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ABSTRACT

Commodity server and desktop computer systems have become powerful enough in recent
years to profitably make use of system virtualization technology. System software vendors
are enthusiastically embracing system virtualization to address some of the key issues fac-
ing today’s enterprises like manageability, rapid servicedeployment, and disaster recovery.

Widespread adoption of virtualization has a disruptive influence on system organiza-
tion. In a virtualized environment, the virtual machine monitor (VMM) supplants the op-
erating system as the primary resource manager. When a virtualization layer is present,
certain system features like resource scheduling, cache management, and security monitor-
ing can often be implemented most naturally within the VMM.

While a VMM understands and controls system hardware resources, it currently knows
very little about the high-level software abstractions implemented within guest operating
systems, a fact referred to as the “semantic gap”. Information pertaining to OS constructs
like processes, threads, users, and caches is often useful,however, when implementing
services at the VMM layer. Hence, researchers have inventedways of directly exporting
relevant information from the operating system to an underlying VMM. This direct ap-
proach, while effective, has some important drawbacks. Forexample, it leads to close
coupling between VMM-layer services and specific OS vendorsand versions, reducing the
applicability of services and complicating deployment andmanagement.

We have invented and implemented techniques that can be usedby a VMM to infer
useful information about selected operating system abstractions and achieve a level of im-
plicit operating system awareness. Our approach uses observation of architectural events
and the fact that modern operating systems share many basic features and responsibilities.
This dissertation describes our techniques in detail and presents the results of a careful ex-
perimental evaluation of them. Using case studies, we show that implicit operating system
awareness within a VMM can be used to implement a variety of useful applications like
sophisticated I/O scheduling, flexible memory management,efficient caching, and reliable
security monitoring that significantly enhance the value ofthe virtualization layer.
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Chapter 1

Introduction

System virtualization technology has arrived on every major server and desktop computing
platform [3, 4, 46, 93]. High quality virtual machine implementations for servers [4, 101]
and desktop PCs [27, 91] allow system managers to consolidate servers [103], support mul-
tiple operating systems [36], provision resources on-demand [99], perform security isola-
tion, monitoring, and authentication [34, 56], provide fault tolerance [11], and optimize for
specialized architectures [12]. As both software [27] and hardware [37, 46] support for
near zero overhead virtualization develops, and as virtualization is included in dominant
commercial operating systems [8], it appears that virtualized computing environments will
become ubiquitous.

As virtualization becomes prevalent, thevirtual machine monitor(VMM), naturally
supplants the operating system as the primary resource manager for a machine. In a virtu-
alized environment, all physical system resources like CPUs, memory, and I/O peripherals
are owned and managed by a VMM. Today, the operating system isthe main target for in-
novation in system services. In a world where virtualized environments are the norm, one
should consider how to implement some traditional operating system services like resource
allocation, scheduling, and security monitoring within a VMM [15].

The transition of some functionality from the operating system into the VMM has many
potential benefits. For example, VMM-based services can be portable across different op-
erating systems. By implementing a feature a single time within a VMM, it is logically
available to all operating systems running above. Further,the VMM may be the only place
where new features can be introduced into a system, because the operating system is legacy
or closed-source or both. The VMM is also the only locale in a virtualized system that has
total control over system resources and can likely make the most informed resource man-
agement decisions.
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1.1 Overcoming the Semantic Gap

However, pushing functionality down one layer, from the OS into the VMM, has its draw-
backs as well. One significant problem is the lack of higher-level knowledge within the
VMM, sometimes referred to as asemantic gap[15]. The semantic gap is a result of the
narrow interface provided by the virtual architecture. Thevirtual machine interface isolates
the VMM from guest operating systems and hides a guest’s internal state from the VMM.
For example, a VMM is not inherently privy to the semantics ofa guest operating system’s
basic abstractions (e.g., processes, threads, and users), its policies, or its performance goals.
No standard interfaces exist that allow a VMM to query a guestoperating system for these
details. The semantic gap fundamentally limits the kinds offeatures a VMM-level service
can provide.

Previous work in virtualized environments has partially recognized this dilemma and
other researchers have developed techniques to infer information about one aspect of a
guest operating system, namely, how it makes use of the hardware resources allocated to
it [12, 85, 101]. Techniques that provide resource utilization information to a VMM are
useful because they allow a VMM to manage the resources of thesystem more effectively.
For example, armed with memory utilization information, a VMM can reallocate an other-
wise idle page in one virtual machine to a different virtual machine that could use it more
effectively [101].

In addition, some recently proposed VMM-based services useinformation about the
software abstractionsof the operating systems running above them. VMI [35], for exam-
ple, uses debugging information about the specific version of its guest operating systems
to extract implementation details like the memory addresses of private operating system
variables and the layout of compound data structures. IntroVirt [52], requires a priori se-
mantic information about key operating system functions likefork, exec, andmmap to
stay informed of important guest events. These explicit approaches are effective, but have
significant disadvantages. Explicit information closely couples a VMM-level service to a
specific operating system version. A service based on externally provided, explicit guest
implementation information must alsotrust that the guest operating system it observes has
not been corrupted or compromised.

1.2 Research Statement

In response to these shortcomings, this dissertation explores how a VMM can indepen-
dently obtain information about the software abstractionsof the guest operating systems
running above it in the software stack. Techniques that can be used to implicitly extract
information about hardware or software components across asystem layer boundary using
observation and measurement are known asgray-box[5] techniques. When explicit in-
formation about a guest OS is inconvenient to obtain, unavailable, or unreliable, gray-box
techniques can help bridge the semantic gap. In this dissertation, we describe, implement,
and evaluate new gray-box techniques and algorithms that can be used by a VMM to im-
plicitly obtain valuable information about two important software abstractions:operating
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system processesand theunified buffer cache and virtual memory system. In addition to
obtaining information, we employ several case studies to show that our implicitly obtained
information can be used as the basis of VMM-level services that enhance overall system
performance.

