
Storage-Aware Caching:

Revisiting Caching for Heterogeneous Storage Systems

Brian C. Forney Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau

Computer Sciences Department
University of Wisconsin, Madison

{bforney,dusseau,remzi}@cs.wisc.edu

Abstract

Modern storage environments are composed of a vari-
ety of devices with different performance characteris-
tics. In this paper, we explore storage-aware caching
algorithms, in which the file buffer replacement algo-
rithm explicitly accounts for differences in performance
across devices. We introduce a new family of storage-
aware caching algorithms that partition the cache, with
one partition per device. The algorithms set the parti-
tion sizes dynamically to balance work across the de-
vices. Through simulation, we show that our storage-
aware policies perform similarly to LANDLORD, a cost-
aware algorithm previously shown to perform well in
Web caching environments. We also demonstrate that
partitions can be easily incorporated into the Clock re-
placement algorithm, thus increasing the likelihood of
deploying cost-aware algorithms in modern operating
systems.

1 Introduction

Modern computer systems interact with a broad and di-
verse set of storage devices, including local disks, remote
file servers such as NFS [30] and AFS [16], archival stor-
age on tapes, read-only media such as compact discs and
DVDs, and even storage sites that are accessible across
the Internet [4, 19, 25, 36]. As new storage components
are introduced [11, 31, 34], their behaviors and proper-
ties will likely become even more divergent than they are
today.

Although this set of devices is disparate, one common-
ality pervades them all: the time to access them is high,
especially as compared to CPU cache and memory laten-
cies [23]. Due to the cost of fetching blocks from storage
media, caching of blocks in main memory often reduces
execution time of individual applications and increases
overall system performance – often by orders of magni-
tude.

However, while storage technology has dramatically

changed over the past few decades, important aspects of
the caching architectures used by modern operating sys-
tems have remained unchanged. Though there have been
innovations in mechanism, including the integration of
the file cache and virtual memory page cache [21], copy-
on-write techniques [26], and software emulation of ref-
erence bits [7], there has been little change in policy, with
most operating systems employing LRU or LRU-like al-
gorithms to decide which block to replace.

The problem with LRU and related caching algorithms
is that they are cost-oblivious: all blocks are treated as if
they were fetched from identically performing devices
and can be re-fetched with the same replacement cost
as all other blocks. Unfortunately, this assumption is
increasingly problematic, as the manifold device types
described above have a correspondingly rich set of per-
formance characteristics. As a simple example, consider
a block fetched from a local disk as compared to one
fetched from a remote, highly contended file server; in
this case, the operating system should most likely prefer
the block from the file server.

Within such heterogeneous environments, file systems
require caching algorithms that are aware of the different
replacement costs across file blocks. Given that the slow-
est device roughly determines the throughput of the sys-
tem, storage-aware caching seeks to balance work across
devices by adjusting the stream of block requests. Hence,
in a heterogeneous environment, a storage-aware cache
considers workload behavior and device characteristics
to filter requests.

Thus, in this paper, we explore the integration of cost-
aware algorithms into an operating system page cache
using simulation. Our simulation accounts for real-world
factors such as an integrated page cache and simplicity of
design. We build on previous work in cost-aware caching
from the web-cache and theory communities, demon-
strating that a separate set of partitioned algorithms are
as effective, yet simpler, than proposals in those research
areas.

Our study is set in the context of a network-attached
disk system. Network-attached disks are an increas-
ingly important storage paradigm, and present clients
with both static and dynamic forms of performance het-
erogeneity [5, 6, 13]. However, the algorithms we de-
velop are general and can be applied across a broader
range of storage devices.

Our main results are as follows. We show storage-
aware caching is significantly more performance robust
than cost-oblivious caching and as robust as a leading
web-caching algorithm. Since operating systems have
specific implementation needs, we develop and evaluate
a version of storage-aware caching that extends the com-
monly implemented Clock algorithm.

The rest of this paper is organized as follows. In Sec-
tion 2 we give an overview of the algorithms that we in-
vestigate in this paper. We then describe our algorithm
for selecting partition sizes in Section 3. Section 4 de-
scribes the assumptions of our environment in more de-
tail and explains our simulation framework. Simulation
results are in Section 5. We compare and contrast our
work to existing work in Section 6, and Section 7 con-
tains future work. Finally, we conclude in Section 8.

2 Algorithm Overview
This section provides an overview of the algorithmic
space we explore. First, we describe existing cost-aware
algorithms as a basis of comparison. We then present
our caching algorithms, which are based upon partition-
ing the cache according to replacement cost.

2.1 Existing Cost-Aware Algorithms

The theoretical community has studied cost-aware algo-
rithms as k-server problems [12, 20]. A restricted class of
k-server problems, weighted caching, is closely related
to cost-aware caching. LANDLORD [40] is a significant
algorithm in the literature, which we use for compari-
son. LANDLORD is closely related to the leading web
caching algorithm [10].

LANDLORD combines replacement cost, cache ob-
ject size, and locality by extending both LRU and FIFO
to include cost and variable cache object sizes within a
cache. Since we configured LANDLORD to use LRU,
we describe the LRU version. LANDLORD associates
a cost with each object, which is called L. When an ob-
ject enters the cache, LANDLORD sets L to H , which is
the retrieval cost of the object divided by the size of the
object. If object eviction is needed, LANDLORD finds
the object with the lowest L value, removes it, and ages
all of the remaining objects. LANDLORD ages pages
by decrementing the L value of all remaining objects by
the L value of the evicted object. Upon reference of an
object in the cache, LANDLORD restores its L value to

H . LANDLORD degenerates to strict LRU when all H
values are the same.

LANDLORD has attractive theoretical and experi-
mental properties. As shown by theoretical analysis,
when the size of cache objects are the same, LAND-
LORD is k-competitive, where k is the size of the cache.
Thus, in a fixed object size cache, LANDLORD per-
forms within a factor of k of the optimal off-line algo-
rithm over all possible request sequences [39].

2.2 Overview of Aggregate Partitioned Algorithms

All of the cost-aware algorithms in the literature are
place-anywhere. A place-anywhere algorithm has two
characteristics: blocks may occupy any logical location
in the cache, independent of their original source or cost,
and costs are recorded on a page granularity. The ad-
vantage of place-anywhere algorithms is they calculate,
in a single value, the trade-off between locality and cost.
Thus, at replacement time, these algorithms bias eviction
toward pages with low retrieval cost.

In contrast to a place-anywhere algorithm, an aggre-
gate partitioned algorithm divides the cache into logi-
cal partitions, where blocks within a logical partition are
from the same device and thus share the same replace-
ment cost. The algorithm aggregates replacement cost
since it is a function of a device’s performance. An ag-
gregate partitioned algorithm benefits from the aggrega-
tion of blocks and cost metadata in two ways: the amount
of metadata is reduced and the value of the metadata
more closely reflects the current replacement cost of a
block from a device. Thus, the space overhead is propor-
tional to the number of devices currently used and blocks
are more likely to be replaced when the replacement cost
is low.

