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Abstract
Object-based cloud storage has been widely adopted for
their agility in deploying storage with a very low up-front
cost. However, enterprises currently use them to store sec-
ondary data and not for expensive primary data. The driv-
ing reason is performance; most enterprises conclude that
storing primary data in the cloud will not deliver the perfor-
mance needed to serve typical workloads.

Our analysis of real-world traces shows that certain pri-
mary data sets can reside in the cloud with its working set
cached locally, using a cloud gateway that acts as a caching
bridge between local data centers and the cloud. We use a re-
alistic cloud gateway simulator to study the performance and
cost of moving such workloads to different cloud backends
(like Amazon S3). We find that when equipped with the right
techniques, cloud gateways can provide competitive perfor-
mance and price compared to on-premise storage. We also
provide insights on how to build such cloud gateways, espe-
cially with respect to caching and prefetching techniques.

1. Introduction
In recent years, the usage of cloud storage has increased
tremendously [23]. Cloud storage offers the ability to grow
storage with no upfront cost, ease of management, automatic
backup and disaster recovery, and data-analytics infrastruc-
ture, among other benefits. Recently, IT professionals have
identified managing data growth and disaster recovery so-
lutions as the major pain points for enterprise storage [20].
Lack of skilled storage professionals is another commonly
identified problem. Moving workloads to the cloud and of-
floading their management naturally solves the above prob-
lems, making it highly attractive to enterprises.

Even though some companies have moved their whole IT
infrastructure to the public cloud, some companies would
like to keep their computation in-house due to privacy or
security concerns, and move only (encrypted) data to the
cloud. A cloud storage gateway (hereafter cloud gateway)
is usually deployed in this case. A cloud gateway exposes
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standard NAS/SAN protocols (CIFS/NFS/iSCSI) to local
clients but is backed by cloud-based object storage. These
gateways are typically equipped with caching/prefetching
techniques to hide cloud latencies and improve performance.

Currently, enterprises mainly use cloud storage for sec-
ondary data such as backup and archival data [18, 38, 48].
This usage is common because secondary data can toler-
ate WAN latencies as they are rarely accessed. On the other
hand, primary data, which are more performance sensitive,
continue to occupy the most expensive storage in enterprise
data centers, forming the bulk of the cost. However, with the
rapid improvement of cloud performance and reduction of
cloud cost, we feel it is necessary to revisit such decisions.

In this work, we examine if some of the workloads that
require good storage performance but are not highly la-
tency sensitive (termed tier-2 primary), can be moved to the
cloud. These workloads include document/image reposito-
ries, home directories, email files, etc. We look at current
cloud performance and prices, and examine how they affect
tier-2 workloads. We analyze two real-world traces obtained
from production tier-2 primary storage systems containing
corporate (MS Office/Access, VM Images, etc.) and engi-
neering (home directories, source code, etc.) datasets. We
also build a realistic cloud gateway simulator that has an
inline-deduped, log-structured file system with a cloud back-
end. We replay the workloads in our simulator, with different
caching/prefetching algorithms and different cloud backends
to evaluate the performance and cost of cloud gateways.

Our observations can be summarized as follows:
1. Typical tier-2 workloads like document/image reposito-

ries, home directories, email files, etc., have a relatively
small working set and a significant amount of cold data,
thus can be cached effectively.

2. A cloud gateway equipped with good caching/prefetching
policies can mask cloud latency even for cache misses,
and reduce tail latency by as much as 70%. For cloud
gateways, one should optimize for partial cache misses
as well as for cache hits.

3. To maximize performance for tier-2 workloads, we need
to prefetch based on random access patterns in addition



to sequential ones. To this end, we also devise a new
history-based prefetch algorithm called GRAPH that is
suitable for cloud gateway settings and outperforms tra-
ditional sequential prefetching schemes.

4. Most importantly, we find that when combined with
the right techniques, cloud gateways can deliver perfor-
mance that is comparable to shared storage performance
in local data centers at a lower price. Cloud gateways are
indeed a feasible solution for tier-2 workloads that have
reasonable, but not stringent performance requirements.

The rest of the paper is organized as follows: Section 2
and Section 3 examine the current trends of cloud storage
and primary workloads, respectively, and explain why now is
a good time to revisit the issue of moving primary workloads
to the cloud; Section 4 discusses caching and prefetching
techniques suitable for cloud gateways; Section 5 describes
the simulator we use to study cloud gateway performance;
Section 6 reports our evaluation results and observations;
Section 7 describes related work, and Section 8 concludes.

2. Cloud Trends
This section examines current trends in cloud storage, and
why now is the time to revisit the issue of moving primary
workloads to the cloud.

2.1 Cloud Gateway
In this work, we define a cloud storage gateway (or cloud
gateway) as a hardware or software appliance that enables
enterprise applications to access cloud storage over a WAN.
In this architecture, applications continue to use traditional
NAS or SAN protocols like CIFS or iSCSI, while gate-
ways usually use object-based protocols over HTTP(S) to
access cloud storage. Cloud gateways are attractive be-
cause they enable high-value data to be kept on-premises
for security or performance reasons, while lower-value data
can be offloaded to the cloud for cost reduction or ease of
management. Commercial gateways include Nasuni [38],
Panzura [41], and StorSimple [48]. To act as an effective
bridge, a gateway needs additional features: caching and
prefetching for performance; deduplication and compres-
sion to lower cloud costs; encryption for security; etc.

2.2 Cloud Latency
Cloud latency used to be the limiting factor of the workloads
current gateways can support directly. However, this situa-
tion is changing.

The awareness of the immense value of reducing latency
is increasing, especially from industry giants like Amazon
and Google [16, 35, 45]. The networking community is
working toward reducing Internet latency, even to speed-
of-light delays [46]. Efforts like the Bufferbloat [1] and
RITE [4] projects have been actively working on reducing
latency over the Internet. ISPs are optimizing for shorter
network latency [21].
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Figure 1: Cloud Latency Distribution (Amazon S3). Mea-
sured using 64KB objects to the nearest AWS (Amazon
East) site for GET operations. S3 objects of different sizes
were evaluated. The nature of the latency distribution re-
mains the same, while the average latency increases roughly
linearly with the object size. The experiments were repeated
at different times of the day and on different days in a week,
with similar results.