One important finding of our work is that implicit information obtained within a VMM
about a guest OS can be highly variable or noisy. Variabilityand noise can complicate
making definitive statements about the current state of a guest. For some kinds of ap-
plications implemented at the VMM layer, like security monitoring, incorrect decisions
can have disastrous results. In this dissertation, we show how statistical inference tech-
niques can transform the naturally noisy implicit information available to a VMM into a
reliable indicator of unwanted malicious activity. As a case study, we have built a highly
accurate hidden process detection and identification service within a VMM that uses this
transformed information to protect guest operating systems.

1.3 Process Information

Theprocessis a key operating system concept. Processes provide many ofthe fundamental
abstractions that programmers rely on, like private address spaces, and serve as the basic
resource container and security isolation boundary for user tasks. We have developed a
set of techniques that enable a virtual machine monitor to implicitly discover and exploit
information about processes. By monitoring low-level interactions between guest operating
systems and the memory management structures on which they depend, we show that a
VMM can accurately determine when a guest operating system creates processes, destroys
them, or context-switches between them.

Antfarm is the implementation of our process identification techniques for two dif-
ferent virtualization environments, Xen [27] and Simics [60]. We evaluate Antfarm as
applied to multiple architecture and operating system combinations including x86/Linux,
x86/Windows, and SPARC/Linux. This range of environments spans two processor fami-
lies with significantly different virtual memory management interfaces and two operating
systems with very different process management semantics.

We demonstrate the utility and efficacy of VMM-level processawareness by building
an anticipatory disk scheduler [47] within a VMM. In a virtual machine environment, an
anticipatory disk scheduler requires information from both the VMM and operating sys-
tem layers and so cannot be implemented exclusively in either. Making a VMM process
aware overcomes this limitation and allows an OS-neutral implementation at the VMM
layer without any modifications or detailed knowledge of theoperating system above. Our
implementation within the VMM is able to improve throughputamong competing sequen-
tial streams from processes across different virtual machines or within a single guest oper-
ating system by a factor of two or more. Antfarm imposes only asmall runtime overhead of
about 2.4% in a worst case scenario and about 0.6% in a more common, process-intensive
compilation environment.



4

1.4 Buffer Cache Information

The unified operating system buffer cache and virtual memorysystem is critical to overall
system performance. We have developed techniques to obtaininformation about the buffer
cache by carefully observing guest operating system interactions with virtual hardware like
the MMU and storage devices. Our methods detect when pages are inserted into or evicted
from the buffer cache.

Geigeris an implementation of these techniques within the Xen VMM.Geiger signifi-
cantly extends previous buffer cache related gray-box techniques by showing that a VMM
must track more than just disk requests to accurately infer buffer cache evictions on modern
operating systems. A VMM must also account for anonymous memory allocation to detect
a whole new class of evictions when the buffer cache is unifiedwith the virtual memory
system. A VMM must also take basic file system behavior into account to accurately report
certain cache events. For example, the VMM must track whether a particular data block
is live or dead on disk in order to avoid reporting many spurious evictions. In addition,
journaling file systems, such as ext3 in Linux, require the VMM to distinguish between
writes to the journal and writes to other parts of storage to avoid an aliasing problem that
leads to reporting false evictions.

We demonstrate how the inferred eviction information provided by Geiger can enable
useful services inside a VMM by building multiple applications as case studies. The first
case study represents a novel, VMM-based working set size estimator called MemRx [51]
that complements existing techniques [101] by allowing estimation in the case that a VM
is thrashing in virtual memory. A second study explores how Geiger-inferred evictions can
be used by a VMM to enable remote storage caches to implement eviction-based cache
placement [104] without changing the application or operating system storage interface,
hence enhancing the adoption of this feature.

1.5 Security Applications

Stealth rootkits that can hide processes are a current and important security issue. Half
of unpatched Windows systems surveyed by theMicrosoft Malicious Software Removal
Tool [63] are infested with a single stealth rootkit alone [67]. The ability to detect and
respond to malicious hidden processes is a clear advantage in the race to defend network-
attached computers.

Lycosidis our VMM-based security service thatdetectsandidentifieshidden processes.
Lycosid is resilient to malicious guest attack by virtue of its location within a VMM. Unlike
previous VMM-based security services, Lycosid does not depend on the guest operating
system for trusted information, rendering it less susceptible to guest evasion attacks.

We have evaluated Lycosid using both Windows and Linux guests and show that it can
accurately detect and identify hidden processes in a wide range of extremely challenging
environments despite the fact that the implicitly obtainedinformation about guest virtual
machines it uses is noisy and sometimes wrong [49, 50]. Accuracy is achieved via a tar-
geted use of statistical inference techniques like hypothesis testing and linear regression
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that trade time for accuracy. Despite uncertain inputs, Lycosid provides a robust, highly
accurate service usable even in security environments where the consequences for wrong
decisions can be high.

1.6 Contributions

The primary contributions of this dissertation are:

• The formulation and design of new gray-box techniques whichallow a VMM to
implicitly obtain accurate information about key events and the current state of guest
operating system processes and the unified buffer cache and virtual memory system.

• The implementation of those techniques in a real virtual machine monitor and the
evaluation of the implementation along several axes including accuracy, timeliness,
and runtime overhead.

• The design and implementation of several case studies that demonstrate the feasibil-
ity of using implicit information to build real VMM-level optimizations and services.

• The identification of key system features and parameters that influence the accuracy
and practical value of implicit information obtained at theVMM-level.

• The development and evaluation of algorithms, based on statistical inference, to over-
come the fundamental variation and uncertainty in our VMM-based process infor-
mation that enables us to use implicit information in a high consequence security
environment.

