
X-RAY: A Non-Invasive Exclusive Caching Mechanism for RAIDs

Lakshmi N. Bairavasundaram, Muthian Sivathanu,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Computer Sciences Department, University of Wisconsin-Madison

Abstract

RAID storage arrays often possess gigabytes of RAM for
caching disk blocks. Currently, most RAID systems use LRU
or LRU-like policies to manage these caches. Since these array
caches do not recognize the presence of file system buffer caches,
they redundantly retain many of the same blocks as those cached
by the file system, thereby wasting precious cache space. In this
paper, we introduce X-RAY, an exclusive RAID array caching
mechanism. X-RAY achieves a high degree of (but not perfect) ex-
clusivity through gray-box methods: by observing which files have
been accessed through updates to file system meta-data, X-RAY
constructs an approximate image of the contents of the file system
cache and uses that information to determine the exclusive set of
blocks that should be cached by the array. We use microbench-
marks to demonstrate that X-RAY’s prediction of the file system
buffer cache contents is highly accurate, and trace-based sim-
ulation to show that X-RAY considerably outperforms LRU and
performs as well as other more invasive approaches. The main
strength of the X-RAY approach is that it is easy to deploy – all
performance gains are achieved without changes to the SCSI pro-
tocol or the file system above.

1 Introduction

Modern systems are comprised of multiple levels of caching,
at both the processor level as well as throughout the rest of the
storage hierarchy. In such a hierarchy, the performance of second-
level caches can be quite important, as many important data sets
do not fit entirely within the first-level caches [8, 14].

To increase the effectiveness of second-level caches, previous
work in processor caching has introduced the concept of exclusive
caching [13]. By avoiding the duplication of data in different lev-
els of the memory hierarchy, the effective amount of useful cache
real estate is increased, potentially improving performance.

Exclusivity has been studied at other levels in the storage hier-
archy as well, including distributed file systems [17, 18, 23] and
storage arrays (RAIDs) [24]. The problem of inclusion is of partic-
ular importance in modern storage systems, which are often built
as a two-level hierarchy, with the file system at the first (top) level,
and a storage array with multiple disks beneath. The first-level
cache is managed by the operating system, which usually imple-
ments an LRU-based replacement policy. The storage array hard-

ware manages its memory, and although this memory serves as a
second-level cache, it too is often managed in LRU fashion. Wors-
ening the problem is the fact that hosts and disk arrays have caches
of similar size; high-end disk arrays have gigabytes of memory and
often run under similarly configured hosts [24]. Without cache ex-
clusion, the cache space within these storage arrays is wasted.

Previous storage research has addressed this problem in two
different ways. One approach is to change the second-level pol-
icy to incorporate other access characteristics (e.g., frequency) to
make replacement decisions [23, 25]. This approach avoids cache
inclusion with policies that are carefully tailored to work beneath
an LRU cache under specific workloads. However, under different
workloads, such highly-specialized schemes may not function as
desired. Another approach is to change the interface between file
systems and storage. For example, Wong and Wilkes propose a
new SCSI command DEMOTE which moves a block from the OS
cache directly to the RAID cache, thus enabling the OS to man-
age the array cache explicitly and in LRU discipline [24]. How-
ever, this approach cannot be readily deployed: just as inducing an
instruction-set change at the processor level is difficult (and hence
leads researchers to focus on micro-architectural innovations), so
too is changing file systems and the interface between file systems
and storage (i.e., SCSI). The result is that storage vendors are un-
likely to implement such a mechanism.

Hence, we believe a remaining challenge for storage array
cache design is to derive a second-level caching scheme that is
LRU-based (so as to work for as many workloads as possible) and
yet does not require a change in the interface between file systems
and storage (so as to be broadly deployable). In this paper, we
introduce X-RAY (an eXclusive arRAY cache), an array caching
scheme designed to meet said goals.

The primary difficulty with building an exclusive LRU-based
RAID cache without changing the interface to storage is that much
of the file system activity cannot be observed by the RAID (e.g.,
reads to cached pages); hence, the RAID has a fuzzy picture of
the contents of the cache above and cannot appropriately adjust
its own contents. X-RAY sharpens this picture through gray-box
methods [4]: by observing updates to the access time field in a
file’s inode, X-RAY can infer which file blocks are accessed and
thus build an approximate view of the contents of the cache above.
X-RAY combines this knowledge with traditional monitoring of
data accesses to keep the next most relevant data in its cache, thus
approaching the performance of a globally-managed LRU cache.

We study X-RAY through a series of simulations. We find
that X-RAY can accurately predict the contents of the file system

1

Appears in the Proceedings of the 31st International Symposium on Computer Architecture (ISCA ’04)

cache. This accurate prediction enables a highly exclusive cache
delivering noticeably higher hit rates than a simple LRU cache pol-
icy. On real workloads, X-RAY improves hit rates by over a factor
of two as compared to LRU, thus approaching the performance of
a perfect exclusive cache, all without requiring changes to the file
system or the the interface to storage.

The rest of the paper is structured as follows. Section 2 pro-
vides an overview of file system operation and explains the prob-
lem of cache inclusion in the storage hierarchy. Section 3 discusses
the semantic information obtained in the disk and its implications.
Section 4 describes the X-RAY cache. Section 5 evaluates our
caching mechanism. Section 6 discusses related work. Section 7
summarizes our work and outlines future research directions.

2 Background

This section outlines the operation of the file system from the
viewpoint of caching, explains the problem of cache inclusion in
the storage hierarchy, and proposes a possible solution based on
utilizing semantic information in the disk array.

2.1 File System Assumptions

We begin by presenting our assumptions about the file system.
Information about a given file is present in its inode, which can
be found at a fixed location on disk. Included in the inode are
pointers to the data blocks of the file; these pointers may be direct
(in the inode itself) or indirect (in a block pointed to by the inode);
further levels of indirection are possible for larger files. The inode
also tracks information about file activity, such as creation time
and last access time.

The file system maintains a buffer cache of variable size which
caches disk blocks. This cache is usually managed using LRU-
like caching policies. In addition to a cache of data blocks, most
operating systems have a separate inode cache which contains the
inodes of all open and recently accessed files. The size of the
file system cache varies due to pressure from the virtual memory
system – when more pages are required for address spaces, fewer
pages are available for file caching.

When a file is opened, the file system first identifies the inode
number of the file by a pathname traversal and then checks if the
inode is present in the inode cache. If not present, the disk block
containing the inode is read in from disk. When an application
reads from the file, the file system calculates the block numbers of
the file for the desired bytes. Then, it uses the inode and indirect
blocks (from the buffer cache or read from disk) to locate the disk
block numbers that correspond to the requested file blocks. The
buffer cache is searched for each block, and disk reads are issued
for blocks not present in the cache. The priority of the blocks in the
buffer cache is updated (e.g., if the cache policy is LRU, the most-
recently read block gets the highest priority). Finally, the access
time field of the file’s in-memory inode is updated and the inode
is marked as dirty. Writing to a file is quite similar. There are two
main differences from a read: the application-generated blocks are
placed in the cache and marked as dirty, and the modification time
field of the inode is updated.