In the meanwhile, cloud storage providers are also work-
ing to reduce latency and to cater to more workloads. For ex-
ample, Amazon CloudFront, a content delivery network ser-
vice tailored to S3 objects, is an effort in this direction [7, 8].
CloudFront is steadily increasing the number of edge lo-
cations, starting from six in 2007 to around sixty now. In
the coming years, the number is expected to grow to several
hundred. This trend implies that the likelihood of finding an
edge location nearby for most enterprise data centers is very
high. Therefore, we can expect latencies to become lower
and more stable.

WAN acceleration techniques can be used to further re-
duce latency too, and are popular in academic and commer-
cial contexts (e.g. LBFS [37] and Riverbed [43]). They typi-
cally involve optimizations to make an inefficient data trans-
fer protocol function better with fewer WAN round trips.
Given the dependence on protocols, current techniques have
a footprint on both sides of the network connection.

In Figure 1 (left) we compare the cloud latency measured
at different times (2014 and 2015) from the same server
within the enterprise network. We can see that over time,
the latency variability decreases, giving us lower and more
stable cloud access time. In Figure 1 (right) we compare
the latency of accessing Amazon S3 objects directly versus
accessing the same objects via Amazon CloudFront. We can
see that CloudFront reduces latency significantly, making it
more attractive for moving data to the cloud.

Given the above trends, we believe that the feasibility of
moving tier-2 primary workloads to the cloud (via gateways)
is becoming clear.

2.3 Cloud Storage Costs
The cost of cloud storage is declining rapidly. Figure 2
shows the storage price change from three major cloud stor-
age providers over the past 10 years. We can see that the
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Figure 2: Cloud Price Declines. Monthly cost per GB of
cloud storage. The prices shown here are for geo-replicated
data and for the first TB of storage. More detailed pricing
information can be found in the providers’ websites.

Figure 3: Workload Categorization. Source: Gartner

monthly cost of storing data in public clouds dropped as
much as 75% from 2012, and the trend is likely to continue.
The price of cloud storage requests is also droping by large
margins. For example, Amazon dropped the S3 storage GET
request prices by 60% and PUT request prices by 50% in
2013. Because of the large price drop, the economics of us-
ing cloud storage needs to be reexamined. Later (§ 6.3) we
will show that when combined with a gateway with effec-
tive caching, the cost of storing data in the cloud is indeed
comparable to or lower than on-premise storage.

3. Workload Trends
From a workload standpoint, Gartner classifies workloads
that can leverage the gateway into two categories: gateway
reality and gateway potential [22]. As shown in Figure 3,
tier-3 workloads have already moved to the cloud via gate-
ways, whereas tier-1 workloads are so highly latency sensi-
tive that they are not expected to move to the cloud. How-
ever, tier-2 primary workloads could be moved to the cloud
via gateways in the near future. Because primary workloads

Corporate Engineering
Clients 5261 2654
Duration (Day) 42 38
Read Requests 19,876,155 23,818,465
Write Requests 3,968,452 4,416,026
Data Read (GB) 203.8 192.1
Data Written (GB) 119.9 87.2
Data Growth (GB) 82.3 63.7

Table 1: Summary of Workload Statistics.

are hosted on the expensive enterprise storage systems, the
savings in maintaining only a smaller cache of the entire data
would be enormous. Moreover, the costs of maintaining the
primary data (and its secondary copies) would be delegated
completely to the cloud. We thus investigate the feasibility
of moving tier-2 workloads to the cloud.

3.1 Tier-2 Workloads
To evaluate the potential of moving tier-2 workloads to the
cloud, we use two publicly available real-world CIFS traces
obtained from an enterprise primary storage system [32].

One trace was collected from a mid-range file server in
the corporate data center that was used by roughly 1,000 em-
ployees in marketing, sales and finace departments. It mainly
contains Microsoft Office, Microsoft Access data, and vir-
tual machine images, and represents about 3 TB of total stor-
age. We call this trace the Corporate dataset (Corp).

The other trace was collected from a high-end file server
deployed in the engineering data center used by roughly
500 engineers. It mainly contains home directories, source
code, and build data, and represents about 19 TB of storage.
We call this trace the Engineering dataset (Eng).

Table 1 shows some high-level statistics of the two work-
loads. Note that these statistics are collected at the block
level, underneath the file system and deduplication engine
(§ 5.2). File-level statistics are available in the original pub-
lication [32]. One key observation from Table 1 is that there
is significant data growth on both datasets: on average about
70% of the data written are new data transferred into the stor-
age system (even after deduplication). This fast growth rate
indicates that the “pay-as-you-go” model offered by cloud
storage may be more suitable than having to provide excess
capacity upfront. We discuss the detailed cloud cost incurred
by a cloud gateway later (§ 6.3).

Figure 4 shows the working set sizes of both datasets on a
daily basis. We can see that even though the total storage size
is large (Terabyte scale), the working set of the workload is
quite small and can easily fit into a local cache, making a
cloud gateway feasible.

We now investigate the sequential access patterns of the
workloads. Figure 5 shows the distribution of sequential run
sizes, both in terms of number of runs and number of 4K
blocks (a sequential run is defined as a series of sequen-
tial block accesses). On one hand, a significant portion of
the accesses are sequential, with run sizes as large as 10,000
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Figure 4: Working Set Size.
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Figure 5: Sequential Run Size CDF.

blocks, indicating the potential of using sequentiality-based
prefetching techniques (§ 4.2.1) to reduce access latency; on
the other hand, more than 60% of the blocks are still ac-
cessed in runs of less than 10 blocks. Given the long latency
of fetching data from the cloud, sequential prefetching is un-
likely to help in these cases, so other prefetching techniques,
e.g., history-based prefetching (§ 4.2.2) may be necessary to
further reduce latency, especially the tail latency. Our later
experiments confirm this observation (§ 6.2).

3.2 SLO Requirements
In order to answer the question “what kind of storage perfor-
mance is required to support tier-2 workloads?”, we look at
some storage systems deployed in local data centers and the
performance guarantees they offer. We will concentrate on
latency as this is typically the bottleneck of cloud gateways.