Conversely, place-anywhere algorithms only record
the cost when the page is brought into the cache. Thus,
when the cache has a reasonably large number of pages,
as is common today, a place-anywhere algorithm is more
susceptible to inconsistent cost values. Aggregate parti-
tioned algorithms avoid this problem by aggregating cost
metadata on a per-device basis. As the performance of
the device changes, the cost metadata is rarely inconsis-
tent for more than a brief period of time. While a place-
anywhere algorithm could recognize the change in cost
for a device, and propagate the new cost to all pages in
the cache, the cost update requires a significant number
of pages to be updated, increasing overhead and imple-
mentation complexity.

Aggregate partitioned algorithms strive to set the rela-
tive size of each partition to balance work across devices.
We define work as balanced when the cumulative delay
for each device within a period of time is equal. To bal-
ance work, the size of each partition reflects the relative

cost of those blocks in a simple and efficient manner. For
example, in a storage system with one slow disk and one
fast disk, the cache is divided into two partitions, with the
slow disk likely receiving a larger partition. We describe
precisely how the relative sizes should be configured in
the next section.

To choose a victim block, a storage-aware algorithm
first selects a victim partition and then a victim block
within that partition. The victim partition is chosen such
that its resulting size relative to other partitions maintains
the desired proportions. The individual victim within
that partition can be selected with any replacement al-
gorithm, such as LRU, LFU, or FIFO.

A few distinctions to prior work in virtual memory
systems should be noted.

Unified and partitioned virtual memory systems:
In the traditional sense, partitioned virtual memory sys-
tems distinguish between file system pages and virtual
memory pages. The two are managed separately. Our
storage-aware algorithms do not explicitly distinguish
between file system pages and virtual memory pages.
Rather, in order to balance work, our algorithms distin-
guish between pages based on which device supplied the
page. Additionally, storage-aware caching algorithms
change the size of partitions dynamically. Most parti-
tioned virtual memory systems do not change the size of
the file system cache and virtual memory partitions.

Local and global page replacement: Local page re-
placement at eviction time considers processes in isola-
tion, while global page replacement applies replacement
across processes. Our storage-aware algorithms make
per-partition replacement decisions, which is similar to
the traditional notion of local page replacement. How-
ever, the decisions are based on cost and locality, not
solely on locality as in local page replacement schemes.

2.3 A Taxonomy of Aggregate Partitioned
Algorithms

In our work, we investigate a taxonomy of aggregate
partitioned algorithms and show that dynamic aggregate
partitioning is needed. The taxonomy is described in this
subsection.

Two basic approaches are possible for aggregate parti-
tioning: static and dynamic. In a static scheme, the ratio
across partitions is selected once according to a one-time
notion of the costs. However, with no knowledge of the
workload and its resulting miss rates for a given cache
size, one cannot a priori determine the relative sizes that
lead to balanced work. Thus, dynamic partitioning is
needed, in which the ratio of partition sizes adjusts as
the requests are monitored.

Dynamic partitioning have the following three bene-
fits. First, dynamic partitioning can adjust to the dynamic

performance variations, or faults, common in modern de-
vices [6]. Second, dynamic partitioning can react to con-
tention at devices due to hotspots in workloads. Finally,
dynamic partitioning can compensate for the fact that the
performance ratios across devices can change as a func-
tion of the access patterns.

Dynamic partitioning can be divided into eager par-
titioning and lazy partitioning. With eager partitioning,
when new partition sizes are desired, the algorithm im-
mediately reallocates pages using new cost information.
An algorithm with a lazy partitioning scheme gradually
reallocates pages on demand to the desired size in re-
sponse to the workload. Eager partitioning simplifies
choosing a victim partition, since it is the same as the
location of the new page, at the cost of removing pages
which may be useful. Conversely, a lazy partitioning
scheme only removes pages from partitions when they
are truly needed by another partition.

With lazy partitioning, a block may replace any other
block, as long as blocks are replaced at the proper fre-
quency to maintain the desired partition size ratios. Thus,
on replacement, one must explicitly choose a victim
partition. We investigate a strategy based on an in-
verse lottery, as previously proposed for resource allo-
cation [33, 37]. The idea is that each partition is given
a number of tickets in inverse proportion to its desired
size. When a replacement is needed, a lottery is held by
selecting a random ticket; the partition holding that ticket
is picked as the victim. The victim then gives up its least
valuable page, and the lazy partitioning algorithm allo-
cates the page to a new logical partition.

3 Selecting Partition Sizes

The main challenge with partitioned approaches is in de-
termining how the relative sizes of the partitions should
be configured. Storage-aware caching can be viewed as
performing selective filtering of requests to devices. As-
suming the slowest device limits the system throughput,
the goal of storage-aware caching is to set the partition
sizes such that an equal amount of work is sent to each
device. More formally, for each device, the number of
cache misses multiplied by the average cost of each miss
should be equal.

3.1 Algorithmic Details

Our basic approach uses a dynamic repartitioning algo-
rithm. In the algorithm, the storage-aware cache ob-
serves the amount of work performed by each device
over a fixed interval in the past and predicts how the rel-
ative sizes of the partitions should be adjusted so that the
work is equal. The algorithm’s work metric is cumula-
tive delay over a period of time. The delay is related

to the total number of requests but includes request ser-
vice time variation within a device and between devices.
In this algorithm, streaming accesses that do not fit in the
cache are problematic as the algorithm does not currently
detect this type of access.

Our algorithm measures the time spent waiting for
each device over the past W device requests, where W
is the window size, and records this as the wait time
per device. If all of the wait times are approximately
equal, then the current partition ratios are deemed ade-
quate and they remain the same. If the wait times are not
the same, then the size of those partitions with relatively
large wait times should be increased, and the size of those
partitions with relatively small wait times should be de-
creased. Of course, the ratio of the wait times across all
devices should be considered simultaneously.

Selecting the appropriate amount by which to incre-
ment and decrement each partition is a non-trivial search
problem, given that one does not know how a given
change in partition size affects the future miss rate, es-
pecially in the presence of dynamically changing work-
loads. Thus, with our initial approach, we employ the
simplest algorithm that we have found to meet our needs.
The challenge is to find an algorithm that adjusts parti-
tion sizes quickly enough to find the right proportions,
but not so quickly that the algorithm overshoots those
correct proportions.

To meet both of these goals simultaneously, our ap-
proach aggressively increases the size of a partition when
the wait time for the corresponding device is increasing
and otherwise reacts in a conservative manner. As such,
our algorithm makes observations about the wait time for
each device during an epoch, and an action is taken based
on the observation. A new epoch begins after W device
requests complete and between epochs the cache is repar-
titioned.