The file system has to periodically flush modified (dirty) blocks
to disk. Modified meta-data blocks (e.g., superblocks, bitmap
blocks, and inode blocks) are generally flushed sooner than modi-
fied data blocks. A typical setting for meta-data blocks (e.g., in the
Linux ext2 file system) is 5 seconds, whereas data is often flushed
after 30 seconds. Thus, access time information is periodically
written out and can be observed by the disk.

2.2 The Problem

Disk arrays use LRU-like policies to manage their cache. A
block is placed in the array cache when there is a miss to the block,
potentially replacing the least recently accessed block. These poli-
cies do not recognize the fact that the array cache is a second-level
cache that services the accesses that miss in the file system buffer
cache. A block read by the file system will be placed in the file sys-
tem buffer cache; all subsequent requests to the block are handled
by this cache and there will be no disk reads for the block until it
is evicted. Since the block is the most recently read block for the
array cache, it will stay in the array cache for a significant period
of time, thereby wasting cache space. Thus, array caches could
be greatly affected by cache inclusion, particularly given that their
size is often comparable to the size of host memory.

It would be ideal if the disk block were to be placed in the array
cache when it is evicted by the file system buffer cache, with the
array cache acting as a victim cache [12]. However, since the disk
array cannot observe disk block requests that hit in the file system
cache, it does not have enough information to decide which block
is being evicted. To complicate the situation further, the file system
buffer cache may not have a fixed size, due to varying degrees of
memory pressure.

2.3 A Possible Solution

The question we are thus addressing is whether the storage sys-
tem can learn the contents of the file system cache (and thus make
better decisions about which blocks the array itself should cache),
without any changes to the file system or the interface to storage.
We believe the key to building such a system is semantic knowl-
edge within the storage array [20]; such a semantically-smart stor-
age array has knowledge of file system structures embedded within
it, and thus has a better sense of how storage is being used than a
typical array. For example, a semantically-smart storage system
can observe when an inode is updated; if the access time field of
the inode has changed, the array can infer that the file has been
read: valuable information for a more intelligent caching scheme.
In the next section, we explore the information that can be obtained
by the disk array through semantic awareness and the inferences
that can be made from this information.

3 Semantic Information

A semantically-smart storage array has knowledge of higher
level file system data structures. For instance, given a block, it can
identify whether it is an inode or a data block, and if it is an inode
block, can look into the block to identify individual fields in the
inode. Such semantic information can either be embedded into the

2

Appears in the Proceedings of the 31st International Symposium on Computer Architecture (ISCA ’04)

Information Inferences Requirements
1 Disk read request for a data block Block will be placed in file system cache as

MRU block
Identify data blocks

2 Disk read request for previously
read block

Block became a victim in file system cache
sometime in the past

Identify data blocks and remember previously
read blocks

3 New access time in inode and no
corresponding disk read observed

Blocks of the file are present in the file sys-
tem cache

Identify inode blocks and note changes to in-
ode fields (cache inode blocks), remember
disk reads

Table 1: Semantic Inferences. The table presents the inferences that can be made by the disk array given a particular piece of information
and the capabilities required to make the inference.

disk array, or can be learned by the array through careful obser-
vation of file system traffic [20]. Note that even embedding this
knowledge within the disk array is reasonable, since on-disk file
system structures do not change often; modern file systems go to
great lengths to preserve on-disk layout across revisions in order to
ensure backward compatibility with existing file systems [9, 21].

With semantic knowledge, a disk array can observe changes to
fields in the inode which indicate the time a particular file was last
accessed or modified. This information may facilitate prediction
of the ordering of blocks in the file system cache and the size of
the file system cache. We next describe the specific inferences
the disk array can make based on this extra semantic information;
Table 1 summarizes these inferences, and the specific mechanisms
required to enable each of the inferences.

Given that the disk array can identify data blocks, it can infer
that a data block being read by the file system will be the most
recently used (MRU) block in the file system cache. If it can be
assumed that the file system cache is LRU-based, the disk array
can also infer that the block being read is the least likely to be re-
placed by the file system. The disk array could make a stronger
inference when the disk read it observes is to a previously read
block. Since the block had been placed in the file system cache
earlier and is not present now, the block must have become a vic-
tim at some point of time between the two disk reads to the block.
To make this inference, the disk array needs to remember block
numbers of previously read blocks.

Finally, updates to the access timestamp field in an inode en-
able the third inference. Since the disk array can identify inode
blocks, it can compare the contents of the inode block being writ-
ten with its previous on-disk state, thus identifying inodes with a
change in access time. Semantic knowledge also enables the disk
array to associate the inode with the data blocks of the file rep-
resented by the inode. With this information, the disk array can
infer that a changed access time for an inode implies that one or
more of the file’s blocks have been accessed in the file system.
Further, if none of the blocks of the file have been read from disk
at the given access time, the disk array can infer that the accessed
blocks are present in the file system cache (assuming that time is
loosely synchronized between the host and the array). In order to
make this inference, the disk array needs to remember past disk
accesses. We assume that a change in access time implies that the
whole file has been accessed (as opposed to just one block of the
file); studies of file system activity indicate this is reasonable [19].
We later explore the ramifications of this assumption.

This set of inferences aids us in constructing access informa-
tion about some blocks. But this information by itself is not use-

ful; for example, when we find out that a block is a victim, it is
already required by the file system cache and hence the informa-
tion is derived too late to be of use. We therefore need a scheme
in which access information about one block provides information
about other blocks as well. If it can be assumed that the file system
cache has an LRU replacement policy (many file systems conform
to this assumption), more useful information can be gleaned. The
disk array could maintain a list of block numbers of the data blocks
read by the file system, ordered by the access times of the blocks
(obtained from inode writes and actual disk reads). This list re-
flects recency of access as perceived by the file system and thus it
attempts to mirror the ordering in the file system cache. The block
at the LRU end of this list has the earliest access time and the one
at the MRU end has the latest access time.

Maintaining an ordered list allows us to extend our inferences.
A disk read to a previously read block B in the ordered list now
not only implies that block B was evicted, but also that all other
blocks between block B and the LRU end of the list were evicted
by the file system cache (these other blocks have earlier access
times than the block being read). Similarly, a file system level
access to a block X that did not generate a disk read implies that
block X and all other blocks between block X and the MRU end
of the ordered list are present in the file system cache.

These basic inferences driven by semantic information could
be useful in approximating the contents of the file system cache.
In the next section, we describe the details of transforming this
base idea into a working cache mechanism that tries to preserve
exclusivity.

4 X-RAY Cache

In this section, we first describe how we build an approximate
image of the file system cache contents using semantic informa-
tion, and then discuss some limitations of the approach. Finally,
we describe how the file cache content prediction can be used to
build an exclusive array cache mechanism.