PriorityMeister [53] claims to be a state-of-the-art ap-
proach to provide tail latency guarantees in a shared data
center as of 2014. Table 2 reports the tail latency it offers
to several primary workloads when running in conjunction
with a non-latency-sensitive file-copy workload. The 90th
percentile tail latency could be as long as 200 ms. When

90% 95% 99%
Display Ads Production 91 ms 129 ms 218 ms
MSN Storage Production 126 ms 170 ms 258 ms
LiveMaps Production 200 ms 300 ms 509 ms

Table 2: PriorityMeister Tail Latency. Workloads share
disks with a throughput-oriented, non-latency-sensitive
workload that represents a file copy.

competing for resources with other bursty, latency-sensitive
workloads, the tail latency guarantees PriorityMeister pro-
vides are even weaker. For example, the 90th tail latency of
an Exchange server workload is around 700 ms when run-
ning concurrently with a LiveMaps production workload.

Cloud providers, such as Google, Amazon, or Azure,
are another comparison point. When accessing data from
a virtual machine hosted by the same vendor in the same
region, the 99th tail latency of the time to first byte (TTFB)
was reported to be more than 100 ms in Dec. 2015 [15].

Since most primary workloads are served in these (shared)
local data centers, they must be able to tolerate the above la-
tencies of a few hundred milliseconds. This also agrees with
our observation that even though tier-2 workloads require
good performance, occational long latency can be tolerated
by applications. For example, the CIFS protocol, meant for
tier-2 workloads, can tolerate a latency of up to 15 seconds
in the path of retreval [3]. We show later (§ 6.2) that our
cloud gateway is able to match such SLOs, where we offer
overall good latencies, and the tail latencies are kept in the
sub-second level.

4. Caching/Prefetching Techniques
Mitigating WAN latency is a key concern for gateways. In
this section we survey the latency-mitigation techniques that
are most relevant to cloud storage gateways: caching and
prefetching. These techniques are commonly used in stor-
age systems, but cloud gateways have some unique charac-
teristics compared to traditional caching/prefetching at the
page-cache level. First, within cloud gateways, more com-
plex algorithms that come with overheads in the form of ex-
tra computation or extra metadata are acceptable, as long as
it is possible to avoid even a few cloud I/Os. Second, be-
sides performance, we should also minimize monetary cost.
Based on these observation, we adapt existing algorithms,
as well as devise new ones. Table 3 gives a summary of the
techniques we investigate. We discuss them in detail below.

4.1 Caching Techniques
Caching is one of the most prevalent techniques to improve
performance and reduce latency, and is widely used in cloud
gateways. Looking beyond traditional cache replacement
policies like LRU [11], we investigate newer adaptive algo-
rithms like SARC [25] in the gateway context.

SARC (Sequential prefetching in Adaptive Replacement
Cache [25]) partitions the cache between random and se-
quential access streams in two separate LRU lists, SEQ and

4



Cache Prefetch Origin
LRU SEQ LRU Fixed-Size [25]
LRU AMP LRU AMP [24]
LRU GRAPH LRU History-Based + AMP new
SARC SEQ SARC Fixed-Size [25]
SARC AMP SARC AMP new
SARC GRAPH SARC History-Based + AMP new

Table 3: Summary of Techniques. Naming convention is
<caching algorithm> <prefetching algorithm>.

RANDOM. The algorithm trades cache space between SEQ
and RANDOM dynamically by maintaining the marginal
utility of allocating additional cache space to each list, thus
minimizing the overall cache-miss rate. Because prefetching
is performed only for accesses in the SEQ list, such separa-
tion and adaptation avoids thrashing where more valuable
demand-paged random blocks are replaced with less pre-
cious prefetched blocks, or prefetched blocks are replaced
too early before they are used.

We implement both LRU and SARC in our simulator.
Prior evaluations [25] have coupled SARC with simple,
fixed-degree sequential prefetching; we combine SARC with
different prefetch techniques, as described below.

4.2 Prefetching
High latency is the main obstacle of moving data to the
cloud. Prefetching, as an effective technique in masking la-
tency, is thus important. Prefetching in cloud gateways is
different from traditional prefetching because aside from
performance, wasteful prefetches are a bigger concern. Most
cloud providers charge only for data transfer out of the
cloud, so reducing unnecessary fetches is key to reduce
costs. We classify prefetching techniques into two cate-
gories: sequentiality-based and history-based.

4.2.1 Sequential Prefetch
Sequential prefetch exploits the spatial locality of access
patterns and is widely used in storage systems [29, 49]. With
a sequential prefetch algorithm, the system tries to identify
sequentially-accessed streams and then performs readahead
on those streams. We find sequential prefetching attractive
for cloud gateways because it has a high predictive accuracy
(avoiding wasteful prefetch) and is easy to implement.

The two most important aspects of a sequential prefetch
algorithm are the prefetch time (when to prefetch) and
prefetch degree (how much to prefetch). Because of the
long latency of accessing cloud storage, simple synchronous
prefetch, where prefetching only happens upon a cache miss,
is unlikely to suffice. Instead, the likelihood of accessing
certain blocks has to be identified early enough to allow suf-
ficient time to fetch data from the cloud. Also, the degree of
prefetching needs to be continuously adapted to minimize
wasteful prefetch.

Based on the above two considerations, we find AMP
(Adaptive Multi-stream Prefetching [24]) attractive. AMP

keeps track of each sequential stream it identifies, and deter-
mines the prefetch time and prefetch degree based on the rate
at which clients are accessing each stream. If on the comple-
tion of a prefetch a read is already waiting for the first block
being prefetched, AMP increases the trigger distance (the
distance between the block that triggers a prefetch and the
last block in the stream) for that stream; if the last block of
a prefetch set is evicted before it is accessed, AMP reduces
the prefetch degree for that stream.

Tap [33] is another sequential prefetch algorithm. It uses a
table to detect sequential access patterns in the I/O workload
and to dynamically determine the optimal prefetch cache
size. However, it assumes a small cache size and underper-
forms other algorithms with larger cache capacities, so we
find it unsuitable in a cloud-gateway context.

We implement AMP as well as synchronous, fixed-degree
sequential prefetch in our simulator. The original AMP does
not distinguish between sequential and random accesses.
To further reduce wasted prefetch, we combine AMP with
SARC, and perform prefetch only for sequential accesses.

4.2.2 History-based Prefetch
Sequential prefetching is beneficial only when successive
I/O accesses are contiguous; it does not improve perfor-
mance for random access patterns. Even for sequential
streams, when there are jumps or discontinuities within the
stream, such techniques are inadequate. There are techniques
that use past I/O access history for prefetching [10, 26, 30,
31, 47], but they have not been used in enterprise storage sys-
tems due to their complexity and metadata overheads [24].
However, in our context, any extra complexity or overhead
is acceptable provided that it results in appropriate benefits.