Repartitioning occurs in four steps. First, the algo-
rithm computes the per-device wait time and the mean
wait time across devices during the epoch. Second, the
algorithm computes a relative wait time for each partition
by dividing the per-device wait time by the mean wait
time. Next, the algorithm determines which partitions
are page consumers and how many pages to give each
consumer. Page consumers are partitions which have a
relative wait time above a threshold T . A threshold is
used to filter normal variations in the wait time not due to
changes in workload or device characteristics. If no page
consumers are found, repartitioning stops and the new
epoch begins. Finally, the algorithm finds partitions with
below-average wait times, called page suppliers, and re-
allocates pages from them to consumers until the con-
sumers reach their desired size.

While repartitioning the cache, the algorithm classifies

Figure 1: Corrective actions taken by our repartition-
ing algorithm. This figure shows the four actions taken
by our algorithm in response to four states. The graph
shows the observation of the per-device wait time trend
relative to the mean wait time as time progresses. A dot-
ted line shows the mean wait time in each graph. Below
the graphs are the actions taken in each state. While
shown as fixed for overall clarity, the threshold is a con-
stant value multiplied by the mean wait time.

each partition into one of four states, and may take cor-
rective action to change the partition size. The four states
are shown in Figure 1 and are described as follows.

• Cool: wait time below the threshold. The wait
time is within the normal operating regime. No cor-
rective action is needed. Some cool partitions may
become page suppliers, but none become page con-
sumers.

• Warming: wait time above threshold and in-
creasing. The algorithm infers an increasing wait
time is due to changes in the workload or the de-
vice characteristics. Initially, the cache size is in-
creased by I pages, where I is the base correction
amount. If a partition continues to warm in sub-
sequent epochs, the increase in cache size grows
exponentially. A reclassification of a partition as
warming from any other state restarts exponential
correction.

• Cooling: wait time above threshold and decreas-
ing. Corrective action during a set of epochs may
have halted the increase in wait time for a partition
and started a decline in wait time. The algorithm
acts conservatively in the cooling state and does not
change the partition size. A more aggressive ap-
proach that continues to increase the cache size for
this state may over-correct and become unstable.

• Warm: wait time above threshold and constant.
Based on experimental evidence, partitions are most
often classified as cool, warming, or cooling. Thus,
a constant wait time is unlikely to occur, and the
partition moves to another state with a small change
in the partition size. Thus, the algorithm increases
the partition size by I .

The last step of the algorithm reallocates pages from
page suppliers to page consumers. The algorithm biases
collection of pages toward partitions that have the lowest
relative wait times. To determine the number of pages re-
moved from each page supplier, the algorithm first com-
putes the inverse relative wait time (IRWT), which is
just 1 - relative wait time, for each partition. Next, it
sums the inverse relative wait times. Finally, the number
of pages a partition j must supply is computed:

IRWTj

sum of IRWTsforsuppliers
∗ # of consumed pages

Note that there are three parameters to this algorithm:
window size (W), threshold (T), and base increment
amount (I). Each needs to be set with care. The value
of W should be large to smooth out wait time variations
and to sample a sufficient number of requests to deter-
mine accurately the effect of corrections. We have found
W = 1000 provides sufficient smoothing and feedback.
The value of I should be small since exponential correc-
tion is taken. We have found a value of 0.2% of the cache
works well in practice. The threshold value, T , should be
large enough to filter normal device performance fluctu-
ation such as seek time. We have found T = 5 detects
changes in wait time that warrant correction. Rather than
use a fixed value of T , the algorithm could compute the
threshold dynamically as the statistical variance of wait
times and use the sum of the mean and the variance as
the threshold. We do not discuss this adaptive approach
here, but we plan to investigate it in the future.

3.2 Modifying Existing Replacement Algorithms

Not only do we desire to have a cost-aware cache that
performs well, but also one that can be easily imple-
mented in modern operating systems. Although atten-
tion has been paid to make it computationally efficient,
LANDLORD needs a priority queue to efficiently find
the lowest cost object and its use of L does not mesh
well with common virtual memory hardware. Thus, it is
not easy to combine LANDLORD with an existing code
base.

Several modern operating systems, including So-
laris [8], use a variant of the Clock page replacement
policy in their unified page cache [7]. Thus, we desire an
algorithm that can be incorporated easily into the Clock
structure.

We introduce an extension of Clock that takes parti-
tions into account, Partitioned-Clock. As in the base al-
gorithm, Partitioned-Clock assumes that each page has
a use bit which is set whenever the page is referenced;
when a victim page is needed, the clock arm looks
through successive pages for one that does not have
its use bit set, clearing use bits as it sweeps. With

Partitioned-Clock, each page also tracks the partition
number to which it currently belongs; when a page is
selected as a victim, not only must its use bit be cleared,
but its partition number must match the partition number
chosen for replacement (e.g., as chosen by the lottery).
We note that considering additional bits other than a sin-
gle use bit is consistent with other variations of Clock
that examine dirty bits or a history of multiple use bits.

There are a few optimizations that improve the perfor-
mance of Partitioned-Clock. First, for the best approxi-
mation of lazy partitions, when searching for a replace-
ment, only those pages belonging to the victim’s parti-
tion should have their use bits cleared; clearing the use
bits of all pages unnecessarily removes some of their us-
age history. Second, a separate clock hand for each par-
tition also improves performance since it helps to further
maintain the usage history of each partition.

As described previously, lazy partitions are simpler to
implement than eager partitions when the ratio of their
sizes is dynamic. Therefore, we focus on the Clock al-
gorithm applied to lazy partitions. This version is termed
Lazy Clock, and it uses inverse lottery scheduling to pick
victims amongst partitions.

4 Evaluation Environment
This section describes our methodology for evaluating
storage-aware caching. Specifically, it gives an overview
of our simulator and describes our simulated storage en-
vironments.

4.1 Simulator

We have developed a trace-driven storage-system sim-
ulator to study the behavior of storage-aware caching.
As configured, the simulated environment looks like a
single client connected to sixteen network-attached stor-
age devices. With our simulator, we are able to explore
the performance impact of client workloads, data layout,
caching algorithms, network characteristics, disk charac-
teristics, and storage-system heterogeneity.

The simulator is driven by the workload of the client,
which is specified in a trace file. The trace file represents
data block requests that have been striped with RAID-
0 across the full set of disks; each request specifies the
starting offset and length of the data to read or write.
To simulate a system under high demand, we consider a
closed workload model, in which the completion of one
disk request immediately triggers the next request.

The client has a local cache, with its replacement poli-
cies the focus of our investigation. We do not model the
time for a cache hit, since it is small enough in a real
system to be dwarfed by the cost of remote-block access.
The time for a cache miss is the sum of network transit
time plus the remote disk service time.

Trace 1 Trace 2 Trace 3
Request

distribution
uniform exponential exponential

Disk
distribution

uniform uniform Gaussian

Locality random random random
Mean request

size
256 KB 34 KB 34 KB

Working set
size

400 MB 425 MB 425 MB

of requests 192,000 750,000 750,000

Table 1: Characteristics of synthetic traces. This table
summarizes the three synthetic traces used in the first set
of experiments. The Gaussian distribution has a mean of
disk 7 and a standard deviation of 3.