4.1 Tracking the File System Cache

To track the contents of the file system cache, we maintain an
ordered list of block numbers that are accessed by the file sys-
tem. We call this list the Recency list or R-list. Each entry in
the R-list contains the access time of the block as inferred by the
array, and an identifier which denotes the file to which the block
belongs. A moving pointer, called the Cache Begin pointer or CB

3

Appears in the Proceedings of the 31st International Symposium on Computer Architecture (ISCA ’04)

(a) Actions on a disk read to a block (b) Actions on an inode write

10 1 111 12 2 13 3 14 3 15 4LRU
END

MRU, , , , , ,

Disk read for block 13 at time = 6
CB

LRU
END

to which block 13 belongsInode write for file

10 1 111 12 2 13 3 14 3 15 END, , , , , ,

(access time = 4) CB

6

CB

LRU
END

10 1 111 12 2 3 15 END, , , , , ,14 13 4 6

Inclusive Region

Inclusive Region

Inclusive
Region

Exclusive Region

Exclusive Region

Exclusive Region

END

MRU

MRU

10 1 111 12 2 3LRU
END, , , , , ,14 15 13 64

CB

END

Inclusive RegionExclusive Region

MRU

(block no, timestamp)

Figure 1: R-list and CB pointer operation. The contents of the file system cache is tracked by the disk array using the R-list and the CB
pointer. The figures show the status of the R-list and the CB pointer before and after (a) a disk read, and (b) an inode write. Each block in
the R-list contains a disk block number and its access time.

pointer slides over this list in such a way that it demarcates the set
of blocks that are presumed to be resident in the file cache from
the other blocks in the R-list. We now outline how the R-list and
CB pointer are managed.

The R-list is maintained using two basic rules. First, when a
block is read, it is added or moved to the MRU end of the R-list.
Second, when an access time change is observed as a result of an
inode write, all blocks belonging to the file are removed from the
list and re-inserted into the list reflecting the new access time.

The CB pointer is so called because it is the ideal point where
array cache placement could occur: the number of blocks between
the pointer and the MRU end of the R-list is our estimate of the size
of the file system cache, and the set of blocks in this range is our
approximation of the contents of the file system cache. We label
this region between the CB pointer and the MRU end of the R-list
as the inclusive region, and the region between the CB pointer and
the LRU end of the list as the exclusive region. The CB pointer is
maintained as follows.

When a read is observed to a block in the R-list (indicating
that it has now become a victim) and the block is in the inclusive
region, it implies that the file system cache size had been over-
estimated. Hence, the CB pointer is moved to the position of the
block being read, thereby shrinking the inclusive region. If the vic-
tim block is already present in the exclusive region, the CB pointer
is moved by just 1 block towards the MRU end. This action is re-
quired to account for the possibility that reading this block could
result in eviction of the LRU block in the file system cache. Al-
though this may not always be the case, we try to be conservative
in our estimate of the file cache size.

When a file system level access to blocks is inferred through an
inode write, the set of blocks in the R-list that belong to the cor-
responding file is examined, and the block with the earliest access
time is chosen. If this block lies in the exclusive region, it implies
that the size of the file system cache had been underestimated.
Hence, the CB pointer is moved to the position of the accessed
block, thus expanding the inclusive region. If the accessed block
is already present in the inclusive region, no action is required.

4.1.1 An Example
Figure 1 illustrates the operation of the file system cache tracking
mechanism. The first example is a disk read for block 13 at time
t = 6. Initially, the CB pointer is positioned between blocks 11

and 12, indicating that blocks 12, 13, 14 and 15 are expected to be
present in the file system cache and the other blocks are expected
to be victims of the file system cache. The read for block 13 im-
plies that blocks 12 and 13 had become file system cache victims
sometime in the past. Since block 13 is being read now, it will no
longer be a victim and will be the most recently used block. So,
it is moved to the MRU end of the R-list and its timestamp is up-
dated to 6. The CB pointer is repositioned between blocks 12 and
14 to reflect the fact that block 12 is expected to be a victim.

The second example illustrates an inode write. Initially, the
CB pointer is positioned between blocks 14 and 15, indicating that
only block 15 is expected to be in the file system cache. When an
inode write for the file containing block 13 is observed, the access
timestamp is noted. Let us assume that the timestamp had changed
from 3 to 4. Assuming that no disk reads were observed for the
file, we infer that block 13 is likely to be present in the file system
cache. The CB pointer is now moved past block 13 to reflect this
information. Then, the entry for block 13 is repositioned in the
R-list with the new timestamp value of 4.

4.2 Handling Partial File Access

The above techniques assume that files are accessed in their en-
tirety, and thus use an access time update of an inode to infer infor-
mation about all blocks in the corresponding file. While most file
accesses in typical file system workloads involve whole files [19],
we also require our mechanisms to be robust to occasional partial
file accesses.

For example, a file could be read over time such that a block
B1 of the file is accessed initially, then B1 becomes a victim some-
time later (i.e., its is moved into the exclusive region of the R-list)
and finally, another block B2 is accessed. On receiving the ac-
cess time update due to B2 being accessed, the above mechanism

4

Appears in the Proceedings of the 31st International Symposium on Computer Architecture (ISCA ’04)

would wrongly increase the file cache size up to the position of B1

(it assumes full-file access). To handle this situation, we adopt a
simple heuristic: as long as at least one block belonging to the file
is in the inclusive region, all other blocks of the file in the exclu-
sive region are disregarded when access time updates are received
for the file. Also, to improve the robustness of our techniques to
such occasional skews in access pattern, updates to the CB pointer
are performed only when sufficient evidence is observed. Specifi-
cally, the update is performed only when at least a certain threshold
number of accesses suggest the update, with each of these accesses
pertaining to blocks from different files.

4.3 Limits to Accuracy

Though the above mechanisms can track the contents of the
file system cache to a reasonable level of accuracy, there are a
few fundamental limitations. First, the interval (typically 5 sec-
onds) between inode writes creates a window of uncertainty. Ac-
cesses and evictions to blocks in the file system within this interval
may potentially be unknown to X-RAY, and hence there will be a
mismatch between the actual ordering of blocks at the file sys-
tem and that maintained by X-RAY. Thus, certain blocks could
be moved to the exclusive region, while they actually are recently
used blocks within the file system. When the access information
to those blocks is observed at a later time, the CB pointer will be
moved into the exclusive region to reflect the access information.
While this CB pointer update would account for the access to those
blocks, it would not account for the blocks that got evicted by the
file system during the same time interval. Thus, our cache size es-
timate would be inflated until X-RAY observes a victim read and
shrinks its inclusive region.

Second, since inode timestamps are at the granularity of one
second, multiple files could be accessed with the same access time.
Since the ordering between those relevant blocks is unknown to
X-RAY, it may lead to error in predicted cache size during a fu-
ture read to an evicted block or change in access time. Although
this limitation does not hold in all file systems (the NetBSD FFS
maintains timestamps at a microsecond granularity), we assume
the worst and use the 1-second granularity found in the Linux ext2
file system.

Third, a block could be accessed and then be evicted from the
file system cache within the same inode write interval. In this
case, X-RAY will wrongly believe that the blocks of the file being
accessed and other blocks between these and the MRU end of the
R-list are present in the file system cache. However, for this error
to occur, every block in the file system cache must be accessed at
least once within a single inode write interval.

As we show later, despite these potential limitations, our pre-
diction mechanism achieves a high level of accuracy, thereby en-
abling a cache mechanism that provides near ideal exclusivity.

4.4 The X-RAY Cache Mechanism

This section describes how the X-RAY cache is built on top
of the file system cache tracking mechanism. If the size of the
array cache is N blocks, ideally, the X-RAY cache should contain
the first N blocks past the CB pointer in the exclusive region of
the R-list. Unlike simple policies like LRU which place the block

in their cache when the block is read by the file system, X-RAY
needs to have the block ready before the file system issues a read
to the block. Thus X-RAY needs to explicitly fetch the block that
it needs to place in its exclusive cache.