Griffioen et. al. [26] builds a probability graph to rep-
resent file access patterns and facilitate whole-file level
prefetch. In their probability graph, a node represents a file
and an arc from node A to node B represents the probability
of file B being opened soon after file A. Amer et al. refines
this idea by using recency information in addition to prob-
ability to build the access graph [9]. Nexus [27] constructs
a similar relationship graph using a large look-ahead history
window size and captures access patterns with larger gaps in
between when doing mobile prefetching. These techniques
all work on a per-file basis.

At the block level, DiskSeen uses a block table to track
access trails and tries to match the current trail to his-
torical trails in order to identify prefetchable blocks [19].
However, it exploits the underlying disk layout information
for prefetching, rendering it unsuitable for cloud gateways.
C-Miner [34] uses frequent sequence mining to discover
block correlation rules and prefetches based on the discov-
ered rules, but it is mostly an offline approach.

While all these techniques are relevant, none is a good fit
for the specific needs of a cloud gateway (most of them are
built for buffer-cache prefetching originally). Inspired by the
above ideas, we devise our own access-graph-based prefetch
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Figure 6: History Access Pattern Graph.

algorithm GRAPH for cloud gateways. Our method of build-
ing the access graph is largely borrowed from [26], except
that GRAPH works at the block layer. We use spatial infor-
mation and recency to enhance our access graph, and apply
balanced expansion [10] for traversing I/O access history.
Our graph prefetch algorithm is designed to capture random
access patterns, and works in conjunction with sequential
prefetching techniques to maximize prefetch opportunities.
The details of GRAPH are described below.

4.2.3 The GRAPH Prefetch Algorithm

Graph Construction: Our graph maintains the client I/O
history in terms of block ranges (BRs), as shown in Fig-
ure 6. Each node in the graph is a contiguous range of blocks.
We choose to maintain the graph on the block level (in-
stead of the file level) to capture correlations between blocks
across different files, and metadata accesses. Using contigu-
ous block ranges instead of single blocks helps keep the
graph smaller without losing important information. Each
outgoing edge E from node N1 in Figure 6 represents an ac-
cess pattern of N1 followed immediately by Nx (x = 2, 3, or
4). Each such access pattern is associated with a likelihood,
which is our expectation of how likely Nx is to be accessed
in the near future given that N1 is accessed.

Upon each I/O request, we find the block range node N1
that this request accesses, and also the block range node N0
which its previous request accessed. If N1 is a new block
range, then a new node is added to the graph. The block
ranges do not overlap, and any possible overlap is removed
by splitting the nodes as appropriate. If there is already
an edge to represent the access pattern of N1 after N0, the
likelihood of this access pattern is updated. If there has not
been such an access pattern before, an edge from N0 to N1 is
added to the graph, and its likelihood is assigned.

We look only at the previous I/O request and not any fur-
ther in the access history. This loss of information could cost
us some prefetch opportunities. For example, a long chain of
repeated access, say BR1→ BR2→ BR3→ BR4, would ap-
pear no different if BR1→BR2, BR2→BR3, and BR3→BR4
happened separately. Any repeated access pattern with a se-

mantic distance larger than 1, e.g., A→ X → B, where A is
always followed by a random block X then by B, will not be
discovered. However, this keeps our graph size manageable.

The formula we use to calculate the likelihood of access-
ing BR NY after BR NX , LX−Y , is:

If NY is sequentially adjacent to NX :

LX−Y =

{
1 No accesses of NX followed by NY yet
1+CX−Y
1+CX−all

Otherwise
(1)

If NY is not sequentially adjacent to NX :

LX−Y =

{
0 No accesses of NX followed by NY yet
CX−Y
CX−all

Otherwise
(2)

where CX−Y is the recent access count from NX to NY ,
and CX−all is the total recent access count from NX to all
neighbors (recorded accesses are expired after a configurable
threshold). In the first case of (2), there would not be an edge.

The intuiton behind the formula is to use the probability
of NY following NX (instead of any other immediate child
node of NX ) as the likelihood. Sequential access patterns are
given an initial likelihood of 1, but their weight fades away
when random access patterns are observed.

Our experiments show that it is important to incorporate
sequentiality information into likelihood. Likelihood based
on probability alone is not a good indicator when there is
insufficient access history for a particular block range. In
our graph, only the likelihood of an immediate adjacent
access pattern is explicitly given. We calculate the likelihood
between non-directly-connected nodes by multiplying the
likelihood along all the edges of the shortest path between
the two nodes to help us prefetch deeper.
Graph Traversal: Upon a hit to a block range, i.e., a node
N, the graph is traversed from N to generate a set of prefetch
candidate nodes. Standard graph traversals such as depth-
first-search (DFS) and breadth-first-search (BFS) can be
used. We use another technique, balanced expansion [10],
to find the best candidates. In balanced expansion, nodes
that are more likely to be accessed are always chosen over
nodes that are less likely. We start traversal from an accessed
node, N1, and maintain two sets: the traverse set T , which
initially contains the immediate successors (those connected
by a direct outgoing edge) of node N1, and the candidate
set C, which is initially empty. We then repeat the follow-
ing process: select node N from T which has the highest
likelihood of being accessed from node N1. The likelihood
is calculated by multiplying the probabilities along all the
edges of the shortest path from N1 to N. We then remove N
from T and add N to C. Then we add all the immediate suc-
cessors of N into T , and again select the highest likelihood
node in T and move it to C. We repeat this process until the
likelihood is below a certain threshold. In the end, C contains
all the nodes to be prefetched. A proof that balanced expan-
sion is the best mechanism based on successor prediction is
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straightforward [10]. In our experiments, we also found that
balanced expansion performs better than BFS or DFS.