Our storage device model roughly matches that de-
scribed in Ruemmler and Wilkes [29]; we model cylin-
ders and consider seek time, rotational delay, and band-
width in calculating the transfer time for a given request.
Specifically, if a disk request falls within the same cylin-
der as the previous request, we model it as sequential;
i.e., the seek and rotational delay are set to zero and
the transfer time is determined by bandwidth. For non-
sequential requests, the rotational delay is chosen uni-
formly at random from zero to a full rotation time; the
seek time follows a non-linear model [29] and depends
upon the cylinder distance between the current request
and the previous request.

Our network model is based on LogGP [3] with end-
point contention. LogGP, which was designed to model
communication within large parallel computers, depends
on five parameters. L is the message latency through
the network, o is the endpoint overhead, g is minimum
time between message sends, G is the seconds per byte
through the network, and P is the number of endpoints.

4.2 Workloads

To fully understand the impact of storage-aware caching
algorithms, we study two sets of workloads: a variety
of synthetic traces and a web server trace collected and
analyzed by Roselli et al. [28]. We simply refer to the
Roselli et al. web server trace as the Roselli trace.

We use synthetic workloads to control different re-
quest size distributions, working set size, locality dis-
tributions, and distribution of request across disks. The
synthetic traces are summarized in Table 1. These traces
are read only. Traces 2 and 3 have a variety of request
sizes to stress small and large read requests, and Trace 3
adds a request imbalance across disks.

The Roselli trace is of an image server at the Univer-
sity of California, Berkeley from January 25, 1997. The

Age Bandwidth Seek Rotation
(Years) (MB/s) Avg (ms) Avg (ms)

0 20.0 5.30 3.00
1 14.3 5.89 3.33
2 10.2 6.54 3.69
3 7.29 7.27 4.11
4 5.21 8.08 4.56
5 3.72 8.98 5.07
6 2.66 9.97 5.63
7 1.90 11.1 6.26
8 1.36 12.3 6.96
9 0.97 13.7 7.73

10 0.69 15.2 8.59

Table 2: Aging an IBM 9LZX. We model the bandwidth,
seek, and rotation time for a family of disks based on the
IBM 9LZX manufactured in progressively older years.
We assume bandwidth improves by a factor of 40% per
year and seek and rotation time by 10% per year.

image server ran a web server and a Postgres database,
which stored the images. The trace alternates between
large reads of several files, which are most likely the
database tables, and small reads and writes.

4.3 Storage-System Characteristics

We have two goals in configuring the set of disks in our
simulated environment. The first goal is to understand
the full sensitivity of storage-aware caching algorithms
to device heterogeneity; this requires a diverse range of
configurations. The second goal is to understand how
these algorithms perform in realistic scenarios; this re-
quires a more focused set of tests.

To meet both of these goals simultaneously, we em-
ploy device aging and performance-fault injection. The
idea behind device aging is to choose a base device (in
our case, the IBM 9LZX) and age its performance over
a range of years and use different collections of these
disks to create configurations. The key, however, is that
the performance of the base disk should not be scaled
by a fixed amount; instead, each component (bandwidth,
seek, and rotation time) should be scaled by its ex-
pected yearly improvement. Historical data suggests that
a 40%/year improvement in bandwidth and roughly a
10%/year reduction in seek time and rotational latency is
realistic (although perhaps on the aggressive side) [15].
Table 2 shows the performance characteristics of the
aged devices used in our experiments. Note that although
we consider progressively older disks (backwards aging),
one could consider newer disks based upon the current
year in a similar manner (forward aging).

Performance-fault injection allows us to dynamically

0

10

20

30

40

50

60

0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
B

/s
)

Age of slow disk (years)

One slow disk

LRU
Clock
No cache

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of slow disks

Multiple slow disks

LRU
Clock
No cache

Figure 2: Performance of LRU, Clock, and No Caching. The figures show the throughput of the storage system
when Trace 1 is used. The figure on the left varies the age of a single disk along the x-axis. The figure on the right
increases the number of two year old disks in the system.

change the performance of a drive during an experiment.
As described earlier, this could represent a disk stutter-
ing before absolute failure, unexpected network traffic
between the client and the drive, or a sudden workload
imbalance.

4.4 Environment Configuration

This section describes the details of the simulator con-
figuration. We configure the network so that it is not the
bottleneck of the system and choose parameters that are
similar to a 10 Gb/s Ethernet; thus, we set the bandwidth
(i.e., 1/G) to 10 Gb/s, L to 1µs, o to 0.4µs, and g to
76 ns. In the future, we hope to investigate how network
performance and caching interact in distributed storage
systems.

We configured the simulator separately for the syn-
thetic and Roselli traces. For the synthetic traces, we
choose a sufficient number of requests to mitigate the ef-
fects of cold-start misses, and set the client cache size to
200 MB. For the Roselli trace, we set the cache size to
10 MB so that the hit rate is near 50%. If the hit rate
is too high, few requests are sent to the disks, and thus,
the heterogeneity of device performance is less of an is-
sue. Since these traces did not include disk layout and
file path information, we created a simple layout policy.
The layout policy assumes RAID-0 striping. The policy
lays out blocks in the order of first access.

We aged the disks in two scenarios. Both scenarios
represent cases where the storage-system has been incre-
mentally updated; that is, newer, faster devices have been
added over time. In the first scenario, there is a single
heterogeneous disk whose performance is aged across
the entire range of years. In the second scenario, there
are two groups of heterogeneous disks, one group with

an age of zero, the other with an age of two years, and
the relative size of the two groups is varied.

While these scenarios do not cover all real-world sit-
uations, they provide insight for common configura-
tions. The first scenario mimics stuttering disks and in-
creased workloads from other clients. The second sce-
nario closely follows incremental upgrades of a disk ar-
ray. Incremental upgrades often occur due to cost con-
straints that prohibit the replacement of an entire array
when a small number of the disks fail.

5 Experiments

This section presents a progression of experiments
demonstrating the effectiveness of storage-aware
caching. We begin by motivating the need for cost-aware
caching algorithms given heterogeneous devices. We
then show that partitioned approaches can mask perfor-
mance differences, but that configuring fixed partition
ratios correctly is difficult even in a static environment.
Next, we demonstrate that we can mask performance
heterogeneity by adjusting the ratio of partition sizes
according to on-line observations of the amount of
work performed by each device. Finally, we show that
partitioned approaches can be easily incorporated into
operating system replacement policies and still perform
quite well, and explore their performance robustness on
a trace of a web server.

5.1 A Motivating Example

Our first set of experiments motivates the need for
storage-aware caching algorithms given a storage sys-
tem containing heterogeneous devices. Figure 2 shows
the throughput obtained for Trace 2 using two common
replacement policies that are not cost-aware, LRU and

0

10

20

30

40

50

60

0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
B

/s
)

Age of slow disk (years)

Static
LRU
No cache

Figure 3: Potential of partitioned approaches. One
slow disk was aged as shown by the x-axis for three ap-
proaches: no cache, LRU caching, and a static partition-
ing of the cache according to disk performance. Trace 1
was used for this figure.