To decide on which blocks to fetch into its cache, X-RAY peri-
odically examines the R-list to find which blocks have been added
to the N -block window past the CB pointer in the R-list and which
blocks have been removed. The blocks that have been newly added
to the window would replace the removed blocks one-by-one in
the X-RAY cache when they are fetched. The most recently used
blocks among the removed blocks in the cache are replaced first
since these blocks are likely to be present in the file system cache
and X-RAY should avoid inclusion. In order to do this, the X-RAY
cache itself is organized as an access time ordered list of blocks.

The blocks required for placement need to be obtained from
some source. Unlike mechanisms like DEMOTE [24] which
change the interface to accommodate a special “cache place” com-
mand that the file system uses to supply the evicted block, we do
not want to change the interface between the file system and disk.
Therefore, the blocks have to be read from disk.

To schedule its cache placement reads, X-RAY requires addi-
tional disk bandwidth. This additional bandwidth can come in sev-
eral forms. First, if the workload has sufficient idle time between
requests, X-RAY can use the idle time to schedule its disk reads
for placement. In Section 5.3, we explore how much idle time is
required for this purpose. Second, even if the workload does not
have any idle time, X-RAY can still perform timely placement if
the internal bandwidth in the disk array is higher than the exter-
nal bandwidth which is often limited by the bandwidth of a single
SCSI bus. Large storage arrays have many internal buses and sub-
stantial extra internal bandwidth to perform replication and migra-
tion of data within the storage array [10, 22]. In such scenarios,
X-RAY will be able to leverage a small amount of such extra band-
width to schedule its placement reads. Third, freeblock schedul-
ing [16] has been shown to be capable of extracting a significant
amount of “free” bandwidth out of busy disks, with negligible im-
pact on the foreground workload. X-RAY can potentially use free-
block scheduling in cases where internal bandwidth is scarce.

5 Evaluation

In this section, we use trace-based simulation to evaluate
X-RAY. We first describe our simulation environment. Then, in
Section 5.2, we evaluate the X-RAY file system cache tracking
mechanism in terms of how accurately it can predict file cache
contents. Finally, in Section 5.3, we evaluate the performance im-
provements possible with the X-RAY caching mechanism under
both synthetic and real workloads.

5.1 Simulator

We have built a trace-driven simulator of a file system and the
disk system underneath it. The simulator takes in a trace of file
system requests (e.g., open, read, write), and models a file
system that is behaviorally quite similar to the Linux ext2 file sys-
tem.

5

Appears in the Proceedings of the 31st International Symposium on Computer Architecture (ISCA ’04)

In our simplified file system model, a file consists of an inode
and data blocks. Other meta-data blocks, including the superblock,
bitmap blocks, and indirect pointer blocks are not modeled; traffic
to such blocks is quite minimal.

The file system cache uses LRU replacement by default. How-
ever, we investigate the use of other file cache replacement policies
in Section 5.3.4. The size of the cache can be dynamically changed
to model virtual memory pressure.

The file system block size is 4 KB. During writes, blocks are
marked dirty in the buffer cache, and such dirty blocks are writ-
ten out periodically. Dirty inode blocks are written to disk every
5 seconds (unless specified otherwise), while dirty data blocks are
written out every 30 seconds. Inode timestamps are at the granu-
larity of 1 second.

The disk array simulator models a simple disk with a constant
access time. Although we model a single disk for simplicity, we
believe that our results hold for more interesting disk arrays (in-
deed, most of our evaluation concentrates on hit rates and is thus
disk-speed insensitive). Access times for different levels in the hi-
erarchy are as follows: hits in the file system cache take 20 µs,
hits in the array cache cost 200 µs, and disk accesses cost 10 ms.

5.2 Prediction Accuracy

In this section, we quantify the degree of accuracy with which
X-RAY can track the size and contents of the file system cache,
and explore the sensitivity of the mechanism to various system
and workload parameters. We use the following metrics:

• Error in cache size prediction: The predicted file system
cache size is the number of blocks in the inclusive region of the
R-list. The difference between the predicted cache size and the
actual file system cache size is measured at regular intervals and
the average error is computed.

• Fraction of false positives: To be effective, X-RAY must
cache blocks that were recent victims of the file system cache.
However, due to prediction inaccuracy, X-RAY could wrongly
conclude that certain blocks are in the file system cache while they
are actually victims. We measure the ratio of the number of such
false positives to the predicted cache size.

• Fraction of false negatives: To maintain exclusion, X-RAY
must avoid wrongly identifying blocks in the file system cache
as victims. This metric is the ratio of the number of such false
negatives to the actual cache size.

We use two synthetic workloads, random and zipf (similar
to the ones used by Wong and Wilkes [24] to evaluate exclusive
caching), for the experiments in this subsection. Both workloads
have a warmup phase, where a set of files are read fully and se-
quentially. Then, files are selected in some order from the same
set and read fully. In the random benchmark, the selection of files
is uniform at random, while the zipf benchmark selects files based
on a Zipf distribution where the selection is highly biased towards
a small number of “popular” files.

5.2.1 Prediction of File System Cache Size
First, we run the random benchmark with the file system cache
size initially set to 4000 blocks, and record the cache size pre-
dicted by X-RAY over the execution of the benchmark. In order to
evaluate the reactivity of X-RAY to cache size changes, we change

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700

C
ac

he
 s

iz
e

(b
lo

ck
s)

Time (seconds)

Predicted Size
Actual Size

Figure 2: Cache Size Prediction. The cache size prediction com-
pared to the actual cache size over the execution of the random
benchmark is shown. The benchmark uses 512 files, each 16 blocks
in size and performs 2560 full-file reads after the warmup phase.
The actual cache size is changed (+/- 2000 blocks) for every 16000
blocks read after warmup.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

S
iz

e
P

re
di

ct
io

n
E

rr
or

 (%
)

File System Cache Size (1000s of blocks)

Size Prediction Error: Random

File size = 1 block
File size = 4 blocks

File size = 16 blocks
File size = 64 blocks

File size = 256 blocks

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

S
iz

e
P

re
di

ct
io

n
E

rr
or

 (%
)

File System Cache Size (1000s of blocks)

Size Prediction Error: Zipf

File size = 1 block
File size = 4 blocks

File size = 16 blocks
File size = 64 blocks

File size = 256 blocks

Figure 3: Estimating Cache Size. Average percentage error in
cache size prediction as a function of file system cache size is plot-
ted for different file sizes for the random and zipf benchmarks. The
working set size is kept constant at 8192 blocks and the bench-
marks are executed for different file sizes. The total number of
blocks accessed during the benchmark is also kept constant. A
100 second warmup period has been used for all measurements.

the actual cache size of the file system multiple times during the
execution of the benchmark. Figure 2 compares the cache size pre-
diction of X-RAY with the actual file system cache size. During
the warmup phase (first 85 seconds), since the benchmark scans
through all the blocks in the working set, X-RAY receives no use-
ful information about the contents of file system cache. Once the
random selection phase starts, X-RAY is able to predict the size
of the file system cache to a high degree of accuracy. We can also
see that X-RAY is highly responsive to changes to the file system
cache size. Inaccuracies due to the reasons cited earlier are respon-
sible for the slight overestimate of the cache size that we observe.
We obtained similar results for the zipf benchmark (not shown).