1.7 Outline

The rest of this dissertation is organized as follows. In Chapter 2 we review the key fea-
tures of virtual machine technology. In Chapter 3 we providean overview of our implicit
approach. Chapter 4 describes techniques to implicitly track guest OS processes. In Chap-
ter 5 we present techniques that allow a VMM to observe guest OS buffer cache events.
Chapter 6 presents our VMM-based hidden process detection and identification service.
We survey related work in Chapter 7. Chapter 8 summarizes ourfindings, discusses lessons
learned, and presents future work.
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Chapter 2

Virtualization Background

Virtual machine techniques have been around for a long time.In fact, the earliest robust
virtual machine implementations were essentially co-incident with the first multi-user op-
erating systems [23, 65]. In this chapter we review the basicideas behind virtualization
technology. We will especially emphasize virtualization features that underlie our VMM-
based gray-box techniques.

2.1 The Role of the Virtual Machine

There are several varieties of virtualization [87]. Process-level virtual machines virtualize
a limited set of computer system features, including the user-level instruction set and ap-
plication binary interface, for a single process. Examplesof process-level virtual machines
include the Java virtual machine runtime or the Microsoft CLR. System-level virtualization
provides a complete virtualized computer system to a full operating system including the
user and supervisor CPU instruction sets, memory, firmware,and peripheral devices. The
primary purpose of system-level virtualization is to allowmultiple operating systems to
transparently share a single host computer system. This dissertation deals exclusively with
system-level virtualization.

The motivation for running multiple operating systems on a single hardware host was
originally to allow an expensive machine to be safely sharedby independent organizations
with different hardware and software requirements. For example, a department running a
critical batch-oriented accounting system could share a computer with an engineering de-
partment developing the next series of application or system software. Sharing remains
a primary application of system virtualization today whereconsolidating many underuti-
lized, single purpose servers onto a smaller number of more fully utilized hosts can reduce
procurement, management, and energy costs.

In a virtualized environment, safe sharing of resources among concurrently executing
operating system instances is accomplished via strong isolation. Each operating system in-
stance executes within avirtual machine(VM). Operating systems running within a virtual

7
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machine are calledguests. Each VM is provided with virtual copies of system resources
like CPUs, memory, disk storage, and network interfaces. The virtual copies are multi-
plexed in time or space onto the real physical resources by a thin layer of control software
called thevirtual machine monitor(VMM) or hypervisor. The VMM is the primary re-
source manager for a virtualized system,i.e., it has the responsibility of allocating and
scheduling access to all physical resources.

Virtual machine technology has advanced considerably in the past 40 years and is set
to become a core feature in most server platforms. Virtualization has expanded its scope
from large centralized computers like mainframes [23], to mini-computers [88], and (more
recently) to PC-based servers and desktops [91]. Virtual machine techniques are experi-
encing a research and commercial renaissance and are being used to enable interesting new
features like flexible resource management [101], workloadmigration [19, 82], service and
device driver isolation [31, 59], security services [34, 35, 52], and fault tolerance [11].
All of IBM’s POWER5-based server platforms now include an always-on, firmware-based
hypervisor, the main-line Linux kernel now includes hostedvirtualization features, and
Microsoft plans to include a hypervisor as a core component in its next generation server
operating system.

2.2 Deprivileged Operation

One of the key techniques that enables a virtual machine monitor to safely support multi-
ple, concurrent operating systems is deprivileged operation. Normally, an operating system
has complete and sole control over the underlying system hardware. That level of control
cannot be shared safely among multiple operating systems. Hence, a VMMdeprivilegesall
guest operating systems by executing them, including the kernel, in an unprivileged mode
of the host computer’s CPU. Sensitive operations, like those that affect system configura-
tion or that directly access a shared resource, are not allowed in unprivileged modes. When
a deprivileged operating system attempts to invoke a sensitive operation, the CPU generates
an exception ortrap. On startup, a VMM registers itself as the handler for all interrupts
and exceptions. Thus, a VMM is informed via a trap whenever a guest operating system
uses a sensitive instruction. Within the trap handler, a VMMmay emulate the effects of
the trapping instruction by, for example, updating virtualCPU registers, updating a page
table entry, or initiating an I/O request. This general technique is calledtrap and emulate
virtualizationand is the most common virtualization technique used by VMMstoday.

The techniques described in this dissertation rely on the ability of a VMM to observe
certain exceptions delivered to it and to derive useful information about the internal states
of its guest operating systems. Deprivileged operation ensures that the VMM gets that
opportunity. The next sections describe the specific eventswe use and why a VMM is
informed when they occur.
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2.3 Virtualizing Memory

Inside a VMM, we make special use of information about how a guest operating system
manages virtual address spaces. Specifically, we need to be informed about all page faults,
page table updates, TLB flushes, and address space context switches.

A VMM receives notification of page faults because of its rolein virtualizing system
interrupts and exceptions. Delivery of page faults to the VMM is a natural consequence of
interrupt processing. Information about TLB flushes, and address space context switches is
available within a VMM because of its role in virtualizing the CPU’s memory management
unit (MMU).

To observe page table updates, however, a VMM must often employ additional tech-
niques. The most common approach is calledshadow page tablesand ensures that a VMM
retains control over virtual to physical address translation. In shadow paging, guest page
tables are never used directly by the processor to perform address translation. A VMM em-
ploys its own page tables, called shadow page tables, to cache selected portions of a guest’s
page tables. In the shadow tables used by the processor, memory used for guest page tables
is marked read-only so that a VMM is informed via a page fault when entries are updated.
This allows the VMM to maintain consistency between its cached version and the original
guest page tables. See Adams and Agesen’s description of theVMware VMM [2] for a
detailed description of one implementation of shadow page tables. By employing shadow
page tables, a VMM can observe all relevant page table updates.

2.4 Virtualizing Disk I/O

Some of our techniques also use information about how a guestoperating system utilizes
disk storage. Information about disk requests is availableto a VMM because it implements
the virtual disk I/O devices that are available to a guest. AnI/O request can be initiated
by a guest in two different ways. A VMM may provide a virtual model of a real hardware
device. An unmodified guest OS device driver communicates with such a device using
memory mapped or programmed I/O [91]. The VMM can configure the underlying hard-
ware to ensure that all such accesses are privileged. Hence,the VMM is informed when
each operation occurs. Alternatively, a VMM may provide a high-level virtual device with
which a virtual machine aware device driver within the guestcommunicates using a private
interface similar to a system call [31]. In either case, the VMM can always observe the
memory address, the disk address, and the operation type (read or write) of each disk I/O
request.