Our algorithm also uses a graph-aware variant of AMP
to set the size limit of the prefetch candidate set and the
trigger distance. When some prefetched blocks are not ac-
cessed before being evicted, there are two possibilities: we
made wrong prefetches and these blocks would not be ac-
cessed (in the near future), or we prefetched too much and
these blocks are evicted before they would be accessed. The
original AMP only considers the latter possibility because
a sequential access stream is highly likely to extend. How-
ever, in our case, as there are multiple possible paths from a
given BR node in our history graph, we need to differenti-
ate between these two scenarios. We achieve this by keeping
track of both the recently accessed blocks and the recently
evicted blocks. If a block is being evicted, we decrease the
prefetch degree in case it is later accessed as we had pre-
dicted. Whereas for a wrong prefetch decision, we just retain
the previous prefetch degree.
Optimizations: Maintaining the complete access history
necessary for a naive history-based approach is prohibitively
expensive, so we optimize the naive scheme based on two
observations. First, tier-2 workloads are dominated by se-
quential streams, which are satisfied by sequential prefetch-
ing. Second, a history-based approach is effective only for
correlated random accesses and for jumps between related
sequential streams. Therefore, in our technique, we use the
second observation to populate the I/O history graph only
with random accesses. The likelihood of sequential access
patterns would fade away faster under this optimazation,
as CX−Y in formula (1) is always considered zero. This re-
duces our graph size considerably, making traversals faster.
With this change, prefetching is done as follows: we check
whether the current I/O is sequential with any known streams
in the local cache. If so, we use AMP, otherwise we use the
graph to prefetch. In our experiments, we find that this re-
duces the metadata size by 80% and runtime by 90% com-
pared to the naive approach, with no loss in hit ratio or
prefetch efficiency.

As discussed before, the likelihood between non-directly
connected nodes is calculated by multiplying the likelihood
along all the edges of the shortest path between the two
nodes. This is a rather expensive operation since it requires
traversing the graph to find the shortest path. To improve
performance, we cache the likelihood values between nodes
for 60 seconds for reuse in the near future.
Combining SARC with GRAPH: To take advantage of
SARC’s effective cache replacement policy, we combine
GRAPH and SARC, resulting in SARC GRAPH. We use
AMP to prefetch for sequential access streams and GRAPH
for random ones. The balance of cache space between ran-
dom and sequential accesses is dynamically adapted to min-
imize cache misses.
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Figure 7: Cloud Gateway Simulator.

5. Simulator
As described before, tier-2 primary workloads (Figure 3)
have performance requirements. Typically, enterprise stor-
age systems co-resident with clients can satisfy their require-
ments. To evaluate our techniques on tier-2 workloads with
data residing in cloud storage, we built a cloud gateway sim-
ulator (Figure 7) with subsystems that closely resemble an
enterprise-class storage system. The simulator is designed
as a software appliance with a gateway cache on disk and
a BerkeleyDB [40] key value store simulating cloud stor-
age. There are two important components in the simulator:
the trace replay engine and the simulator file system. The
file system in turn has multiple subsystems and each of them
maintains its own on-disk persistent metadata and associated
in-memory cache. We also collect statistics at each stage of
the simulator to evaluate the performance of individual com-
ponents. We now describe these components.

5.1 Trace Replay Engine
An accurate trace replay is critical to evaluate performance
of a file system cache. Our replay engine is designed to
maintain strict I/O ordering using a time-based event sim-
ulation technique [42]. Specifically, during I/O processing,
asynchronous interactions between modules in the file sys-
tem are represented as different events in the replay engine.
Such interactions typically involve queuing delay, which is
accurately accounted for in the engine. Apart from I/O pro-
cessing events, periodic flush of cached (dirty) data to un-
derlying storage media is simulated using synchronous and
asynchronous data flush events. Although queuing delay and
wait times are captured during event processing, we have
ignored processing time, as we found it to be small com-
pared to disk access and WAN latencies. In our simulation,
the traces are replayed in succession though the actual traces
were captured over a long period.

5.2 Simulator File System
The simulator file system has the following subsystems:
Deduplication Engine, Cache Manager, Cloud Driver Mod-
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ule, Prefetch Manager, and Unified Cache. The simulator
presents its file system as a data container, i.e., a volume,
to the trace replay engine. It maintains an allocation bitmap
and assigns a new physical volume block number (PVBN)
for each incoming write block. To model a log-structured file
system with infinite capacity backed by cloud storage, the
PVBN is a monotonically increasing value. Once a PVBN
is deallocated, it is not reused. In addition, incoming reads
(represented as {filename, offset}) are mapped by the file
system to the corresponding PVBN. This map is maintained
in a BerkeleyDB [40] table that associates a PVBN with each
{filename, offset} tuple. The above mentioned subsystems
are described next.
Deduplication Engine: Deduplicating data before sending
it to the cloud is important: on the cloud side, storing less
data can reduce cloud storage costs and save bandwidth; on
the local side, deduplication enables caches in the data path
to be more efficient. Thus, any simulation of a cloud gateway
should take deduplication into account.

Our simulator uses an inline deduplication engine, which
creates a SHA256 digest of every block sent to the cloud.
These digests are persisted in an on-disk fingerprint database
and mapped to the corresponding PVBN. A small in-memory
fingerprint database cache is maintained to improve lookups
in the I/O path. For all newly written blocks, we first check
against this fingerprint database to eliminate duplicates.
Along with the fingerprint database, to ensure consistency
after deletes, for each unique block we keep the count of its
references in a separate file, called the refcount-file.
Cache Manager: The simulator maintains a cache for the
workload’s working set, which is managed by the cache
manager. As cloud storage is elastic we expect the data
stored to be potentially on the order of petabytes. However,
we expect the working set of these workloads to be a smaller
fraction of this size (though still much too large to cache in
memory). The gateway thus maintains a disk-based cache,
implemented as a file called the local-cache whose size is
configurable. For simplicity, metadata for blocks stored in
the local-cache is maintained in an in-memory data struc-
ture. A newly cached block is represented by its data writ-
ten to the local-cache file at a specific offset, which is used
to index this block and is referred to as the LCBN (Local
Cache Block Number). In addition, we have designed a plug-
gable interface within the cache manager to experiment with
different cache replacement policies. To support writes, the
cache manager is tasked with flushing dirty cache blocks to
the cloud. These dirty blocks are flushed either periodically
or to free up cache space.
Cloud Driver module: This subsystem is created to flush
dirty blocks and to read blocks from the cloud. The latencies
of cloud accesses are drawn from the actual latency distribu-
tion as measured against a given cloud backend. To provide
better throughput, the cloud driver packs a fixed, but config-
urable, number of data blocks into each cloud object. Each

such cloud object is associated with a cloud key that is gener-
ated from the SHA256 digests of its constituent blocks. The
mapping from PVBN to cloud object key is maintained in
a persistent database called the Cloud-DB. In our simulator,
cloud storage is simulated by a BerkeleyDB database that is
accessed via a key-value interface similar to actual cloud in-
terfaces. To implement this, the cloud driver creates a B-tree
hash instance to store unique cloud objects.
Prefetch Manager: The purpose of this module is to en-
able prefetching from the cloud. As with the cache man-
ager, the prefetch manager module provides a pluggable in-
terface to experiment with various prefetching techniques.
It provides both synchronous and asynchronous modes to
prefetch blocks into local-cache from the cloud via the cloud
driver. During simulation, due to the large latencies of the
cloud, duplicate read or prefetch requests might get queued
at the prefetch manager waiting for inflight blocks. Such re-
quests will result in suspending the corresponding I/O until
the cloud driver responds.