We next explore the average percentage error in cache size pre-
diction under the random and zipf benchmarks. The mechanism is
evaluated for different file sizes and file system cache sizes. Fig-
ure 3 shows the sensitivity of size prediction error to different sizes
of the file system cache and different file sizes. File size may be
a factor in how well the mechanism performs because access time
information is obtained at the granularity of a file.

6

Appears in the Proceedings of the 31st International Symposium on Computer Architecture (ISCA ’04)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

File System Cache Size (1000s of blocks)

False Positives: Random

File size = 1 block
File size = 4 blocks

File size = 16 blocks
File size = 64 blocks

File size = 256 blocks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

File System Cache Size (1000s of blocks)

False Positives: Zipf

File size = 1 block
File size = 4 blocks

File size = 16 blocks
File size = 64 blocks

File size = 256 blocks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

Fr
ac

tio
n

of
 F

al
se

 N
eg

at
iv

es

File System Cache Size (1000s of blocks)

False Negatives: Random

File size = 1 block
File size = 4 blocks

File size = 16 blocks
File size = 64 blocks

File size = 256 blocks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

Fr
ac

tio
n

of
 F

al
se

 N
eg

at
iv

es

File System Cache Size (1000s of blocks)

False Negatives: Zipf

File size = 1 block
File size = 4 blocks

File size = 16 blocks
File size = 64 blocks

File size = 256 blocks

Figure 4: False Positives and False Negatives. Fraction of false positives and fraction of false negatives as a function of file system cache
size are plotted for different file sizes for the random and zipf benchmarks. The working set size is kept constant at 8192 blocks and the
benchmarks are executed for different file sizes. The total number of blocks accessed during the benchmark is also kept constant. A warmup
period of 100 seconds has been used for all measurements.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
iz

e
P

re
di

ct
io

n
E

rr
or

 (%
)

Percentage of files accessed partially

Size Prediction

random
zipf

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

Percentage of files accessed partially

False Positives

random
zipf

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Fr
ac

tio
n

of
 F

al
se

 N
eg

at
iv

es

Percentage of files accessed partially

False Negatives

random
zipf

Figure 5: Partial File Access. The performance of file system cache tracking is evaluated as the percentage of partially accessed files
increases. The working set consists of 512 files, each 16 blocks in size. The file system cache size is 4000 blocks. Random performs
2560 file reads and zipf performs 5120 file reads, where varying percentages of files are read partially. The figure shows (a) Average size
prediction error , (b) False positives fraction, and (c) False negatives.

From the graphs, we can observe that as file system cache size
increases the percentage error decreases. With a larger cache size,
fewer blocks are evicted from the cache in between inode writes,
leading to lower misclassification errors. The size prediction error
depends to some extent on file size. The error increases when the
file size increases considerably and is a significant fraction of the
file system cache size.

5.2.2 Prediction of File System Cache Contents
We now look at the efficacy of X-RAY in predicting the contents
of the file cache, in terms of two metrics outlined above, namely
fraction of false positives and false negatives. It is important that
both fractions are as low as possible. A high number of false posi-
tives would imply that X-RAY would ignore a significant number
of recently accessed blocks which are not cached in file system
cache and a high number of false negatives will lead to X-RAY
redundantly caching many of the blocks already present in the file
system cache.

Figure 4 plots the fraction of false positives and the fraction
of false negatives predicted by X-RAY under various file system
cache sizes and file sizes for the random and zipf workloads. As
the graphs show, the fraction of false positives is quite low across a
range of parameters. Also, the fraction of false positives decreases
with increase in file cache size, similar to the trend observed in
size prediction error. Thus, the file cache tracking mechanism can
be quite effective at identifying recent victims of the file cache
quickly. With respect to false negatives, the trends are similar
to that of the earlier graphs, with the average fraction being low
throughout. This indicates that the X-RAY cache is likely to have
a high degree of exclusivity.

5.2.3 Sensitivity to Partial File Access
To evaluate how robust the X-RAY prediction mechanism is to
partial file access, we modified the random and zipf benchmarks
to access a random number of blocks for a percentage of the files,
while the rest of the files are read fully. Figure 5 shows the pre-
diction error of X-RAY under the three error metrics, as the per-
centage of files accessed partially is increased. It can be seen from
the graphs that X-RAY tolerates partial file reads quite well. Stud-
ies [5, 19] have shown that most of the file accesses in typical
file system workloads are whole file reads. Specifically, Baker et
al. [5] found that 78% of all read-only accesses (which was 89%

of read bytes) were sequential whole file transfers. Thus, a maxi-
mum of 22% of the reads are non-full; for this value, our size and
content predictions are quite accurate.

5.2.4 Sensitivity to Inode Write Interval
X-RAY obtains file access information through inode writes.
Therefore the performance of X-RAY is likely to be sensitive to
how long the inode blocks are dirty before they are written out.
Figure 6 graphs the performance of X-RAY as the inode write de-
lay is increased. The figures show that for reasonably small write
delays (up to about 16 seconds), the prediction error is tolerable,
but for excessively long write delays, the size prediction error and
fraction of false negatives increase considerably. Given that inode
access time update is one of the fundamental sources of informa-
tion for X-RAY, it is not surprising that a reasonable inode write
frequency is required for prediction. Typical file systems such as
the Linux ext2 file system indeed have small write delays for inode
blocks.

7

Appears in the Proceedings of the 31st International Symposium on Computer Architecture (ISCA ’04)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

S
iz

e
P

re
di

ct
io

n
E

rr
or

 (%
)

Inode Write Interval (seconds)

Size Prediction

zipf
random

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

Inode Write Interval (seconds)

False Positives

zipf
random

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

Fr
ac

tio
n

of
 F

al
se

 N
eg

at
iv

es

Inode Write Interval (seconds)

False Negatives

zipf
random

Figure 6: Inode Write Interval. The performance of file system cache tracking is evaluated as the inode write interval increases. The
working set is 512 files, each 16 blocks in size. Random performs 2560 full-file reads and zipf performs 5120 full-file reads. The figure
shows (a) Average size prediction error (b) False positives fraction and (c) False negatives fraction, for different inode write intervals.

FS Cache Workload Size False False
Size Size Prediction Positives Negatives

(blocks) (blocks) Error Fraction Fraction
1000 2048 24.3% 0.179 0.066
2000 4096 18.9% 0.161 0.028
4000 8192 8.5% 0.084 0.01
8000 16384 4.6% 0.048 0.006

Table 2: Scaling Behavior. Quality of file system cache tracking
is evaluated as file system cache size and workload size are scaled
up. The random benchmark is executed with file size set to 16
blocks. The number of files increases as the working set increases.

5.2.5 Scaling Behavior
Table 2 shows the scaling of X-RAY in terms of the various error
metrics when both the workload size and file system cache size are
increased for the random benchmark. We observe that the effect of
these errors decreases for this benchmark as the file system cache
size and workload are scaled up. Since many of the error sources
are independent of the file system cache size, the percentage error
reduces as the file system cache size is scaled up.

