION

Computer Architecture
Qualifying Examination

Monday, September 18, 2000
3:00 – 7:00 PM

Room 1213 Engineering Hall

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and the

question answered in that book. On one of your books list the numbers of all the

questions answered. Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are

available if needed.

SPECIFIC INSTRUCTIONS:

Answer all of the following SIX questions. The questions are quite specific. If, however,

some confusion should arise, be sure to state all your assumptions explicitly.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless,

the exam sometimes contains misprints and ambiguities. If you are convinced a problem

has been stated incorrectly, mention this to the proctor. If necessary, the proctor can

contact a representative of the area to resolve problems during the first hour of the exam.

In any case, you should indicate your interpretation of the problem in your written

answer. Your interpretation should be such that the problem is non-trivial.
1

1. Decimal Carry Lookahead Addition

Binary Coded Decimal (BCD) represents a decimal digit with four bits using binary bit

patterns 0000 (0) through 1001 (9). Assume that each digit of a decimal adder has inputs

a<3:0> , b<3:0> , and carr y in and outputs sum<3:0> , carry-generate g , and carry-

propagate p . Also assume that all decimal numbers are non-negative.

(a) Specify g and p unambiguously (e.g., with C code or logic equations).

(b) Consider a block of three decimal digits. Let output G be asserted if the block gener-

ates a carry. Let output P be asserted if the block propagates a carry. Specify G and P.

(c) Specify how to create a decimal adder of nine digits using three of the blocks speci-

fied for part (b).

2. Branches

Branches are one of the biggest, if not the biggest, performance impediments in modern

processors.

(a) How do branch instructions degrade the performance of a processor?

(b) Describe two architectural solutions to overcome the performance impediments of

branch instructions. Discuss their pros and cons.

(c) Describe two microarchitectural solutions to overcome the performance impediments

of branch instructions. Discuss their pros and cons.

3. Prefetching versus Non-Blocking Caches.

Some researchers have argued that non-blocking caches (a.k.a., lockup-free caches) are

necessary to obtain high memory system bandwidth. Others have argued that hardware

and/or software-directed prefetching support is necessary to achieve this goal.

(a) Explain how non-blocking caches can improve memory system bandwidth.

(b) Explain one software-directed prefetching mechanism and how it can improve mem-

ory system bandwidth.

(c) What demands do non-blocking caches and software-directed prefetching place on

the processor, cache structure, system bus, and main memory to fully exploit their

capabilities? Do these different schemes work together synergistically or do they con-

flict. Explain.
2

4. I/O Interface Implementation

Most modern computer systems have a system interconnect (e.g., the system bus) that

connects the processor and caches to main memory. In addition, these systems have one

or more I/O interconnects (e.g., an I/O bus), such as PCI, to connect to I/O devices. The

operating system accesses these I/O devices using ordinary loads and stores.

(a) Describe one typical way that the I/O interconnect is physically connected to the rest

of the computer system. Discuss issues that affect performance and correctness of

operation, such as flow control and deadlock avoidance.

(b) Describe the way in which the hardware and software work to allow ordinary loads

and stores to access I/O devices. Be sure to discuss addressing issues.

5. Synchronization

Locks are a common synchronization abstraction that provide mutual exclusion in

shared-memory parallel programs. Locks can be implemented in a variety of different

ways, including: (1) atomic memory primitives (e.g., test-and-set and fetch&add) (2) non-

atomic memory primitives (e.g., load-linked/store-conditional), and (3) explicit hard-

ware lock/unlock primitives (e.g., Cray Y-MP lock registers, Dash’s lock/unlock opera-

tions on directory entries, and QOSB/QOLB)

(a) Discuss the tradeoffs of these different approaches. What limitations do they have?

How complex are they to implement in hardware and in software? What is their

impact on performance in both the contended and uncontended cases?

(b) If you were designing a processor specifically for a shared-memory parallel server,

which mechanism(s) would you chose and why?

6. Computing with Molecules

As a possible successor to CMOS, chemists are proposing a technology to do computing

with molecules. It appears, for example, that a molecular technology can implement the

logical OR of two inputs. More work is needed to develop molecular technology to the

point where is can support a logic family suitable for implementing programmable com-

puters.

(a) At All: What primitives and properties does a molecular logic family need to make is

possible to use it for implementing a programmable computer?

(b) Better: What additional properties might a molecular logic family possess to make it

more likely that it could be used to implement computing products superior to those

implemented with conventional technology?
3

	FALL 2000 COMPUTER SCIENCES DEPARTMENT UNIVERSITY OF WISCONSIN—MADISON PH.D. QUALIFYING EXAMINATI...
	1. Decimal Carry Lookahead Addition
	(a) Specify g and p unambiguously (e.g., with C code or logic equations).
	(b) Consider a block of three decimal digits. Let output G be asserted if the block generates a c...
	(c) Specify how to create a decimal adder of nine digits using three of the blocks specified for ...

	2. Branches
	(a) How do branch instructions degrade the performance of a processor?
	(b) Describe two architectural solutions to overcome the performance impediments of branch instru...
	(c) Describe two microarchitectural solutions to overcome the performance impediments of branch i...

	3. Prefetching versus Non-Blocking Caches.
	(a) Explain how non-blocking caches can improve memory system bandwidth.
	(b) Explain one software-directed prefetching mechanism and how it can improve memory system band...
	(c) What demands do non-blocking caches and software-directed prefetching place on the processor,...

	4. I/O Interface Implementation
	(a) Describe one typical way that the I/O interconnect is physically connected to the rest of the...
	(b) Describe the way in which the hardware and software work to allow ordinary loads and stores t...

	5. Synchronization
	(a) Discuss the tradeoffs of these different approaches. What limitations do they have? How compl...
	(b) If you were designing a processor specifically for a shared-memory parallel server, which mec...

	6. Computing with Molecules
	(a) At All: What primitives and properties does a molecular logic family need to make is possible...
	(b) Better: What additional properties might a molecular logic family possess to make it more lik...