Clock, as well as with no caching. The graph on the
left illustrates that as one of the disks is aged (and its
seek, rotation time, and bandwidth decline) the through-
put of the system drops dramatically, and the perfor-
mance benefit of having a file cache decreases. For ex-
ample, with LRU replacement, throughput drops from
nearly 55 MB/s when all of the disks are equally fast
down to only 11 MB/s when just a single disk has the per-
formance of a 10-year old disk. Similarly, the graph on
the right shows that the entire storage system runs at the
rate of the slowest disk in the system; that is, the through-
put with one slow disk and 15 fast disks is as poor as with
all slow disks.

In contrast, a storage-aware caching algorithm should
mask the performance of slow disks by allocating more
of the cache to the slow disks; the slow disk thus has
fewer requests to handle and does not harm the perfor-
mance of the system as dramatically.

5.2 Configuring Partition Sizes

In our next set of experiments, we show that partitioned
caching algorithms have the potential to mask heteroge-
neous performance, but that care must be taken in select-
ing the ratio of partition sizes. We begin by examining a
static partitioning algorithm simply named Static.

In Figure 3, we show the performance of Static for
Trace 1. In these experiments, the ratio of partition sizes
is statically set and is directly proportional to the ratio
of the expected service time of each disk. Since we
use Trace 1, we know the mean request size is 256 KB.
As such, we directly compute the expected transfer time
from each disk as a function of its seek time, rotation
delay, and peak bandwidth. The graph indicates a static

0

10

20

30

40

50

60

1 10 100

T
hr

ou
gh

pu
t (

M
B

/s
)

Partition ratio

Trace 1
8k-2x

8k-10x

Figure 4: Sensitivity of static partitioning on partition
ratios and workload. The graph shows the performance
of three different workloads run on 16 disks with one two-
year old disk. The experiment varies the ratio of the slow
disk partition to each of the fast disk partitions on the
x-axis. The lower two lines both use 8 KB requests, but
vary the ratio of requests sent to the slow disk versus the
others, using either a ratio of 2:1 or 10:1.

partition strategy significantly improves performance rel-
ative to cost-oblivious algorithms such as LRU. How-
ever, Static performs well only when a priori mean re-
quest size and per-disk miss rate as a function of cache
size is known. In the real world, this information is not
known in advance.

The difficulty of correctly configuring a static partition
strategy is illustrated in Figure 4. In this experiment, we
examine a single storage configuration in which the one
slow disk is two years older than the other disks. Along
the x-axis, the graph varies the ratio of the partition sizes
between the slow disk and each of the other disks in the
system; for example, when this value is greater than one,
the slow disk is given a correspondingly larger partition.

The three lines in the graph correspond to three dif-
ferent workloads, each of which has a different optimal
value for the partition size ratios. The top line is the same
workload as examined above; we verify that the highest
throughput for this workload is approximately 50 MB/s,
which matches that shown in Figure 3 with a two-year
old disk. In the second and third lines, the distribution of
requests across disks is changed such that the slow disk
receives either twice or ten times as many requests as the
other disks. The graph shows that each of these work-
loads has a different optimal partition ratio (e.g., the best
ratio for the top workload is 2:1 whereas the best ratio
for the bottom workload is nearly 40:1). Further, the per-
formance of each workload varies greatly with the parti-
tion ratio (e.g., the performance of the 256 KB workload
varies from 50 MB/s to 30 MB/s). This indicates we need

0

5

10

15

20

25

0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
B

/s
)

Age of slow disk (years)

Trace 2

Lazy LRU
Eager LRU
LANDLORD
LRU
No cache

0

5

10

15

20

25

0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
B

/s
)

Age of slow disk (years)

Trace 3

Lazy LRU
Eager LRU
LANDLORD
LRU
No cache

Figure 5: Dynamic partitioning algorithms. The figure shows the performance of Eager LRU, Lazy LRU, and
LANDLORD as one disk is aged. The left graph uses Trace 2 while the right graph uses Trace 3.

an approach to select the partition ratios dynamically as a
function of both the workload and the disk performance.

5.3 Partitioning to Balance Work

Our next set of experiments shows that by dynamically
adjusting the size of each partition, our algorithms bal-
ance the amount of work performed by each disk and
thus effectively hide heterogeneity. In doing so, we use
the two classes of dynamic partitioning: eager partition-
ing and lazy partitioning. Lazy partitioning uses inverse
lottery scheduling to pick victim partitions at replace-
ment time. Both eager and lazy use LRU within their
partitions. For simplicity, we refer to the first approach
as Eager LRU and the second approach as Lazy LRU.
In these experiments, we investigate Trace 2 and Trace 3
for a more realistic evaluation while continuing with well
understood workload parameters.

Figure 5 compares the performance of the Eager LRU
and Lazy LRU storage-aware algorithms to LRU and
LANDLORD. In the left-most graph of the figure, we ex-
amine the workload with a uniform number of requests
across disks. With this setup, the throughput with LRU
degrades dramatically as the performance of the one slow
disk is aged; specifically, throughput drops from approx-
imately 23 MB/s to only 6 MB/s. Eager LRU and Lazy
LRU are able to maintain the throughput of the system
as the slow disk is aged; specifically, the performance of
these algorithms is similar to that of LRU when all of the
disks are the same speed, but with a ten-year-old disk,
they are able to mask the impact of the slow disk and
keep throughput between 16 and 20 MB/s.

The right graph of Figure 5 shows the challenges of
a non-uniform number of requests across disks. Inter-
estingly, even when all of the disks are identical, all of
the cost-aware algorithms perform better than LRU. With
this workload, the popular disks suffer from contention,

and thus queueing delays make blocks from those disks
more costly to fetch. By monitoring replacement cost,
the cost-aware algorithms devote more of the cache to
the popular disks and thus better balance the load across
all of the disks. As with the previous workload, the per-
formance benefits of cost-aware caching improve as one
of the disks is aged. For a 10-year old disk, Eager LRU
and LRU differ by over a factor of three.

Comparing the performance of Eager LRU, Lazy
LRU, and LANDLORD, one sees that the performance
of the three algorithms is similar, but not identical. The
right graph most clearly shows the difference. Eager
LRU is not as performance robust as Lazy LRU and
LANDLORD. While Lazy LRU devotes the entire cache
to the slow disk, Eager LRU continues to allocate a small
amount of the cache to the fast disks. The immediate
repartitioning of Eager LRU aggravates efforts to find a
good partition size on Trace 3.

5.4 Clock-Based Replacement

As noted in Section 3.2, several operating systems use
the Clock algorithm. However, Clock is not cost-aware.
Thus, in this section, we evaluate the use of a lazy par-
titioned algorithm called Lazy Clock as a practical vir-
tual memory page replacement algorithm. Again, we use
Traces 2 and 3 and compare Lazy Clock to Clock. Ex-
perimental results are found in Figures 6 and 7.