5.3 Cache Performance

In this section, the performance of the X-RAY cache mecha-
nism is evaluated under synthetic workloads and real traces. We
compare the hit rates of the array cache under different approaches,
and also examine the resulting response time for the read (i.e., the
average read latency). We compare the performance of X-RAY
to four alternative approaches. First, we compare it with an ar-
ray cache that is managed in simple LRU fashion, which repre-
sents how many array caches are managed today. Second, we con-
sider Multi-Queue [25], a cache policy specifically designed for
second-level caches, that utilizes frequency of access to prioritize
blocks. Third, we compare our approach to the DEMOTE [24]
cache mechanism, which achieves exclusivity by modifying the
file system to explicitly supply victim blocks to the array cache.
Finally, we compare it to an ideal case scenario where the array
cache is just added to the file system cache; this gives an upper
bound for how much better the array cache can do if it can achieve
perfect exclusivity. Note that this case is relevant only for read la-

tency measurements and not for hit rate measurements (there is no
separate array cache).

For most of the experiments in this section, we assume that
X-RAY has sufficient extra bandwidth to schedule all its cache
placement disk reads. Later, we consider a more constrained sce-
nario (no extra bandwidth) to quantify the idle time needed by
X-RAY to work effectively. Finally, we compare the performance
of X-RAY to other approaches when the file system cache policy
is not LRU.

5.3.1 Synthetic Workloads
For this set of experiments, we use the same random and zipf
workloads described in section 5.2. Figure 7a and Figure 8a show
the array cache hit rates for X-RAY, LRU, Multi-Queue and DE-
MOTE for different array cache sizes for the random and zipf
workloads. All measurements are after the warmup phase of the
benchmarks.

From the figures, we can see that X-RAY outperforms LRU
and Multi-Queue significantly. For the random workload, X-RAY
compares almost indistinguishably with DEMOTE, implying that
X-RAY is quite effective at enforcing exclusivity even without
the explicit accurate information that DEMOTE has. For the zipf
workload, the hit rate of X-RAY is quite close to that of DEMOTE.
The reason X-RAY performs slightly worse in this case compared
to the random workload is that the impact of false positives is
higher for the zipf workload (it is more important to capture the
recent victims of the file system cache). For both workloads, the
Multi-Queue policy performs better than LRU due to its consider-
ation of frequency of access.

Figure 7b and Figure 8b compare the average read latency for
the same workloads under X-RAY and other mechanisms. We also
compare X-RAY with the ideal scenario where the array cache
space is just added to the host file system. Not surprisingly, DE-
MOTE performs very close to the ideal scenario, since it has per-
fect information to enforce exclusivity. The latency under X-RAY
is much better than the LRU and Multi-Queue policies and is quite
close to the ideal scenarios. The higher hit rates achieved by
X-RAY lead to significant improvements in read latency for both
benchmarks.

5.3.2 Real Workloads
We now evaluate the performance of X-RAY under real work-
loads. In this set of experiments, we use HTTP traces of different
web servers to evaluate X-RAY. We convert the trace of requests

8

Appears in the Proceedings of the 31st International Symposium on Computer Architecture (ISCA ’04)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000 6000

H
it

R
at

e

Array Cache Size (blocks)

(a) Random: Hit Rate

DEMOTE
X-RAY

Multi-Queue
LRU

 0

 2

 4

 6

 8

 10

 0 1000 2000 3000 4000 5000 6000

R
ea

d
La

te
nc

y
(m

ill
is

ec
on

ds
)

Array Cache Size (blocks)

(b) Random: Read Latency

LRU
Multi-Queue

X-RAY
DEMOTE
Extra FS

Figure 7: Random Workload. Array Cache Hit Rate and Average Read Latency for X-RAY, LRU, Multi-Queue and DEMOTE for the
random benchmark are presented. The read latency graph also plots the line pertaining to adding extra space to the file system cache. The
file system cache size is set to 4000 blocks. The benchmark uses 1024 files, each 16 blocks in size. 20480 file reads are performed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000 6000

H
it

R
at

e

Array Cache Size (blocks)

(a) Zipf : Hit Rate

DEMOTE
X-RAY

Multi-Queue
LRU

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000 6000

R
ea

d
La

te
nc

y
(m

ill
is

ec
on

ds
)

Array Cache Size (blocks)

(b) Zipf : Read Latency

LRU
Multi-Queue

X-RAY
DEMOTE
Extra FS

Figure 8: Zipf Workload. Array Cache Hit Rate and Average Read Latency for X-RAY, LRU, Multi-Queue and DEMOTE for the zipf
benchmark are presented. The read latency graph also plots the line pertaining to adding extra space to the file system cache. The file
system cache size is set to 4000 blocks. The benchmark uses 1024 files, each 16 blocks in size. 20480 file reads are performed.

to the web servers to corresponding file system read operations.
We assume that objects referred to in the trace are static files and
not generated dynamically (for one of the traces, 88% of the re-
quests were to image files and 10% of the requests were to HTML
files [3]). We also assume that if b bytes of data are returned to the
client, they are the first b bytes of the file. We issue the requests
exactly at the times specified in the trace, thus preserving the idle
time between requests.

We use the following traces in this section:
• A 75-minute section of the HTTP trace of the heavily ac-

cessed 1998 soccer World Cup website [2].
• A section of the HTTP trace from the NASA web server

recorded in August 1995 [1].
Figure 9 shows the hit rate of the array cache and the average

read latency for the worldcup98 workload. As the figure shows,
the hit rate achieved by X-RAY is much better than both LRU
and Multi-Queue for the entire range of array cache sizes and
its hit rate is comparable to that of DEMOTE. These hit rate im-

provements also translate into improvements in the response time;
X-RAY improves read latency by up to 1.48 times compared to
LRU and up to 1.22 times compared to Multi-Queue. It also per-
forms quite similar to DEMOTE, with a maximum slowdown of
less than 1.08.

Figure 10 shows the hit rate of the array cache and the average
read latency for the NASA trace. The file system cache size is set
to 6000 blocks. Once again, X-RAY performs nearly as well as
DEMOTE and significantly better than LRU and Multi-Queue.

The performance gain in using X-RAY is especially significant
when the array cache is small compared to the file system cache.
Thus, with just approximate information about file system cache
contents, X-RAY is able to perform nearly as well as more invasive
methods such as DEMOTE which require changes to the storage
interface.