2.5 Trap and Emulate Limitations

Some architectures, notably the Intel x86, include sensitive instructions which do not trap
when invoked in an unprivileged mode. Instead, they fail silently. This type of instruction
set is not formally virtualizable using only trap and emulate techniques [73]. To virtualize
the x86, additional techniques like binary analysis and dynamic code translation are used
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by popular x86 VMMs like VMware and Microsoft Virtual Server[2, 45, 62]. Robin and
Irvine [77] provide a comprehensive discussion of the problematic x86 instructions. By
using binary analysis and code translation, a VMM like VMware receives the same set of
notifications as a pure trap and emulate VMM.

2.5.1 Paravirtualization

Another virtualization approach called paravirtualization [27, 103] solves the problems as-
sociated with the x86 architecture by defining them away. A paravirtual VMM implements
a slight different virtual architecture than the underlying host. It replaces problematic in-
structions with equivalent VMM operations similar to system calls. Hence, a significant
benefit of paravirtualization on platforms like the x86 is reduced VMM complexity. A par-
avirtual VMM can also reduce virtualization overhead on anyarchitecture by introducing
private, streamlined interfaces for certain high-cost operations. The benefits of paravirtu-
alization come at the cost of porting guest operating systems to the modified paravirtual
architecture. One of our implementation platforms (Xen) has a paravirtual mode. Paravir-
tual Xen is notified of the same architectural events as a moreconventional x86 VMM like
VMware. The notification mechanism, however, is slightly different. Our results using
paravirtual Xen are equally applicable to other VMMs that use trap and emulate or hybrid
techniques.

2.5.2 Hardware Trends

More recent processors from Intel and AMD include virtualization extensions that trans-
form the x86 into a formally virtualizable platform where classic trap and emulate vir-
tualization can be used directly [3, 46]. The new processorsalso include features meant
to improve virtualization performance by reducing the frequency of virtualization-related
traps. These optimizations can, in some configurations, prevent a VMM from observing
certain events. For example, when these features are in use it is no longer guaranteed that a
VMM will observe every guest page fault. The techniques we describe in this dissertation
depend on the ability of the VMM to observe events like page faults. Modifications to our
techniques may be required if a CPU is configured to hide information from the VMM.
This dissertation, as well as other research [2] show that software techniques have much to
offer virtual machine performance and security. Commodityx86 processors that include
virtualization extensions are still new and it remains to beseen which of their features will
be used by VMMs in practice.

2.6 Summary

Our implicit techniques exploit the principle of deprivileged operation to ensure that the
VMM is notified of critical configuration, exception, and I/Oevents, such as page faults,
page table updates, and disk requests. There are different ways to implement deprivileged
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operation including trap and emulate, paravirtualization, and hardware assisted virtualiza-
tion. In each case, the VMM and the underlying architecture can be configured to provide
low overhead access to the notification events we rely on.
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Chapter 3

Implicit Operating System
Awareness

In this chapter we provide a high-level overview of our research goals and approach. We
also discuss alternatives to our approach and how their advantages and disadvantages com-
pare to ours in general.

3.1 Goals

Our primary research goal is to develop and evaluate techniques that enable the construc-
tion of practical VMM-level system services. We believe that a VMM is a natural place to
implement certain kinds of system services because of the rapid spread of system virtual-
ization technology. A practical VMM-level service should be easy to deploy and manage,
impose low overhead, and retain the strong isolation and security properties of a VMM.
Our techniques strive to enable easy deployment and management of VMM-based services
through portability without compromising system performance or security.

3.2 Approach

Portability is one major factor leading to easy deployment of VMM-based services. A
portable service can be installed in more diverse environments than an OS-specific solution.
Planning and provisioning for a portable service can be accomplished independent of which
operating system is selected to provide guest services. Ideally, a portable VMM-layer
service should be implemented once and apply to any guest operating system the VMM
encounters.

We have designed our techniques to be portable by avoiding the use of vendor or
version-specific guest implementation information. Instead, we observe the stream of
architecturally-defined events like page faults, hardwareinterrupts, configuration register
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updates, page table modifications, and I/O requests that areintrinsically visible to a VMM
in its role as a service provider to guest operating systems.We employ a gray-box approach
that applies a top-down, generic understanding of the common responsibilities and goals of
modern operating systems to interpret the events deliveredto a VMM and to infer useful
information about the internal state of a guest OS. Limitingour use of guest knowledge to
features and responsibilities that are generic across all the operating systems that a VMM
supports means we can decouple our VMM-based services from guest peculiarities.

Our approach requires no new, non-standard interfaces between guests and the VMM.
No modifications to the guest operating system or application software are required, which
makes our approach equally applicable to legacy or closed guest software.

An additional benefit of the implicit approach is that the information we obtain reflects
actual guest activity. A corrupt or compromised guest cannot hide information from or
mislead the VMM except by changing its externally visible behavior, which is more diffi-
cult than simply supplying incorrect information. By way ofanalogy, it is easier to hide a
building on a map provided to an adversary than it is to hide the building from an adversary
standing next to the building. As we show in Chapter 6, this property can be especially
useful in a security context.

3.2.1 Limitations

Our approach, however, is not perfect. It is unlikely that information on every aspect of
a guest operating system that a VMM could find useful will be available implicitly. In
this dissertation, we have limited ourselves to extractinginformation about two guest ab-
stractions (processes and the buffer cache) that cast a strong architectural shadow,i.e., for
which virtual hardware is intimately involved. We believe,however, that information about
additional abstractions can be implicitly obtained. For example, we have preliminary ap-
proaches for obtaining information about guest operating system threads and users. The
well of implicit guest information is not yet dry.

We have also found that implicit information can be delayed or, in limited cases, wrong.
A major contribution of our work is measuring this aspect of implicit information and
demonstrating that many services are resilient to delay or short-term errors. Statistical
techniques like hypothesis testing and regression have also proven effective in transforming
highly variable implicit information into reliable intelligence about the internal state of a
guest.