In Figure 6, Lazy Clock performs well. As desired,
Lazy Clock gives a greater proportion of the cache to
slower devices and devices with more requests. Thus,
Lazy Clock is able to mask performance differences
even as the speed of the one slow disk degrades sig-
nificantly. For example, with the imbalanced workload,
Lazy Clock begins with a throughput of approximately
21 MB/s when all disks are identical and degrades to only
about 17 MB/s when the slow disk is a full 10-years older

0

5

10

15

20

25

0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
B

/s
)

Age of slow disk (years)

Trace 2

Lazy Clock
Clock
No cache

0

5

10

15

20

25

0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
B

/s
)

Age of slow disk (years)

Trace 3

Lazy Clock
Clock
No cache

Figure 6: Clock-based replacement algorithms. The figure shows the performance of Lazy Clock and Clock as one
disk is aged. The same workloads are investigated as in Figure 5.

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of slow disks

Trace 2

Lazy Clock
Clock
No cache

Figure 7: Clock-based with multiple old disks. The
figure shows the performance of Lazy Clock and Clock as
the number of disks of age two years is increased. Trace
2 is used, which is the same workload as in the left graph
of Figure 5.

than the others. This throughput compares favorably to
LANDLORD and Lazy LRU in Figure 5.

Figure 7 shows how Lazy Clock gracefully masks an
increasing number of two-year old disks. While Clock is
affected by any heterogeneity, the performance of Lazy
Clock only slowly degrades. While the performance does
not match Clock when the system is homogeneous, such
as when there are zero or 16 two-year old disks, the per-
formance is fairly close. Our experience has shown that
a smaller base correction size when the devices are ho-
mogeneous can remove the discrepancy.

5.5 Dynamic Changes in Performance

To evaluate tolerance to performance faults, we show that
our partitioned caching algorithms are able to react to

changes in the relative performance of storage devices, in
some cases more effectively than LANDLORD is able.
In these experiments, we begin with a cluster of homo-
geneous disks and Trace 1. We inject a performance
fault on one of the disks (disk 6) at a simulated time of
500 seconds (approximately half way through the simu-
lation). The performance fault has the effect of slowing
down that disk by a factor of two.

In the first graph of Figure 8 we show how Eager
LRU adjusts the partition ratios for this change in per-
formance. As one can see, the 16 partitions are all ini-
tially equal. After the performance fault and a window
of W = 1000 disk requests have passed for observation,
the algorithm observes that the waiting time of disk 6 is
significantly higher than the average waiting time. The
partition for disk 6 is then increased by a small amount
and the partitions for all of the other disks are decreased
by the necessary number of cache entries. The algorithm
continues measuring the wait time of each disk and in-
creasing the partition size of disk 6 until all of the wait
times are approximately equal. The time-line shows that
the correct partition ratio is found quickly.

In the second graph of Figure 8 we summarize our
results by comparing the performance of LANDLORD,
Eager LRU, Clock, and Lazy Clock. We plot through-
put for the same workload as above when a performance
fault occurs on one disk, four disks, or eight disks si-
multaneously. When the number of affected disks is
small relative to the total number of disks in the system,
aggregating replacement-cost information is beneficial.
Specifically, Eager LRU achieves a throughput of ap-
proximately 54 MB/s with one performance fault, while
LANDLORD maintains only 48 MB/s. Lazy Clock per-
forms nearly as well as the others, and finally the cost-
oblivious Clock algorithm performs the least well.

When the number of faulty disks increases to eight,

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 200 400 600 800 1000 1200

P
ar

tit
io

n
ra

tio

Simulation time (seconds)

Single fault injection

Disk 6

Fault injected
All other disks

Eager LRU
LANDLORD

Lazy Clock

Figure 8: Performance with dynamic faults. We consider a cluster of initially homogeneous disks and a performance
fault at time 500 seconds that slows a disk by a factor of two. In the graph on the left, the performance fault occurs
on a single disk and we show the partition sizes chosen by the Eager LRU algorithm. In the graph on the right, the
performance fault occurs on either one, two, or four disks. In all cases, Trace 1 was used.

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
B

/s
)

Age of slow disk (years)

LRU-based algorithms

LRU
LANDLORD
Eager LRU
Lazy LRU
No cache

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
B

/s
)

Age of slow disk (years)

Clock-based algorithms

Clock
Lazy Clock
No cache

Figure 9: Web server workload. This figure shows the performance of LRU- and Clock-based algorithms when run
on a file system trace of a web server providing art images. The results of LRU-based algorithms are in the graph on
the left side. Clock-based algorithms are in the right graph.

the results change. Eager LRU does not mask the per-
formance faults as well as LANDLORD. When there are
two groups of disks with similar performance character-
istics, our correction algorithm does not detect the sever-
ity of heterogeneity, making smaller corrections than are
needed. An adaptive threshold value may help.

5.6 Real-World Performance

We conclude our experiments with an examination of our
partitioned algorithms on a web workload. As the web
server received a modest number of requests, this trace
is shorter than our synthetic traces. Our partitioned al-
gorithms are partially penalized by the shortness of the
trace as they first need to move the partition sizes from
an initial state. Similar to other experiments, we only
investigate the aging of a single disk.

The results are shown in Figure 9. As expected, the
cost-oblivious algorithms show a sharp drop off in per-
formance as the age of the slow disk increases. LRU’s
performance falls to 10% of its peak performance over
the age range and, for a more realistic range, falls nearly
30% when aged from zero to four years old. Clock shows
a similar, though slightly less dramatic decline.

As expected, the adaptive algorithms show more ro-
bust performance. The performance degrades by 15%
for Lazy LRU, 38% for Eager LRU, and 45% for LAND-
LORD. However, Lazy LRU performs more poorly than
Eager LRU or LANDLORD. Lazy LRU has a poor in-
teraction with the repartitioning algorithm and devotes
the entire cache to the slow disk even when the disks are
homogeneous. Eager LRU, however, distributes pages
more evenly between pages and gradually changes the

distribution as the disk ages.
Lazy Clock also shows a relatively small decrease in

performance of 40%. However, there is a sharp drop as
the slow disk changes from three to four years old. This
drop is due to a significant change in the partition ratios.
Lazy Clock strongly favors the slow disk at age four, but
has a weak preference at age three. The performance
of LANDLORD also decreases between age three and
four, but then increases. The trace’s bimodal distribution
of request sizes due to Postgres table reads interleaved
with small web server reads and writes may introduce
anomalous behavior.

Based on experiments not shown here due to space
constraints, the performance of dynamic partitioning
algorithms is sensitive to the base correction amount.
The experiment in Figure 9 uses a fixed base correc-
tion amount across the range of slow disk ages. If the
base correction amount starts small and increases as the
disk ages, performance improves and nearly matches the
base cost-oblivious algorithm for a homogeneous sys-
tem. Thus, an adaptive base correction amount is needed
for better performance.