The prefetch manager also maintains all the metadata
necessary to make prefetch decisions. For sequential prefetch
algorithms, this metadata is small, e.g., SARC maintains a
bit on each cached block to denote sequential or random ac-
cess. However, for history-based algorithms, the metadata is
represented as a graph and is much larger. In those cases,
the graph is maintained as a combination of an in-memory
cache and an on-disk structure. Moreover, this graph needs
to be stored on-disk in a compact form with efficient in-
sertions and traversals. Modern graph databases [5, 36, 39]
seem to be appropriate for this task, as they are optimized
for traversal and minimize disk accesses. In our implemen-
tation, we use DEX [36], but other graph databases could
be accommodated as well. We also build additional indices
based on interval trees to quickly query BR nodes based on
block ranges, or which BR node holds a particular block.
Unified Cache: All persistent metadata used by different
subsystems in the simulator is stored on disk, as in an en-
terprise storage system. We maintain an in-memory cache of
these metadata structures for better performance. Care has
also been taken to allocate a fixed-size cache for BerkeleyDB
and graph database software.

5.3 Summary
The architecture of our simulator closely resembles produc-
tion storage gateway systems, such as AWS Storage Gate-
way by Amazon [6], or the cloud storage gateway by Bro-
cade [44]. Compression and encryption would work simi-
larly to the deduplication engine, maintaining any associated
metadata locally and utilizing the unified cache.

We made a few design choices, most notably working at
the block level instead of the file level. There are several con-
siderations. First, the gateway needs to work with WAFL, a
log structure file system that appends new blocks at the end
and retains the “deleted” blocks for snapshots [28]. By work-
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ing at the block level, the contiguous blocks corresponding
to the older snapshots can be packed into an object efficiently
and be moved to the cloud irrespective of the file boundaries.
This behavior is especially useful when one has many small
files. Second, many files for tier-2 workloads are virtual disk
images that represent the entire file system for the VMs and
are large. Users typically just modify a portion of the file,
and transferring the entire image to the cloud is not feasible.
At the block level we can keep the cold parts of the file in
the cloud. Third, we map only contiguous block ranges to
objects. Since WAFL tends to have high sequentiality, the
metadata is kept small and efficient to manage. In summary,
our design allows maximum flexibility and low overhead.

Other popular commercial cloud storage gateways, such
as AWS Storage Gateway [6] or EMC Cloud Array [12],
work at the block level too.

6. Experimental Evaluation
In this section, we evaluate the performance and cost of
cloud gateways when combined with different caching and
prefetching techniques, and using different cloud backends.
We try to answer the following questions: Can tier-2 work-
loads be moved to the cloud? What kind of techniques are
needed to enable moving data to the cloud? At what cost?

6.1 Experimental Setup
Table 3 gives a summary of the combination of techniques
we investigate. In our configuration, each cloud object packs
64 4KB blocks. We use cloud latency distribution measued
from two different cloud storage backends: Amazon S3 and
Amazon CloudFront+S3, because they offer distinctly dif-
ferent latency characteristics [7, 8]. The numbers we report
here were collected in 2014. We do notice that cloud latency
has improved over the past year, but while the overall latency
is lower, the nature of our results remain the same.

We evaluate three different local cache size settings:
30 GB, 60 GB and 90 GB. For the Corporate dataset, this
cache size represents 1% to 3% of the total data size, and
10% to 30% of the total data accessed in the 42-day trace
duration. For the Engineering dataset, it represents 0.16% -
0.48% of the total data size, and again 10% to 30% of the
total data accessed.

6.2 Cache Miss and I/O Latency

Cache Miss: I/O latency is one of the key metrics for stor-
age systems, and also the main concern of moving data to
the cloud. The main goal of different caching/prefetching
algorithms is to reduce the number of cache misses, thus
masking the long latencies of accessing the cloud. Hence
the cache-miss ratio is an important performance indicator
for cloud gateways. The cache manager in our simulator col-
lects counts of cache hits and misses to compute this metric.

In Figure 8, we show the cache-miss ratio for different
algorithms with varying local cache sizes in a cloud gate-
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Figure 8: Cache Miss Ratio. The numbers shown here were
collected using CloudFront+S3 as the cloud storage back-
end. The cache miss ratios are similar when using S3 directly
(not shown here).

Algorithms 90% 95% 99%
LRU SEQ 935 ms 1585 ms 2196 ms
LRU AMP 834 ms 1475 ms 2165 ms
SARC SEQ 745 ms 1335 ms 2115 ms
SARC AMP 705 ms 1255 ms 2095 ms
LRU GRAPH 644 ms 1156 ms 2075 ms
SARC GRAPH 33 ms 885 ms 1976 ms
Cloud 2105 ms 2322 ms 2865 ms

Table 4: Tail Latency (S3), Corp, 90 GB cache.