3.3 Alternative Approaches

There are other approaches for obtaining information aboutguest operating systems in sup-
port of VMM-services. These techniques can be divided into two categories. The first in-
troduces new VMM-to-guest interfaces. The second uses explicitly provided details about
how a specific guest operating system is implemented.
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3.3.1 New Interfaces

New interfaces, through which arbitrary information aboutguest activities and state may
be passed, can be added to a VMM. This approach has the significant advantage of being
straightforward to implement and use. Information provided via such interfaces is timely
and reflects the guest’s true instantaneous state. The kindsof guest information available to
a VMM is not limited when arbitrary interfaces between the VMM and guests exist. Any
information the guest operating system has and is willing toexport can be made available.

Adding new interfaces also has some interesting disadvantages; most importantly, these
interfaces do not exist today. Current interface standardization efforts suggest that the pro-
cess to define a standard VMM-to-guest interface will likelybe long and contentious, leav-
ing a large window of time in which alternative approaches will be required. Determining
what types of guest information are most useful and how to provide that information to a
VMM in a safe and portable way is an interesting question thatresearchers have begun to
explore in related contexts [6, 38].

Guest operating systems must be modified to take advantage ofnew VMM interfaces.
The cost of porting an operating system and subsequently maintaining a VMM-aware ver-
sion can be high. Proponents of paravirtualization claim that the required changes to guest
operating systems are minor [27]. Unfortunately, the changes required are often in the
most complex and error-prone portions of an OS like the virtual memory and I/O systems.
Other researchers cite the high engineering cost of portingoperating systems to a paravir-
tual VMM as motivation for a clever, but complex, automated porting architecture [58]. In
either case, the cost of creating and maintaining yet another operating system version is
non-trivial.

Finally, adding interfaces may have negative security implications. Adding interfaces
enlarges the attack surface of a VMM and tends to reduce the security advantages a VMM
enjoys relative to other locations in a system. In addition,a VMM that depends on a guest to
provide information about itself enters into an implicit relationship of trust with the guest.
A buggy or compromised guest could mislead the VMM and thwarta VMM-based security
monitoring service. Adding generic public interfaces to a VMM should be undertaken with
extreme caution.

3.3.2 Explicit Information

A second approach for obtaining high-level guest information uses knowledge of explicit
guest OS implementation details. Memory addresses of variables and the semantic infor-
mation needed to interpret those variables are examples of the kind of explicit information
a VMM can use to extract current guest state. Such information can often be derived from
debugging symbols and debugging libraries. Additional information about the semantics of
specific operating system functions can be obtained by reading source code or from binary
reverse engineering.

Similar to the new interfaces technique, the explicit information approach provides ac-
cess to timely information that corresponds exactly to the guest’s view of its own current
state. Rich, detailed information is available. Any information that is encoded in an inter-
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pretable guest data structure and any event that corresponds to a known guest function is
available for consumption by the VMM.

Unfortunately, it may be inconvenient to get and maintain the explicit information that
a VMM requires. If the guest operating system is legacy or closed, such information may
simply be unavailable. Since implementation details can change between versions or even
between patch-levels of a guest OS, keeping the informationabout guest memory and func-
tion locations up-to-date can be challenging. Microsoft’sdistributed, web-based debugging
symbol repository is a testimony to how difficult it is to keepthe debugging information
that its partners use up-to-date for the many hundreds of active operating system versions
and patch-levels it supports.

Reading information from OS data structures without understanding the locking proto-
col used to protect them from concurrent update could lead toinconsistent or corrupt data.
Uhlig et al.[98], show that a processor in an unprivileged mode implies that no kernel locks
are held and that all kernel data structures are consistent.On today’s increasingly parallel
hardware and multi-threaded applications, waiting for allprocessor cores to enter an un-
privileged mode may severely restrict the opportunities ofthe VMM to access guaranteed
consistent guest data directly.

3.4 Summary

Using implicit information to implement VMM-based services represents an unexplored
region of the design space. It may be harder for the VMM to get the information it needs
using only implicit techniques and that information may be subtly inaccurate. However, a
VMM can use implicit information without knowing any details about its guest operating
systems and no changes to those operating systems are required.

From a security standpoint, implicit information is less vulnerable to evasion attacks
by a compromised guest OS because it is based on external observations of a running
system rather than information supplied explicitly or implicitly by the guest itself. By
using implicit techniques, a VMM need not trust the guest OS it observes.
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Tracking Guest Operating
System Processes

This chapter introduces a set of techniques that enable a virtual machine monitor to im-
plicitly discover and exploit information about one of the most important operating system
abstractions, theprocess. Processes provide some of the basic simplifying illusionsthat
help programmers manage complexity like large, flat, private address spaces and private
CPUs. The process is the container within which each user program runs. Operating sys-
tems allocate and schedule resources to processes. The boundaries defined by a process are
used to ensure program isolation. Each logical unit of a user’s work is often encapsulated
within by a process. Hence, knowledge about operating system processes can reveal useful
information about resource usage, workload organization,scheduling policies, and security
goals.

We show how a VMM can accurately infer when a guest operating system creates pro-
cesses, destroys them, or context-switches between them. The basic mechanism consists of
monitoring low-level interactions between guest operating systems and the memory man-
agement structures, like page tables and TLBs, on which theydepend. These techniques
achieve our portability goals by operating without any explicit information about the guest
operating system vendor, version, or implementation details.

We demonstrate the utility and efficacy of VMM-level processawareness by building
an anticipatory disk scheduler [47] within a VMM. In a virtual machine environment, an
anticipatory disk scheduler requires information from both the VMM and the operating
system layers, so it cannot be implemented exclusively in either. Making a VMM process
aware overcomes this limitation and allows an OS-neutral implementation of anticipatory
scheduling at the VMM layer without any modifications or detailed knowledge of the guest
OS. Our implementation within the VMM is able to improve throughput among competing
sequential streams of disk read requests from processes across different virtual machines
or within a single guest operating system by a factor of two ormore.