6 Related Work

Work on cost-aware caching has occurred in the web
cache and database communities. The web cache com-
munity has extensively studied cost-aware caching [10,
17, 18, 27, 38], with the addition of document size in-
cluded in many of their algorithms. The web caching
work differs from storage-aware caching in several ways.
First, performance in the wide area varies much more
than is common for storage systems. Second, web
caching often uses whole document caching, which dif-
fers from fixed-size blocks used in storage systems. Fi-
nally, in web caching, the replacement cost of one web
page is not strongly correlated with the replacement costs
of other pages.

Broadcast disks [1, 2] continuously deliver data to
clients through an asymmetric link following a broad-
cast schedule that is best able to meet the client’s needs.
When a client’s needs are not met by the broadcast sched-
ule, the client cache strives to manage the cache contents
to mask the non-ideal broadcast schedule. Using knowl-
edge of the broadcast schedule and probability of access,
the cache manages its contents using an algorithm that
generalizes LRU. Storage-aware caching differs in two
ways. First, while it partitions cache pages by device,
broadcast disks use a page rather than a device gran-
ularity to track replacement costs. Second, broadcast
disks assume an infrequently changing broadcast sched-
ule, whereas storage-aware caching must react to fre-
quent changes in workload and device performance.

Recently, researchers have studied allocation of pages

between different classes in prefetching [9, 24, 35],
compiler-controlled memory management [14], and re-
sizeable file buffer caches [22]. In prefetching, page allo-
cation occurs between applications [9] or hinted and un-
hinted I/O references [24, 35]. For compiler-controlled
memory management, the compiler provides application
memory usage information to operating system global
replacement policies using hints, reintegrating elements
of local page replacement into global page replacement.
Finally, Nelson’s work [22] on resizeable file buffer
caches evaluates the tradeoff between file buffer caches
and virtual memory when a system is loaded. The work
in these three areas is closely related to our work but does
not directly address storage device heterogeneity.

7 Future Work

While storage-aware caching increases the storage sys-
tem performance robustness by adapting to performance
differences of devices, we see further areas of improve-
ment and one new application domain, in addition to a
study of a real implementation.

First, the partitioning algorithm presented has two sig-
nificant limitations that more sophisticated and informed
cost-benefit algorithms do not have. The limitations are a
linear relationship assumption between cache size and hit
rate and a reliance on proper values for window size, base
increment amount, and threshold. The first limitation is
evident if one considers access patterns with little local-
ity or a working set larger than the cache. Intuitively, the
algorithm should recognize instances where increasing
the cache size does not decrease wait time.

Second, we believe a general framework for storage-
aware caching where existing cost-oblivious policies can
manage individual partitions should be studied. A frame-
work approach has modularity as its primary strength;
existing non-cache aware policies such as LRU, Clock,
MRU, and EELRU [32] can be used with minimal effort
and changes.

Third, our work has concentrated on non-cooperative
client caching. We believe the combination of cooper-
ative caching and cost-aware caching will lead to better
performance robustness, especially for disk arrays where
individual cache sizes are small.

Fourth, storage-aware caching can be applied to low-
power environments. Storage-aware caching can be ex-
tended to include power as a retrieval cost. Thus, devices
that are higher in power will likely be accessed less fre-
quently and stay in low-power mode longer and more
frequently.

Finally, since caching algorithms are affected by
prefetching and layout decisions, we would like to ex-
plore the advantages and tradeoffs of integrated prefetch-
ing, layout, and caching decisions, in light of device het-

erogeneity. Previous caching and prefetching work [9,
24] in homogeneous environments has shown the ben-
efits of integration. We believe this benefit extends to
heterogenous environments.

8 Conclusions
Given the diverse characteristics of modern storage de-
vices, we believe the time is ripe to re-investigate caching
algorithms. To optimize performance, the task of a cost-
aware cache is to control which blocks are cached, such
that the amount of work performed by each storage de-
vice is roughly equal. In this paper, we have presented
a family of cost-aware caching algorithms that are based
on the notion of explicitly partitioning the cache; the size
of each partition is configured such that it directly cor-
responds to the relative cost and usefulness of the data
in that partition. These approaches have two advantages.
First, partitions are able to aggregate replacement-cost
information across many entries in the cache, reducing
the amount of information that must be tracked and al-
lowing the most recent cost information to be used for
all blocks from the same device. Second, and most im-
portant, a virtual partition approach can be easily imple-
mented within the Clock replacement policy, increasing
the likelihood of adoption in real systems.

Acknowledgements
We thank members of the Wisconsin Network Disks re-
search group for helpful discussions, contributions, and
paper comments. In particular, Florentina I. Popovici
provided the IBM 9LZX disk profile information used
in our simulations, and Leslie Cheung wrote the layout
code used in the Berkeley trace experiments. Omer Zaki
contributed to early versions of this work. Comments
from anonymous reviewers and particularly the tireless
shepherding of Jeff Chase greatly improved the qual-
ity of the paper. The Condor distributed execution sys-
tem was used to run simulations. Members of the Con-
dor project, especially Todd Tannenbaum, supported our
use of Condor. This work is sponsored by NSF CCR-
0092840, CCR-0098274, ITR-0086044, and the Wiscon-
sin Alumni Research Foundation.

References
[1] S. Acharya, R. Alonso, M. J. Franklin, and S. B. Zdonik. Broad-

cast Disks: Data Management for Asymmetric Communications
Environments. In Proceedings of the 1995 ACM SIGMOD Inter-
national Conference on Management of Data, San Jose, CA, May
22-25, 1995, pages 199–210. ACM Press, 1995.

[2] S. Acharya, M. J. Franklin, and S. B. Zdonik. Dissemination-
based Data Delivery Using Broadcast Disks. IEEE Personal
Communications, 2(6), December 1995.

[3] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman.
LogGP: Incorporating Long Messages into the LogP Model - One

Step Closer Towards a Realistic Model for Parallel Computation.
In Papers of the 7th Annual ACM symposium on Parallel Algo-
rithms and Architectures, Santa Barbara, CA, June 24 - 26, 1995,
pages 95–105. ACM Press, 1995.

[4] Apple Computer Corporation. iDisk. http://itools.mac.com.

[5] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, J. Bent, B. Forney,
S. Muthukrishnan, F. Popovici, and O. Zaki. Manageable Storage
via Adaptation in WiND. In Proceedings of IEEE Int’l Sympo-
sium on Cluster Computing and the Grid (CCGrid’ 2001), pages
169–177, May 15-18 2001.

[6] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-Stutter
Fault Tolerance. In Workshop on Hot Topics in Operating Systems
(HotOS 8), Schloss Elmau, Germany, May 2001.