way context. Adaptive caching (SARC SEQ) reduces cache
misses for both datasets, though more significantly for Corp.
Adaptive prefetching (LRU AMP) reduces cache misses for
Corp, which has a larger data footprint, but not for Eng. In
general, we observe that AMP performs better with a small
cache compared to the workload’s data footprint. However,
we always achieve better results when combining adaptive
caching and adaptive prefetching together (SARC AMP).
Relative to LRU SEQ, SARC AMP reduces the miss ra-
tio from 21% to 13% for the Corp dataset when using a
30 GB local cache. When using a history graph to capture
random access patterns and performing prefetch based on
these patterns in addition to sequential prefetching, we can
reduce the cache-miss ratio even further. For both datasets,
the cache misses can be reduced to less than 10% with
graph-based prefetching techniques, and as low as 6% with
SARC GRAPH.
I/O Latency: Next we study the end-to-end I/O request la-
tency in a cloud-gateway setting, and investigate how cache
misses impact the latencies ultimately seen by the client. We
will concentrate our discussion on read requests since writes
can always be buffered locally and flushed to the cloud in an
asynchronous fashion. There are three cases when a client
issues a read request to a cloud gateway:
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Figure 9: Latency CDF, Corp Dataset. X-axis denotes request latency in milliseconds. Cloud Latency shows the latency
distribution of accessing cloud storage directly. Local shows the latency distribution if all accesses are local. For all but one
case (LRU SEQ in 30 GB cache), 80% tail latency is less than 40 ms.
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Figure 10: Latency CDF, Eng Dataset. Same as Figure 9
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Algorithms 90% 95% 99%
LRU SEQ 435 ms 485 ms 564 ms
LRU AMP 414 ms 475 ms 556 ms
SARC SEQ 405 ms 475 ms 545 ms
SARC AMP 386 ms 465 ms 534 ms
LRU GRAPH 40 ms 465 ms 534 ms
SARC GRAPH 33 ms 414 ms 515 ms
Cloud 539 ms 593 ms 805 ms

Table 5: Tail latency (CloudFront), Corp, 90 GB cache.

1. Cache hit: The requested block is already in the local
cache; only the local disk latency is incurred.

2. Complete cache miss: The requested block is not present
in the local cache, nor is it being currently fetched. A
fetch to the cloud must be initiated, and full cloud latency
is observed by the client.

3. Partial cache miss: The requested block is not present in
cache, but is currently being fetched. The fetching of the
data in question could either be triggered by the prefetch
algorithm, or by the cache misses of other requests. In
this case, the cloud latency is partially masked from the
client. The exact latency the client experiences depends
on the timing of the fetch.

Our simulator accounts for all three cases and simulates
latency faithfully in each case. We simulate cloud latencies
by following the latency distribution we measured against
the cloud storage backend (in our case, S3 and CloudFront).
The local-cache latency is derived from the latency distribu-
tion of randomly accessing a 500 GB hard disk drive. The
I/O request may also incur metadata accesses, the latency of
which is not taken into account. We believe that metadata
should be kept in low-latency media (e.g, high-end SSDs)
and well cached; the latency introduced should thus be small.

The CDF of the simulated per-request latency under dif-
ferent caching and prefetching settings are shown in Fig-
ures 9 and 10. We also list the 90th, 95th and 99th per-
centile tail latencies of the Corporate dataset for the 90 GB
cache setting in Tables 4 - 5. The Engineering dataset and
other cache settings show similar characteristics for tail la-
tencies; in particular, the 90th percentile tail latency when
using SARC GRAPH is always under 40 ms with different
datasets and under different cache settings.

First, we notice that history-based prefetch (LRU GRAPH
and SARC GRAPH) consistently outperforms sequential
prefetch for both datasets and in different settings. For the
Engineering dataset (Figure 10), the four sequential prefetch
algorithms show similar performance, indicating a limita-
tion of sequential prefetch, but the GRAPH algorithms are
able to deliver better performance by capturing random ac-
cess patterns. This result agrees with our earlier observation
of primary workloads (Figure 5), which suggests significant
random access. We conclude that history-based prefetch is
necessary to improve the performance of cloud gateways for
tier-2 primary workloads.
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Figure 11: Prefetch Efficiency.

Second, we observe that cloud gateways can mask cloud
latencies even for cache misses. Our results show that when
coupled with high-performance prefetch algorithms, cloud
gateways can reduce 95th percentile latency by more than
70%, and 99th percentile by nearly 40%, even though our
cache hit ratio is less than 95%. This effect is more pro-
nounced with slower cloud backends and longer cloud la-
tencies, suggesting that our gateway could tolerate even
worse cloud latencies. Traditionally, people have been us-
ing cache hit/miss ratio as the only performance indicator of
caching/prefetching algorithms. However, because of high
cloud latencies, partial cache misses are equally important
(or arguably more important) in reducing tail latencies.

Overall, the results we report here are comparable to
shared storage performance in local data centers (§ 3.2).
With history-based prefetch, 90th percentile latency can be
reduced to around 30 ms. Using a cloud gateway is indeed
a feasible solution for tier-2 workloads that have reasonable
(not stringent) performance requirements. Of course, certain
restrictions apply: the workload needs to be cachable and
has some access patterns. The two traces we study show that
typical tier-2 workloads satisfy these requirements.
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Figure 12: Access Count for Prefetched Blocks. Corp
Dataset, 30 GB cache size.

6.3 Prefetch Efficiency and Cloud Cost

Prefetch Efficiency: One unique aspect of managing a cloud
gateway stems from the monetary cost iccurred by access-
ing the cloud backend. Prefetch algorithms should thus try
to minimize unnecessary fetches. To quantify the prefetch
waste, we define a metric prefetch efficiency (PE):

PE =Ca/Cp (3)
where Ca is the number of blocks prefetched and accessed
and Cp is the number of blocks prefetched. Figure 11 (up)
shows the prefetch efficiencies of different algorithms.

Prefetch algorithms can make tradeoffs between perfor-
mance (fetching more blocks to minimize cache misses) and
cost (fetching less blocks to avoid wasteful prefetch). In Fig-
ure 11 (down) we show that when varying the track size (the
unit for prefetch), SARC GRAPH may achieve lower cache-
miss ratio at the cost of lower prefetch efficiency. We be-
lieve that this tradeoff is an important characteristic of any
prefetch algorithm for cloud gateways, and should be thor-
oughly studied.

Prefetch efficiency is only an average, however. To get
more detailed data, we plot the CDF of the number of
times each prefetched block is accessed before eviction (Fig-
ure 12). We can see from the CDF that for most algorithms,
more than 60% of the prefetched blocks are accessed only
once before eviction. This may suggest that we should evict
a prefetched block as soon as it is accessed to improve algo-
rithms that have lower prefetch efficiency.
Cloud Cost: We now consider the dollar cost of cloud gate-
ways. We divide cloud cost into two parts: the storage cost
and the operational cost. Storage cost comes from storing
data in the cloud, and does not change across algorithms.
Operational cost comes from transferring data in and out of
cloud, and the requests cost (GET/PUT/DELETE etc.). We
calculate the cost per GB in a 3-years time period, and use
Amazon’s pricing model [8] given its popularity.