In addition to I/O scheduling, process information within the VMM has several other
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important applications, especially in the security domain. For example, it can be used to de-
tect that processes have been hidden from system monitoringtools by malicious software,
an application we discuss at length in Chapter 6. Code and data from particularly sensitive
or vulnerable processes can be identified that should be monitored for runtime modifica-
tion [35]. Patterns of system calls associated with a process can be used to recognize when a
process has been compromised [33, 84]. In addition to just detecting intrusions, techniques
exist to slow or thwart intrusions at the process level by affecting process scheduling [89].
Finally, process information can be used as the basis for discovering other high-level OS
abstractions. For example, the parent-child relationshipbetween processes can be used to
identify groups of related processes associated with auser. All of these applications are
feasible within a VMM only when process information is available.

Antfarm is the implementation of our process identification techniques for two differ-
ent virtualization environments, Xen and Simics. We have evaluated Antfarm as applied
to a range of platform and guest-OS combinations including x86/Linux, x86/Windows,
and SPARC/Linux. This range of environments spans two processor families with signif-
icantly different virtual memory management interfaces and two operating systems with
very different process management semantics, providing empirical evidence for our claim
of portability. Antfarm imposes only a small runtime overhead of about 2.4% in a worst
case scenario and about 0.6% in a more common, process-intensive compilation environ-
ment.

4.1 Background

The techniques we describe in this paper are based on the observations that a VMM can
make of the interactions between a guest OS and virtual hardware. Specifically, Antfarm
monitors how a guest uses a virtual MMU to implement virtual address spaces. In this
section we review some of the pertinent memory management details of the Intel x86 and
the SPARC architectures used by Antfarm.

4.1.1 x86 Virtual Memory Architecture

Our first implementation platform is the Intel x86 family of microprocessors. We chose the
x86 because it is the most frequently virtualized processorarchitecture in use today. This
section reviews the features of the x86 virtual memory architecture that are important for
our inference techniques.

The x86 architecture uses a two-level, in-memory, architecturally-defined page table.
The page table is organized as a tree with a single 4 KB memory page called thepage
directoryat its root. Each 4-byte entry in the page directory can pointto a 4 KB page of
thepage tablefor a process.

Each page table entry (PTE) that is in active use contains theaddress of a physical page
for which a virtual mapping exists. Various page protectionand status bits are also available
in each PTE that indicate, for example, whether a page is writable or whether access to a
page is restricted to privileged software.
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A single address space is active per processor at any given time. System software
informs the processor’s MMU that a new address space should become active by writing
the physical address of the page directory for the new address space into a processor control
register (CR3). Since access to this register is privilegedthe VMM must virtualize it on
behalf of guest operating systems.

TLB entries are loaded on-demand from the currently active page tables by the proces-
sor itself. The operating system does not participate in handling TLB misses.

An operating system can explicitly remove entries from a TLBin one of two ways.
A single entry can be removed with theINVLPG instruction. All non-persistent entries
(those entries whose corresponding page table entries are not marked “global”) can be
flushed from the TLB by writing a new value to CR3. Since no address space or process
ID tag is maintained in the TLB, all non-shared entries must be flushed on context switch.

4.1.2 SPARC Virtual Memory Architecture

In this section we review the key aspects of the SPARC MMU, especially how it differs
from the x86. We chose the SPARC as our second implementationarchitecture because it
provides a significantly different memory management interface to system software than
the x86.

Instead of architecturally-defined, hardware-walked pagetables as on the x86, SPARC
uses a software managed TLB,i.e., system software implements virtual address spaces
by explicitly managing the contents of the hardware TLB. When a memory reference is
made for which no TLB entry contains a translation, the processor raises an exception,
which gives the operating system the opportunity to supply avalid translation or deliver an
error to the offending process. The CPU is not aware of the operating system’s page table
organization.

In order to avoid flushing the entire TLB on process context switches, SPARC supplies a
tag for each TLB entry, called acontext ID, that associates the entry with a specific virtual
address space. For each memory reference, the current context is supplied to the MMU
along with the desired virtual address. In order to match, both the virtual page number and
context in a TLB entry must be identical to the supplied values. This allows entries from
distinct address spaces to exist in the TLB simultaneously.

An operating system can explicitly remove entries from the TLB at the granularity of
a single page or at the granularity of an entire address space. These operations are called
page demap andcontext demap respectively.

4.2 Process Identification

The key to our process inference techniques is the logical correspondence between the
abstractionprocess, which is not directly visible to a VMM, and thevirtual address space,
which is. This correspondence is due to the traditional single address space per process
paradigm shared by all modern operating systems.
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There are three major process events we seek to observe: creation, exit, and context
switch. To the extent address spaces correspond to processes, these events are approxi-
mated by address space creation, destruction, and context switch. Hence, our techniques
track processes by tracking address spaces.

Our approach to tracking address spaces on both x86 and SPARCis to identify a VMM-
visible value with which we can associate a specific address space. We call this value an
address space identifier (ASID). Tracking address space creation and context switch then
becomes simply observing the use of a particular piece of VMM-visible operating system
state, the ASID.

For example, when an ASID is observed that has not been seen before, we can infer that
a new address space has been created. When one ASID is replaced by another ASID, we
can conclude that an address space context switch has occurred. We identify address space
deallocation by detecting when an ASID is available for reuse. We assume that the address
space, to which an ASID refers, has been deallocated if its associated ASID is available for
reuse.

4.2.1 Techniques for x86

On the x86 architecture we use the physical address of the page directory as the ASID. A
page directory serves as the root of the page table tree that describes each address space.
The address of the page directory is therefore characteristic of a single address space.

Process Creation and Context Switch

To detect address space creation on x86 we observe how page directories are used. A
page directory is in use when its physical address resides inCR3. The VMM is notified
whenever a guest writes a new value to CR3 because it is a privileged register. If we observe
an ASID value being used that has not been seen before, we can infer that a new address
space has been created. When an ASID is seen for the first time,the VMM adds it to an
ASID registry that it maintains for tracking purposes. The ASID registry is similar to an
operating system process list.

