Warped Mirrors for Flash

Yiying Zhang
Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau
Flash-based SSDs in Storage Systems

• Using commercial SSDs in storage layer
 ▫ Good performance
 ▫ Easy to use
 ▫ Relatively cheap

• Usage
 ▫ MySpace, Facebook, Amazon, etc.
 ▫ All-flash storage, e.g., Pure Storage

• What about reliability?
Flash-based SSD Reliability

- Flash wears out with erases
 - More writes => more erases
 - FTL and wear leveling help

- One way to improve SSD reliability
- Redundancy or RAID

Assume failure independence
What About Flash-based Array?

Correlated failure!
WaM - Warped Mirrors for Flash

- Write more to one SSD to induce earlier failure

- Focus on mirrors (RAID1)

SSD: Write Write Write Write Write

No Data Loss

SSD: Write Write Write

Replace
WaM Benefits

• Reliability achieved by **failure separation**

• Configurable
 ▫ Approximated **model** + correcting method

• Low monetary cost
 ▫ **1-2 cents** per hour for mirrors using WaM
 ▫ **47-94%** of fixed-time replacement every one year

• Small performance overhead
 ▫ **10%** more resp time for **52hr-159day** separation
Outline

• Introduction

• WaM design and model

• Evaluation results

• Conclusion
Basic Solution - Adding Dummy Writes

Dummy Write from RAID controller:
Write the existing content
From last write or a random page

- $\text{SSD}_{\text{early}}$
- SSD_{late}

FSI
Failure-Separation Interval
Failure Separation Interval

• FSI: window for detection and reconstruction
 ▫ Set by administrator at initialization time
 ▫ Can be adjusted

• Choosing FSI
 ▫ Long enough for recovery
 ▫ Short to avoid high performance cost

How many dummy writes to add given an FSI?
Challenges

• Subverting FTL
 ▫ No knowledge of underlying FTL

• Achieving near-perfect FSI
 ▫ FSI cannot be shorter than target (reliability)
 ▫ **Performance** overhead should be minimized
WaM Model

• Model based on
 ▫ Target FSI length
 ▫ SSD properties
 ▫ Workload properties

• Goal
 ▫ Find dummy write percentage for a target FSI
WaM Model – Dummy Write Percentage

- Ratio of erases between two mirrored SSDs

\[R_{\text{erase}} = \frac{N_{\text{early erases}}}{N_{\text{late erases}}} \]

- Dummy write percentage \(P_{\text{dummy}} \)

\[R_{\text{erase}} = 1 + P_{\text{dummy}} \]

\[P_{\text{dummy}} = R_{\text{erase}} - 1 \]
WaM Model – Num Erases Remaining

Maximum number of erases of an SSD block (SSD_{late})

$$N_{remaining}^{late} = N_{worn} - N_{erases}^{late}$$

Number of erases with SSD_{late} when SSD_{early} dies

$$N_{erases}^{late} = \frac{N_{worn}}{R_{erase}}$$

$$N_{remaining}^{late} = N_{worn} - \frac{N_{worn}}{R_{erase}}$$
WaM Model – Num Erases during Time

\[N_{I/Os} = \frac{T}{T_r + T_i} \]

Workload dependent

Avg Response Time Avg Idle Time

\[N_{total}^{erases} (T) = \frac{T}{T_r + T_i} \times P_{writes} \times \frac{S_{page}}{S_{block}} \]

Knowledge of SSD parameters

Flash Page Size

Write Percentage

\[N_{perblock}^{erases} (T) = \frac{T}{T_r + T_i} \times P_{writes} \times \frac{S_{page}}{S_{block}} \times \frac{1}{N_{ssd}} \]

Perfect wear leveling

Num of Erase Blocks in SSD
WaM Model – Final Steps

\[N_{\text{remaining}}^{\text{late}} = N_{\text{erase}}^{\text{perblock}} \quad (\text{FSI}) \]

\[N_{\text{worn}} - \frac{N_{\text{worn}}}{R_{\text{erase}}} = \frac{FSI}{T_r + T_i} \times P_{\text{writes}} \times \frac{N_{\text{page}}}{N_{\text{block}}} \times \frac{1}{N_{\text{ssd}}} \]

\[R_{\text{erase}} = \frac{N_{\text{worn}}}{N_{\text{worn}} - \frac{FSI}{T_r + T_i} \times P_{\text{writes}} \times \frac{N_{\text{page}}}{N_{\text{block}}} \times \frac{1}{N_{\text{ssd}}}} \]

\[P_{\text{dummy}} = R_{\text{erase}} - 1 \]
Assumptions and Limitations

• Device parameters
 ▫ From device vendor or detect with tool

• Workload changes
 ▫ Adjust model as workloads change

• Imperfect or no wear leveling

• Incorrect SSD lifetime

Violations: FSI too short or too long
Achieving Target FSI

- If FSI too short
 - Delay writes to the surviving SSD

- If FSI too long
 - Performance cost
 - Adjust in future WaM modeling

\[R_{delay} = \frac{N_{late \ remaining \ _target}}{N_{late \ remaining \ _actual}} \]
Recovery

• When the first SSD (SSD_{early}) fails
 ▫ Replace with a new SSD
 ▫ Reconstruct the data

• Replacing the second SSD (SSD_{late})
 ▫ At the same time when first SSD fails (no reliability risk, slightly higher cost)
 ▫ When it fails (higher reliability risk, slightly low cost)
Outline

• Introduction

• WaM design and model

• Evaluation results

• Conclusion
Evaluation Environment

• Simulation based on Disksim + SSD extension

• A mirror pair of two 80GB SSDs

• Workloads
 ▫ Microbenchmark
 ▫ Macrobenchmark
 ▫ Trace
 ▫ No idle time
Can Failures Be Separated with Dummy Writes? And How?

Failures can be separated with dummy writes
More dummy writes -> longer separation
Wear leveling homogenize workloads
What Is the Performance Overhead?

More dummy writes -> worse performance
Can the Correct FSI Be Achieved?

- Sequential workload
Can the Correct FSI Be Achieved?

- Random workload

WaM model can be inaccurate

Target FSI can be delivered with delaying
How about Real Workloads? - FSI

FSI and dummy write relationship as expected

Larger FSI with read-intensive workloads
How about Real Workloads? - Performance

- Higher overhead with write-intensive workloads
- Performance overhead is small for typical FSI
What is the Monetary Cost?

- **WaM**: cost of SSD + sys-admin check each FSI interval
- **Fixed replacement**: replace SSD after one year

3 years total ownership cost:
- Fixed replacement - $594
- WaM - $275 - $366

WaM costs lower than fixed-time replacement
Summary of Results

- Failures are separated with desired FSI
- Model is approximated
- Achieves desired FSI with delaying
- Small performance overhead
- Low monetary cost
Outline

• Introduction

• WaM design and model

• Evaluation results

• Conclusion
Conclusion

• Correlated failure of flash-based RAID

• Separate failures by carefully adding dummy writes and delaying writes

• Other techniques for failure separation
 ▫ Wear our one SSD to some extent before using
 ▫ Stagger SSDs with different ages in a RAID
 ▫ Vendor control when SSDs in RAID fail
Conclusion

• Applying existing solutions directly to new devices may not work

• WaM is a simple solution to guarantee failure separation and pushes aggressive use of SSDs

• Other techniques may work well

• WaM model can be useful
Thank You

Questions?

http://wisdom.cs.wisc.edu/home

http://research.cs.wisc.edu/adsl