Storage cost depends on the initial data size and how data
grows. For the Corporate dataset,the initial data size (DS) is
3000 GB, and the data growth rate (GR) is 58.77 GB/month

Storage Operational Total Cost
Corp $0.841 $0.096 $0.937
Eng $1.017 $0.013 $1.030

Table 6: Cloud Cost per GB (3 years). For SARC GRAPH,
90 GB cache.

(82.27 GB growth over 42 days). So after three years, the
final data size is:

DS3yrs = DSinit +GR∗36

= 3000+58.77∗36 = 5115.72GB
(4)

and the total storage cost is:

Cost3yrs = (DSinit ∗36+GR∗
36

∑
i=1

i)∗UnitPrice

= (3000∗36+58.77∗
36

∑
i=1

i)∗0.00295

= $4340.65

(5)

So the storage cost per GB for the Corporate dataset is

CostPerGB =Cost3yrs/DS3yrs

= 4040.65/5115.72 = $0.848/GB
(6)

Using a similar process we compute that the storage cost
for the Engineering dataset is $1.017/GB. It is higher than
the Corporate dataset because it has a larger initial data size
(19 TB) and slower data growth rate (50.33 GB/month): in
general, cloud storage is cheaper for fast-growing data.

The operational cost of cloud gateways with different
storage backends, algorithms and cache settings is shown in
Figure 13. As mentioned previously, prefetch efficiency has
an impact on operational cost, and we can see that Figure 13
does show a resemblance with Figure 11 (up).

For the Corporate dataset, the operational cost ranges
from $0.05/GB (S3) to $0.15/GB (CloudFront) over 3 years
when using history-based prefetch; for the Engineering
dataset, the cost ranges from $0.01/GB to $0.02/GB (the
cost is amortized over the larger data size). A larger local
cache natually reduces cost, especially for algorithms with
relatively low prefetch efficiencies, and in general opera-
tional cost is small compared to the storage cost.

Table 6 shows the overall cost per GB of data (after dedu-
plication) of the cloud gateway when using SARC GRAPH,
a 90 GB cache, and the CloudFront backend (the best-
performance configuration so far). To put the numbers in
context, local storage applicances optimized for capacity
usually cost $1 - $2 per GB of capacity (instead of the actual
data size). For example, EMC’s VNX511560010FN storage
array currently costs $1.71/GB [2]. Given the advantages
of cloud storage (ease of management, availability, disaster
recovery, etc.), cloud gateways are economically attractive.

6.4 Metadata Size
The metadata used to manage local caching and prefetch-
ing differ by algorithms: for LRU AMP, it includes the
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Algorithm/Cache size 10% 20% 30%
LRU SEQ 2.4 GB 2.9 GB 3.4 GB
LRU AMP 2.4 GB 2.9 GB 3.4 GB
SARC SEQ 2.8 GB 3.8 GB 4.7 GB
SARC AMP 2.8 GB 3.8 GB 4.7 GB
LRU GRAPH 6.3 GB 6.8 GB 7.1 GB
SARC GRAPH 4.3 GB 5.1 GB 6.0 GB

Table 7: Metadata Size, Corp dataset.

LRU list for block eviction and the stream information for
prefetch; for SARC AMP, there is additional per track in-
formation and sequentiality information; for graph based al-
gorithms, the history graph is the most significant metadata.
The on-disk metadata sizes of different algorithms for the
Corp dataset are shown in Table 7. The Eng dataset shows
very similar data. For both datasets, the metadata used by
GRAPH prefetching algorithms is roughly 1.3-2.5 times that
of LRU-based schemes. On the other hand, SARC AMP
uses about 17%-35% more metadata than LRU SEQ.

We also observe that in GRAPH algorithms, the number
of nodes in the access graph is typically only 1% of the total

number of blocks, confirming that using block ranges is an
effective way to reduce graph size.

7. Related Work
The cloud gateway market is nascent and several startup
companies are working in this space. As mentioned previ-
ously, the most common use of cloud gateways is for backup
or archival; Amazon Storage Gateway [6], Nasuni [38],
Riverbed [43], TwinStrata [50] are popular commercial ones.
A few cloud gateway vendors such as Panzura [41] and
StorSimple [48] provide all-in-one solutions. Panzura en-
ables teams to share data across different sites by providing
cloud gateways at each site that share a single globally-
deduplicated file system. StorSimple has SSD tiers with
inline, variable-length deduplication. As an academic ef-
fort, BlueSky [51] is closest to cloud gateways, provid-
ing a network file system backed by cloud storage. How-
ever, it assumes too optimistic cloud latencies (12 - 30 ms),
which is unlikely based on our measurements. In addition, it
only deploys a naive (synchronous, full segment) prefetch-
ing strategy and does not evaluate agaist realistic enterprise
workloads. There are also related works focused on other
aspects of gateway design. For example, DepSky [13] pro-
vides a “cloud of clouds” model to replicate across different
providers. Similarly, ViewBox [52] studies cloud-based syn-
chronization to avoid data corruption and inconsistency.

As mentioned in Section 4, caching and prefetching tech-
niques have been studied extensively in prior work, both at
the file level [9, 10, 26, 27, 31] and at the block level [19, 24,
25, 33, 34]. We investigate these techniques and adapt them
to the cloud gateway environment.

BORG [14] constructs a process access graph at the block
level in a manner very similar to our system, where vertices
represent block ranges and edges correlation between two
block ranges. However, BORG uses the graph to organize
data on local disk instead of making prefetching decisions.

Chen et. al compared the cost of moving computation and
storage to the cloud, versus keep them local in 2011 [17].
They claim that it is not economically attractive to store
data remotely because of the data transfer cost. However
they did not consider how effective caching reduces data
transferred. With the lower cloud cost today and advanced
caching techniques, the picture is clearly changing.

8. Conclusion
Cloud storage gateways have been widely used for backup
data. Our work shows that tier-2 primary workloads that
have reasonable performance requirements can also be
moved to the cloud with cloud gateways. When equipped
with the right caching and prefetching techniques, cloud
gateways can overcome cloud latencies and deliver good per-
formance at low cost. In order to achieve high performance
for tier-2 workloads, a cloud gateway must capture random
access patterns and optimize for partial cache misses.
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