When a new value is written to CR3 it implies an address space context switch. By
monitoring writes to this privileged register, a VMM alwaysknows which ASID is cur-
rently “active”.

Process Exit

To detect address space deallocation, we use knowledge about the generic responsibilities
of an operating system to maintain address space isolation.Isolation requirements lead
to distinctive operating system behavior that can be observed and exploited by a VMM to
infer when an address space has been destroyed.

Operating systems must strictly control the contents of page tables being used to im-
plement virtual address spaces. Process isolation could bebreached if a page directory
or page table page were reused for distinct processes without first being cleared of their
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previous contents. To ensure that no stale page table entries that point outside a process’s
allocated memory exist in reused page tables, Windows and Linux systematically clear the
non-privileged portions of page table pages used by a process when it exits. Privileged por-
tions of the page tables, which are used to implement the protected kernel address space,
do not need to be cleared because they are shared between processes and map memory that
is not accessible to untrusted software.

An operating system must also ensure that no stale entries remain in any TLB once
an address space has been deallocated. Since the x86 architecture does not provide a way
for entries from multiple address spaces to coexist in a TLB,a TLB must be completely
flushed prior to reusing address space structures like the page directory. On x86, the TLB
is flushed by writing a value to CR3, an event the VMM can observe.

Hence, to detect user address space deallocation, a VMM can keep a count of the num-
ber ofuservirtual mappings present in the page tables describing an address space. When
this count drops to zero, the VMM can infer that one requirement for address space reuse
has been met. It is simple for a VMM to maintain such a reference count because the VMM
must be informed of all updates to a process’s page tables so that it can reflect the changes
in its shadow page tables. Multi-threading does not introduce additional complexity, be-
cause updates to a process’s page tables are always be synchronized within the VMM for
correctness.

By monitoring TLB flushes on all processors, a VMM can detect when the second
requirement for address space deallocation has been met. Once both events have been
observed for a particular ASID, the VMM can consider the corresponding address space
dead and its entry in the ASID registry can be removed. A subsequent use of the same
ASID implies the creation of a new and distinct process address space.

4.2.2 Techniques for SPARC

The key aspect that was used to enable process awareness on x86 is still present on SPARC.
Namely, there is a VMM-visible identifier associated with each virtual address space. On
x86 this was the physical address of the page directory. On SPARC we use the virtual
address space context ID as an ASID. Making the obvious substitution leads to a process
detection technique for SPARC similar to that for x86.

Creation and Context Switch

On SPARC, installing a new context ID is a privileged operation; hence, it is always visible
to a VMM. By observing context ID switches, a VMM can maintaina registry of known
ASIDs. When a new ASID is observed that is not in the ASID registry, the VMM can infer
the creation of a new address space. Context switch is detected on SPARC whenever the
context ID is changed on a processor.
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x86 SPARC
ASID Page directory PA Context ID
Creation New ASID New ASID
Exit No user mappings and Context demap

TLB flushed
Context switch CR3 change Context ID change

Table 4.1:Process identification techniques.The table lists the techniques used by Antfarm to
detect each process event on the x86 and SPARC architectures.

Exit

The only requirement for the reuse of a context ID on SPARC is that all stale entries from
the previously associated address space be removed from each processor’s TLBs. SPARC
provides the context demap operation for this purpose. Instead of monitoring page table
contents, as on x86, a VMM can observe context demap operations. If all entries for a
context ID have been flushed from every processor it implies that the associated address
space is no longer valid.

4.3 Resource Association

In addition to detecting process creation, exit, and context switch, associatingother sys-
tem events with particular processes is important to effectively utilize process information
within a VMM. Processes are primarily important to the VMM intheir role as containers
for resources. Hence, associating resource consumption at the granularity of a process en-
ables the VMM to make more informed and precise allocation and scheduling decisions.
Examples of resource association that could be useful to a VMM include CPU processor
time, disk and network I/O, and memory events like page cacheinsertion and eviction.

4.3.1 Context Association

The simplest and most generic means of associating resources with processes is to associate
them in time. We call this methodcontext association. Using the process identification and
context switching inferences described previously, we canassociate a specific process with
a series of time intervals. The interval during which context association will attribute an
event to a process begins when its address space is installedon the processor and ends when
it is replaced by another process’s address space or the virtual machine is de-scheduled.
The advantages of this technique are its extreme simplicityand its generality: any event
detectable by a VMM can be associated with a process using context association.

Unfortunately, context association is not always accurate, due to theasynchronythat is
common within operating systems. Consider the case of a process making a disk request. If
the operating system chooses to forward the request to the virtual disk device immediately,
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context association will attribute the request correctly to the issuing process. If, on the
other hand, the operating system delays issuing the request, for example because other
requests are ahead of it in the disk queue, the originating process is likely to be suspended
and another process will be chosen to run. Hence, the requestand the process have become
decoupled in time.

4.3.2 Event Chaining

To overcome the inaccuracy of asynchronous event association, we develop a new tech-
nique:event chaining. The idea is to link synchronous events that occur in the context of
the issuing process with the event of interest.

To improve the accuracy of disk read associations, for example, event chaining based
on memory accesses can be used. When a read operation completes, the requesting process
will likely access the resulting data in memory at some pointin the future. This access may
occur inside the operating system, for example, when the kernel copies the data into a user-
supplied buffer; conventional read system call semantics lead to this behavior. Alternately,
the access may occur at the resolution of a page fault, incurred by the process when it
touches a page of a memory-mapped file for the first time. If we can identify any of these
access events (which likely occur in the process’s context that initiated the read), we can
associate the related disk read more accurately with the issuing process.

One drawback of event chaining is that the more accurate results it provides are nec-
essarily delayed. This can be problematic if the VMM wishes to make a decision based
on process association at the time the event is detected and postponing the decision is not
practical. However, even in such cases, event chaining can be used to detect and correct
event misassociation, hence enabling recovery in some situations.

