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1 Introduction

In storage systems, a checksum mismatch for a piece
of data could occur due to two distinct underlying
reasons: a storage corruption or a system crash. In
the first case, a piece of data could be safely persisted
but could be corrupted at some later point (e.g., due
to a faulty disk). In the second, the system could have
crashed (e.g., due to a power failure) in the middle of
an update, resulting in partially written data, causing
a checksum mismatch.

It is critical for a storage system to distinguish the
two conditions to perform recovery actions correctly.
If crashes and corruptions are not treated separately,
serious consequences such as data loss may arise. For
example, many log-based storage systems conflate
crashes and corruptions, always treating mismatches
as crashes, resulting in serious consequences such as
data loss [1].

Crash-corruption disentanglement is a fundamen-
tal problem applicable to any log-based storage sys-
tem. Consequently, it also arises in the context of
replicated logs, a basic abstraction to implement repli-
cated state machines (Rsm). In Rsm systems, the
commands to the state machine are stored as entries
in a log, replicated across many nodes.

Ctrl [1] intends to protect Rsm systems against
storage corruptions and recover corrupted entries
from redundant copies. Ctrl realizes that if a mis-
match were really due to a crash, it is safe to discard
the partially written data; it is safe because the node
would not have acknowledged to any external entity
that it has written the entry. However, if an entry
is corrupted, the entry cannot be simply discarded
since it could be globally committed; therefore, it has
to be recovered from copies on other nodes. Further-
more, if a mismatch can be correctly attributed to a
crash, the faulty entry can be quickly discarded lo-
cally, avoiding the distributed recovery.

As a prerequisite to achieve the above goals, the
storage layer of Ctrl needs to correctly distinguish
crashes and corruptions in the replicated log.

Many storage systems use a commit record to mark

the successful completion of a data update. Similarly,
Ctrl also writes a persist record after writing an en-
try to the log. For now, assume that an entry is
ordered before its persist record. During recovery,
if the persist record is not present and a checksum
mismatch occurs for an entry, Ctrl’s recovery code
can determine that the mismatch is due to an in-
terrupted update (i.e., a crash). Conversely, if the
persist record is present and a checksum mismatch
occurs, the recovery code can conclude that it is a
storage corruption.

The above disentanglement logic works correctly
when an entry is explicitly ordered before its persist
record using a fsync system call. However, such addi-
tional fsync calls could affect the log-update perfor-
mance significantly. For this reason, Ctrl does not
explicitly order an entry before its persist record.

Without explicitly ordering a data item before its
persist record, Ctrl can still distinguish crashes from
corruptions in most cases. However, if a checksum
mismatch happens for the last entry in the log and if
its persist record is present, Ctrl cannot determine
whether the mismatch is a due to storage corruption
or a system crash. The inability to disentangle the
last entry when its persist record is present is not spe-
cific to Ctrl, but rather a fundamental limitation in
any log-based system. The following section presents
the proof of this claim.

2 Impossibility of Last-Entry Disen-
tanglement without Ordering

Identifiers. In Ctrl, the persist record of a log
entry also acts as its identifier. The identifier (or
equivalently the persist record) of a log entry con-
tains vital information about that entry; this infor-
mation helps Ctrl’s distributed protocol to recover
corrupted entries from copies on other nodes. Thus,
in the reminder of the discussion, we will use the term
identifiers instead of persist records.

Log state. We model the log L as two disjoint lists,
one list Le that stores entries and one list Lid that
stores identifiers.
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Instructions. We assume we only have two kinds
of instructions:
– write(v), which updates Le or Lid (depending on if
v is an entry or identifier).

– fsync() commits all previous writes.

Sequences. A disentangled sequence of transactions
σ = t1, . . . , tn, where n > 1 is one where each ti is a
subsequence of three instructions: a1i , a2i , a3i , where:
– a1i is of the form write(ei).

– a2i is of the form write(idi).

– a3i is of the form fsync().
where ei is the entry to be written and idi is its re-
spective identifier. For simplicity, we assume a single
log.

Log appends. Suppose we are given a disentangled
sequence σ = t1, . . . , tn. We use LI to denote the
initial state of the log. We use σLI to denote the state
of the log after executing the sequence σ beginning
from state LI .

Corruption and Crash. We distinguish between
two bad events: corruptions co and crashes cr.
– A corruption coi changes element ei in Le to some
new e′i where e′i 6= ei.

– We assume a crash cri can only happen between a2i
and a3i , i.e., right before the fsync, for a sequence
t1, . . . , tn, as defined above.
Given sequence σ, we use σcri to denote σ with a

crash in si. Given σ, we use σcoi to denote σ with a
corruption event coi appended at the end.

Theorem 1 (Disentanglement). Suppose we are
given the disentangled sequence σ and log L.

– Case 1: Let L1 = σcrnL
I , and let L2 = σconL

I .
Suppose we are provided LI , σ, and one of the logs
L1 and L2. We cannot detect whether σcrn or σcon

is the one that executed resulting in L1 or L2.

– Case 2: Let Lcoi = σcoiL
I , where i ∈ [1, n). Pro-

vided LI , σ, and Lcoi , we can conclude that σcrj did
not execute, where j ∈ [1, n].

Proof. First, we note that by being able to detect
whether a crash or corruption happened, we mean

that there exists a deterministic algorithm that will
return whether a crash or corruption happened.

Case 1: We prove the first case with a simple con-
struction. Let σ = s1, where

s1 = write(e1),write(id1), fsync()

Let LI be the empty log. Let L1 = σcr1L
I and L2 =

σco1
LI .

Assume that when the crash cr1 happened, only
a strict subset of e1 was written in addition to id1.
Let the strict subset of e1 that was written be e′1.
The above condition can arise because write(e1) need
not be atomic and writes can be reordered by the
underlying file system on a crash. Now, assume that
the corruption co1 turns e1 to e′1.

We can now prove the first case by contradiction:
Suppose there is an algorithmM that can take (i) the
initial state of the log, (ii) the current state of the log,
and (iii) the sequence of transactions σ that lead to
the current state (minus co and cr events), and de-
terministically returns whether a crash or corruption
happened. In the above example, L1 = L2 by con-
struction. So, M(LI , L1, σ) = M(LI , L2, σ). There-
fore, no such M exists.

Case 2: Fix i, j as in theorem statement. Let
Lcrj = σcrjL

I . Assume Lcrj = Lcoi . If j 6= i, then
entry ei cannot be affected by the crash, and there-
fore the Lcrj 6= Lcoi If j = i, since i < n, then ei is
fixed by recovery. Therefore, Lcrj 6= Lcoi �
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