[7] O. Babaoglu and W. Joy. Converting a Swap-Based System to
do Paging in an Architecture lacking Page-Referenced Bits. In
Proceedings of the 8th ACM Symposium on Operating System
Principles, pages 78–86, Pacific Grove, CA, December 1981.

[8] J. L. Bertoni. Understanding Solaris Filesystems and Paging.
Technical Report TR-98-55, Sun Microsystems, 1998.

[9] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementation and
Performance of Integrated Application-Controlled File Caching,
Prefetching, and Disk Scheduling. ACM Transactions on Com-
puter Systems, 14(4):311–343, November 1996.

[10] P. Cao and S. Irani. Cost-Aware WWW Proxy Caching Algo-
rithms. In USENIX Symposium on Internet Technologies and Sys-
tems Proceedings, Monterey, California, December 8–11, 1997,
pages 193–206, Berkeley, CA, USA, 1997.

[11] L. R. Carley, G. R. Ganger, and D. F. Nagle. MEMS-based
Integrated-Circuit Mass-Storage Systems. Communications of
the ACM, 43(11):72–80, November 2000.

[12] M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New Re-
sults on Server Problems. In Proceedings of the 1st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA ’90), pages
291–300, San Francisco, CA, USA, Jan. 1990.

[13] T. Cortes and J. Labarta. Extending Heterogeneity to RAID level
5. In Usenix 2001 Annual Technical Conference, June 2001.

[14] A. Demke Brown and T. C. Mowry. Taming the Memory Hogs:
Using Compiler-Inserted Releases to Manage Physical Memory
Intelligently. In Proceedings of the 4th Symposium on Operat-
ing Systems Design and Implementation (OSDI-00), pages 31–
44, Berkeley, CA, October 23–25 2000.

[15] E. Grochowski. IBM Leadership in Disk Stroage Technology.
IBM Corporation, 2000.

[16] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale and
Performance in a Distributed File System. ACM Transactions of
Computer Systems, 6(1):51–81, February 1988.

[17] S. Jin and A. Bestavros. Popularity-Aware GreedyDual-Size Al-
gorithms for Web Access. In Proceedings of the 20th Interna-
tional Conference on Distributed Computing Systems (ICDCS),
April 2000.

[18] T. Kelly, Y. M. Chan, S. Jamin, and J. K. MacKie-Mason. Biased
Replacement Policies for Web Caches: Differential Quality-of-
Service and Aggregate User Value. In Fourth International Web
Caching Workshop, San Diego, California, 31 March - 2 April
1999, 1999.

[19] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. Geels, R. Gum-
madi, S. Rhea, W. Weimer, C. Wells, H. Weatherspoon, and
B. Zhao. OceanStore: An Architecture for Global-Scale Persis-
tent Storage. In Proceedings of the Ninth international Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000), November 2000.

[20] M. Manasse, L. McGeoch, and D. Sleator. Competitive Algo-
rithms for On-line Problems. In Proceedings of the twentieth
annual ACM Symposium on Theory of Computing, Chicago, Illi-
nois, May 2–4, 1988, pages 322–333, New York, NY, USA, 1988.

[21] M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite
Network File System. ACM Transactions on Computer Systems,
6(1):134–154, February 1988.

[22] M. N. Nelson. Virtual Memory vs. The File System. Technical
Report 90.4, Compaq Computer Corporation, 2000.

[23] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet.
AlphaSort: A RISC Machine Sort. In 1994 ACM SIGMOD Con-
ference, May 1994.

[24] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed Prefetching and Caching. In Proceedings
of the Fifteenth ACM Symposium on Operating Systems Princi-
ples, pages 79–95, Copper Mountain, CO, December 1995. ACM
Press.

[25] Pro Softnet Corporation. iBackup. http://www.ibackup.com/.

[26] R. Rashid, A. Tevanian, M. Young, D. Golub, D. Baron, D. Black,
W. Bolosky, and J. Chew. Machine-Independent Virtual Memory
Management for Paged Uniprocessor and Multiprocessor Archi-
tectures. In Proceedings of the Second International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS II), pages 31–39, Palo Alto, CA, October
1987. Association for Computing Machinery, IEEE.

[27] L. Rizzo and L. Vicisano. Replacement Policies for a Proxy
Cache. IEEE/ACM Transactions on Networking, 8(2):158–170,
2000.

[28] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison of File
System Workloads. In Proceedings of the 2000 USENIX Annual
Technical Conference (USENIX-00), pages 41–54, Berkeley, CA,
June 18–23 2000.

[29] C. Ruemmler and J. Wilkes. An Introduction to Disk Drive Mod-
eling. IEEE Computer, 27(3):17–28, March 1994.

[30] R. Sandberg. The Design and Implementation of the Sun Net-
work File System. In Proceedings of the USENIX Summer
Conference, pages 119–130, Berkeley, CA, USA, June 1985.
USENIX Association.

[31] J. L. Sanford, P. F. Greier, K. H. Yang, M. Lu, R. S. Olyha, Jr.,
C. Narayan, J. A. Hoffnagle, P. M. Alt, and R. L. Melcher. A
One-megapixel Reflective Spatial Light Modulator System For
Holographic Storage. IBM Journal of Research and Develop-
ment, 42(3/4):411–426, 1998.

[32] Y. Smaragdakis, S. Kaplan, and P. Wilson. EELRU: Simple
and Effective Adaptive Page Replacement. In Proceedings of
the ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computing Systems (SIGMETRICS-99),
volume 27,1 of SIGMETRICS Performance Evaluation Review,
pages 122–133, New York, May 1–4 1999. ACM Press.

[33] D. G. Sullivan and M. I. Seltzer. Isolation with Flexibility: A
Resource Management Framework for Central Servers. In Pro-
ceedings of the 2000 USENIX Annual Technical Conference (San
Diego, California), pp. 337-350, 2000.

[34] The Infiniband Trade Association. http://www.infinibandta.org,
June 2001.

[35] A. Tomkins, R. H. Patterson, and G. Gibson. Informed Multi-
Process Prefetching and Caching. In Proceedings of the 1997
ACM SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, pages 100–114. ACM Press, June 1997.

[36] A. Vahdat, T. Anderson, M. Dahlin, E. Belani, D. Culler, P. East-
ham, and C. Yoshikawa. WebOS: Operating System Services For
Wide Area Applications. In Proceedings of the Seventh Sympo-
sium on High Performance Distributed Computing, July 1998.

[37] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flex-
ible Proportional-Share Resource Management. In Proceedings
of the 1st USENIX Symposium on Operating Systems Design and
Implementation, Nov 1994.

[38] R. P. Wooster and M. Abrams. Proxy Caching that Estimates
Page Load Delays. In Proceedings of the 6th International WWW
Conference, April 1997.

[39] N. E. Young. The K-server Dual and Loose Competitiveness for
Paging. Algorithmica, 11(6):525–541, June 1994.

[40] N. E. Young. On-line File Caching. In Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, Balit-
more, MD, January 17-19, 1999, pages 82–86. ACM Press, 1999.