5.3.3 Sensitivity to Idle Time
In this section, we explore how much idle time is required by
X-RAY for timely fetch of its exclusive cache blocks for place-

9

Appears in the Proceedings of the 31st International Symposium on Computer Architecture (ISCA ’04)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

H
it

R
at

e

Array Cache Size (blocks)

Worldcup98 trace : Hit Rate

DEMOTE
X-RAY

Multi-Queue
LRU

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
ea

d
La

te
nc

y
(m

ill
is

ec
on

ds
)

Array Cache Size (blocks)

Worldcup98 trace : Read Latency

LRU
Multi-Queue

X-RAY
DEMOTE
Extra FS

Figure 9: Worldcup98 Trace: Hit Rate and Read Latency. Array Cache Hit Rate and Average Read Latency for X-RAY, LRU, Multi-
Queue and DEMOTE for the worldcup98 trace are presented. The read latency graph also plots the line pertaining to adding extra space
to the file system cache. The file system cache size is set to 6000 blocks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

H
it

R
at

e

Array Cache Size (blocks)

NASA Trace : Hit Rate

DEMOTE
X-RAY

Multi-Queue
LRU

 0

 1

 2

 3

 4

 5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
ea

d
La

te
nc

y
(m

ill
is

ec
on

ds
)

Array Cache Size (blocks)

NASA Trace : Read Latency

LRU
Multi-Queue

X-RAY
DEMOTE
Extra FS

Figure 10: NASA Trace: Hit Rate and Read Latency. Array Cache Hit Rate and Average Read Latency for X-RAY, LRU, Multi-Queue
and DEMOTE for the NASA trace are presented. The read latency graph also plots the line pertaining to adding extra space to the file
system cache. The file system cache size is set to 6000 blocks.

ment. To estimate the idle time requirements, we use an X-RAY
implementation that issues one disk read at a time, only when idle
time is available (i.e., we do not assume free internal bandwidth),
and run the worldcup98 benchmark with varying degrees of idle
time. For this purpose, we scale the inter-request times recorded
in the trace, across a broad range of scaling factors. The file sys-
tem cache size and array cache size are set to 6000 and 5000 blocks
respectively.

Figure 11 shows the hit rate of the array cache for different
amounts of idle time. We can observe from the graph that while
the hit rates of Multi-Queue, LRU and DEMOTE are independent
of idle time, the hit rate of X-RAY decreases as the idle time de-
creases, since the foreground requests use a greater portion of the
disk bandwidth. The NASA benchmark has significantly more idle
time than the worldcup98 benchmark and we observed that the hit
rate was less affected for the same factor reductions in idle time
(results not shown). Thus, if sufficient idle time is present in the
workload, X-RAY can schedule its cache placement reads with-

out requiring any extra internal bandwidth. For workloads with-
out any idle time, spare internal disk array bandwidth or freeblock
scheduling [16] can be used to schedule these reads.

5.3.4 Different File System Cache Policies
X-RAY has been designed with the assumption that the file system
cache is managed in LRU fashion. However, not all file systems
use LRU. Therefore, in this section we evaluate the performance of
X-RAY when the file system cache is managed by the replacement
policies Clock and 2Q [11] (Clock is widely used as an approxi-
mation for the LRU cache policy and Linux uses a variation of 2Q
to manage its page cache). Figure 12 presents the array cache hit
rates for the worldcup98 trace for this study. In both cases, the
same ordering among DEMOTE, X-RAY, Multi-Queue, and LRU
remains. However, there is a slightly larger difference between
DEMOTE and X-RAY than before, hinting that the array should
perhaps be tuned to the specific caching algorithm of the host, a
subject we leave for future investigation.

10

Appears in the Proceedings of the 31st International Symposium on Computer Architecture (ISCA ’04)

 0

 0.2

 0.4

 0.6

 0.8

 1

1211109876543211/21/31/41/51/61/7

H
it

R
at

e

Idle Time Reduction Factor

X-RAY
DEMOTE

Multi-Queue
LRU

LRU

Multi-Queue

DEMOTE

X-RAY

More idle time Less idle time

Figure 11: Hit Rate vs Idle Time. The hit rate of the array cache
for the worldcup98 benchmark for different factor reductions of
idle time is shown. The X-RAY implementation which does not use
any extra internal disk array bandwidth is used for this study. A
fractional factor reduction in idle time indicates a reciprocal fac-
tor increase in idle time. A factor reduction of 1 indicates retaining
the original idle time in the trace.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000

H
it

R
at

e

Array Cache Size (blocks)

(a) Clock

DEMOTE
X-RAY

Multi-Queue
LRU

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000

H
it

R
at

e

Array Cache Size (blocks)

(b) 2Q

DEMOTE
X-RAY

Multi-Queue
LRU

Figure 12: File System Cache Policy. Array Cache Hit Rate
for X-RAY, LRU, Multi-Queue and DEMOTE for the worldcup98
benchmark are presented for the cases when the file system cache
is managed by (a) Clock and (b) 2Q. The file system cache size is
set to 6000 blocks.

6 Related Work

Cache replacement algorithms have been explored in good de-
tail over the years. Many of these algorithms were proposed with
a single level of cache in mind. These include LRU, LFU, FIFO,
MRU, and 2Q [11]. Lee et al. [15] have explored the spectrum of
policies that subsume LRU and LFU.

A number of earlier works in distributed file systems demon-
strated that the multi-level cache hierarchy needs rethinking [17,
18, 23]. Most of these efforts investigated different policies as
a method to avoid inclusion, with a focus on frequency-based
policies. More recently, Zhou et al. [25] proposed the Multi-
Queue algorithm for second level caches. They put forth mini-
mal lifetime, frequency-based priority, and temporal frequency as
desirable qualities of a cache replacement algorithm. The Multi-
Queue algorithm satisfies these requirements by using multiple
LRU queues within the second-level cache, in which the least re-
cent block in the queue with minimum frequency threshold is se-
lected for replacement. However, Multi-Queue does not eliminate

cache inclusion because cache placement occurs on a disk read to
the block by the file system.

DEMOTE [24] is an array cache management mechanism
which considers cache exclusion as central to managing an ar-
ray cache. In DEMOTE, the file system informs the disk array
of the blocks that it discards. If this block is not present in the
array cache, the file system supplies the block. This requires
changing the file system-disk interface, which hinders deploy-
ment. Further, DEMOTE increases interconnect bandwidth re-
quirement by moving blocks from the file system cache back to the
array cache, which may be a problem in interconnect-constrained
environments.

Finally, recent work on eviction-based cache placement [7] also
uses cache exclusion to manage the array cache, and is most simi-
lar to our work. Unlike DEMOTE, this mechanism attempts to re-
tain current interfaces, but still requires software to be installed in
the host machine and a change in the interface to storage. Specif-
ically, eviction-based cache placement uses virtual memory ad-
dresses supplied by the file system to a modified device driver to
keep track of the contents of the file system. This mechanism, like
ours, relies on idle time and extra bandwidth from the disks to read
blocks into the array cache. Although this mechanism does not
change the interface with the device driver, it requires changes to
the interface with the disk in order to communicate the needed in-
formation to the storage server. Moreover, the mechanism does not
have provisions to detect changes to the file system cache size, thus
introducing the possibility of misjudging its contents, and does not
work correctly if the OS moves cache pages from their original lo-
cation (e.g., in a system with page migration [6]).

7 Conclusions

Technology trends point towards the availability of smarter
disk array systems in the future. Semantic intelligence of disk
arrays can be used to manage the large caches present in such
systems. Using semantic information avoids changes to the file
system-disk interface while providing enough information to infer
the contents of the file system cache. In this paper, we have shown
that it is possible to create an image of the file system cache using
only information that can be inferred from disk traffic. We have
introduced different metrics to evaluate our tracking of file sys-
tem cache contents from the viewpoint of using the information
for exclusive caching. The image of the file system cache helps us
identify a set of exclusive blocks to be placed in the array cache.
X-RAY, the array cache based on semantic information, has good
cache hit rates and improves execution time considerably. X-RAY
achieves these ends without any modifications to the file system or
storage interface, and thus can be readily deployed.

In the future, we plan to explore a number of possible exten-
sions. X-RAY could infer the occurrence of file deletions and
use this information to remove invalid data from its cache. Also,
X-RAY could possibly detect the caching algorithm of the file sys-
tem above, instead of assuming it is LRU-like. Finally, we could
also explore the utility of X-RAY underneath other classes of file
systems (e.g., Windows NTFS) as well as underneath database
management systems. These extensions will lead to a more robust
and deployable exclusive caching mechanism for storage arrays.

11

Appears in the Proceedings of the 31st International Symposium on Computer Architecture (ISCA ’04)

Acknowledgments

We would like to thank Anuradha Vaidyanathan for her in-
volvement and input in the early stages of the project. We would
like to thank Saisanthosh Balakrishnan, Nathan Burnett, Timothy
Denehy, Florentina Popovici and Vijayan Prabhakaran for their in-
sightful comments on the earlier drafts of the paper. We would
also like to thank the anonymous reviewers whose comments and
suggestions have helped us to significantly improve the paper.

This work is sponsored by NSF CCR-0092840, CCR-
0133456, CCR-0098274, NGS-0103670, ITR-0086044, ITR-
0325267, IBM, EMC and the Wisconsin Alumni Research Foun-
dation.

References

[1] M. Arlitt and C. Williamson. Web Server Workload Characterization:
The Search for Invariants. In Proceedings of the 1996 ACM SIGMET-
RICS Conference on the Measurement and Modeling of Computer
Systems (SIGMETRICS’96), May 1996.

[2] Martin Arlitt and Tai Jin. 1998 World Cup Web Site Access Logs.
http://www.acm.org/sigcomm/ITA/, August 1998.

[3] Martin Arlitt and Tai Jin. Workload Characterization of the 1998
World Cup Web Site. Technical Report HPL-1999-35R1, Hewlett
Packard Labs, 1999.

[4] Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Infor-
mation and Control in Gray-Box Systems. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP ’01),
pages 43–56, Banff, Canada, October 2001.

[5] Mary Baker, John Hartman, Martin Kupfer, Ken Shirriff, and John
Ousterhout. Measurements of a Distributed File System. In Pro-
ceedings of the 13th ACM Symposium on Operating Systems Princi-
ples (SOSP ’91), pages 198–212, Pacific Grove, California, October
1991.

[6] Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and
Mendel Rosenblum. Scheduling and Page Migration for Multipro-
cessor Compute Servers. In Proceedings of the 6th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS VI), pages 12–24, San Jose, Cali-
fornia, October 4–7, 1994.

[7] Zhifeng Chen, Yuanyuan Zhou, and Kai Li. Eviction-based Place-
ment for Storage Caches. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’03), pages 269–282, San Antonio,
Texas, June 2003.

[8] Zarka Cvetanovic and Dileep Bhandarkar. Characterization of Al-
pha AXP Performance Using TP and SPEC Workloads. In Proceed-
ings of the 21st International Symposium on Computer Architecture,
pages 60–70, 1994.

[9] Ian Dowse and David Malone. Recent Filesystem Optimisations on
FreeBSD. In Proceedings of the USENIX Annual Technical Confer-
ence (FREENIX Track), 2002.

[10] EMC Corporation. Symmetrix Enterprise Information Storage Sys-
tems. http://www.emc.com, 2002.

[11] Theodore Johnson and Dennis Shasha. 2Q: A Low-Overhead
High Performance Buffer Management Replacement Algorithm. In
Proceedings of the 20th International Conference on Very Large
Databases (VLDB 20), pages 439–450, Santiago, Chile, September
1994.

[12] Norman P. Jouppi. Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and Prefetch
Buffers. In Proceedings of the 17th Annual International Sympo-
sium on Computer Architecture (ISCA ’90), pages 364–373, Seattle,
Washington, May 1992.

[13] Norman P. Jouppi and Steven J. E. Wilton. Tradeoffs in Two-Level
On-Chip Caching. In Proceedings of the 21st International Sympo-
sium on Computer Architecture, pages 34–45, 1994.

[14] Kimberly Keeton, David A. Patterson, Yong Qiang He, Roger C.
Raphael, and Walter E. Baker. Performance Characterization of a
Quad Pentium Pro SMP Using OLTP Workloads. In Proceedings of
the 25th Annual International Symposium on Computer Architecture
(ISCA ’98), pages 15–26, June 1998.

[15] Donghee Lee, Jongmoo Choi, Jun-Hum Kim, Sam H. Noh,
Sang Lyul Min, Yookum Cho, and Chong Sang Kim. On The Ex-
istence Of A Spectrum Of Policies That Subsumes The Least Re-
cently Used (LRU) And Least Frequently Used (LFU) Policies. In
Proceedings of the 1999 ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS ’99),
Atlanta, Georgia, May 1999.

[16] C. Lumb, J. Schindler, G.R. Ganger, D.F. Nagle, and E. Riedel. To-
wards Higher Disk Head Utilization: Extracting “Free” Bandwidth
From Busy Disk Drives. In Proceedings of the 4th Symposium on
Operating Systems Design and Implementation (OSDI ’00), pages
87–102, San Diego, California, October 2000.

[17] D. J. Makaroff and Derek L. Eager. Disk Cache Performance for Dis-
tributed Systems. In International Conference on Distributed Com-
puting Systems (ICDCS ’90), pages 212–219, Paris, France, May
1990.

[18] D. Muntz and P. Honeyman. Multi-level Caching in Distributed File
systems – or – Your cache ain’t nuthin’ but trash. In Proceedings
of the USENIX Winter Technical Conference (USENIX Winter ’92),
pages 305–314, San Francisco, California, January 1992.

[19] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson. A Compar-
ison of File System Workloads. In Proceedings of the USENIX An-
nual Technical Conference (USENIX ’00), pages 41–54, San Diego,
California, June 2000.

[20] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici,
Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Semantically-Smart Disk Systems. In Proceedings
of the Second USENIX Symposium on File and Storage Technologies
(FAST ’03), pages 73–88, San Francisco, California, March 2003.

[21] Theodore Ts’o and Stephen Tweedie. Future Directions for the
Ext2/3 Filesystem. In Proceedings of the USENIX Annual Techni-
cal Conference (FREENIX Track), 2002.

[22] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The
HP AutoRAID Hierarchical Storage System. ACM Transactions on
Computer Systems, 14(1):108–136, February 1996.

[23] Darryl L. Willick, Derek L. Eager, and Richard B. Bunt. Disk Cache
Replacement Policies for Network Fileservers. In International Con-
ference on Distributed Computing Systems (ICDCS ’93), pages 2–11,
Pittsburgh, Pennsylvania, May 1993.

[24] Theodore M. Wong and John Wilkes. My Cache or Yours? Mak-
ing Storage More Exclusive. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’02), Monterey, California, June
2002.

[25] Yuanyuan Zhou, James F. Philbin, and Kai Li. The Multi-Queue Re-
placement Algorithm for Second Level Buffer Caches. In Proceed-
ings of the USENIX Annual Technical Conference (USENIX ’01),
pages 91–104, Boston, Massachusetts, June 2001.

12