We have implemented event chaining for association of disk read requests, using access
to the memory buffer where the read results are deposited as the chaining event. When the
VMM receives a disk read request, the physical memory bufferinto which the requested
data is to be placed by the disk controller is recorded. When the request is ready to com-
plete, all known existing virtual mappings for that physical page are invalidated such that
any access using one of those mappings will result in a page fault and will be visible to
the VMM. When such a fault occurs, the process in whose context the faulting address
is located is associated with the original disk read request. The affected mapping is then
returned to its original status, and the process can transparently proceed as normal.

4.3.3 Data Structures

To implement simple context association, all we need to track is which process is currently
running, something we already do for basic process awareness.

Implementing I/O event chaining is more complex. To enable modification of all exist-
ing mappings for a given physical page frame, the VMM must maintain a reverse mapping
data structure; this structure is roughly the same size as the normal set of page tables for
each actively tracked process.
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4.4 Antfarm Implementation

Antfarm is the name of the implementation of our process-awareness techniques. Antfarm
has been implemented for two virtualization environments.The first, Xen [27], is a true
VMM. The other is a low-level system simulator called Simics[60] which we use to explore
process awareness for operating systems and architecturesnot supported by the version of
Xen used in this research.

4.4.1 Antfarm for Xen

Xen is an open source virtual machine monitor for the Intel x86 architecture. Xen provides
a paravirtualized [103] processor interface, which enables lower overhead virtualization at
the expense of porting system software. We explicitly donot make use of this feature of
Xen; hence, the mechanisms we describe are equally applicable to a more conventional
virtual machine monitor such as VMWare [91, 101]. Because operating systems must be
ported to run on Xen, proprietary commercial operating systems like Microsoft Windows
are not currently supported.

Antfarm for Xen is implemented as a set of patches to the Xen hypervisor version 2.0.6.
Changes are concentrated in the handlers for events like page faults, page table updates, and
privileged register access. Additional hooks were added toXen’s back-end block device
driver. The Antfarm patches to Xen, including debugging andmeasurement infrastructure,
total approximately 1200 lines across eight files.

4.4.2 Antfarm for Simics

Simics [60] is a full system simulator capable of executing unmodified, commercial oper-
ating systems and applications for a variety of processor architectures. While Simics is not
a virtual machine monitor in the strict sense of native execution of user instructions [73],
it can play the role of a VMM by allowing Antfarm to observe andinterpose on operating
system and application hardware requests in the same way a VMM does. Simics allows us
to explore process awareness techniques for SPARC/Linux and x86/Windows which would
not be possible with a Xen-only implementation.

Antfarm for Simics is implemented as a Simics extension module. Simics extension
modules are shared libraries dynamically linked with the main Simics executable. Exten-
sion modules can read or write OS and application memory and registers in the same way
as a VMM.

Simics provides hooks called “haps” associated with various hardware events for which
extension modules can register callback functions. Antfarm for Simics/x86 uses a hap
to detect writes to CR3 and Antfarm for Simics/SPARC uses a hap to detect when the
processor context ID is changed. Invocation of a callback isakin to the exception raised
when a guest OS accesses privileged processor registers on atrue VMM. A memory write
breakpoint is installed by Antfarm for Simics/x86 on all pages used as page tables so that
page table updates can be detected. A VMM like Xen marks page tables read-only to detect
the same event.
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Antfarm for Simics/x86 consists of about 800 lines of C code.For Simics/SPARC the
total is approximately 450 lines.

4.5 Process Awareness Evaluation

In this section we explore the accuracy of Antfarm in each of our implementation environ-
ments. We also characterize the runtime overhead of Antfarmfor Xen. Our analysis of
accuracy is decomposed into two components. The first measures the ability of Antfarm
to correctly detect process creations, exits, and context switches. We call this aspectcom-
pleteness. The second component we explore is the time difference orlag between process
events as they occur within the operating system and when they are detected by the VMM.

4.5.1 x86 Evaluation

We evaluate Antfarm for x86 as implemented within the Xen hypervisor version 2.0.6.
Version 2.6.11 of the Linux kernel was used in Xen’s privileged control VM. Linux kernel
version 2.4.30 and 2.6.11 are used in unprivileged VMs as noted. Our evaluation hardware
consists of a 2.4 GHz Pentium IV PC with 512 MB of RAM. Virtual machines are each
allocated 128 MB of RAM in this environment.

We also evaluate our techniques as applied to Microsoft Windows NT4 guests. Since
Windows is not supported by Xen 2.0, Simics/x86 is used for this purpose. Our Simics/x86
virtual machines were configured with a 2.4 GHz Pentium IV CPUand 256 MB of RAM.

Completeness

To quantify completeness, each guest operating system was instrumented to explicitly re-
port process creation, exit, and context switch. The resulting event records include the
appropriate ASID, as well as the time of the event obtained from the processor’s cycle
counter. These OS traces were compared to similar traces generated by Antfarm. Guest
OS traces are functionally equivalent to the information that would be provided by a par-
avirtualized OS that included a process event interface. Hence, our evaluation implicitly
compares the accuracy of Antfarm to the ideal represented bya paravirtual interface.

In addition to process creation, exit, and context switch, guests report address space
creation and destruction events so that we can discriminatebetween errors caused by a
mismatch between processes and address spaces and errors caused by inaccurate address
space inferences made by Antfarm.

We categorize incorrect inferences as either false negatives or false positives. A false
negative occurs when a true process event is missed by Antfarm. A false positive occurs
when Antfarm incorrectly infers events that do not exist.

To determine if false negatives occurred, one-to-one matches were found for every
OS-reported event in each pair of traces. To be considered a match we require that the
Antfarm event have the same ASID, and that it occur within therange for which the event
is plausible. For example, to match an OS process-creation event, the corresponding event
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Proc ASpc Inf Proc ASpc Inf Ctxt CS
Create Create Create Exit Exit Exit Switch Inf

Linux 2.4
Fork Only 1000 1000 1000 1000 1000 1000 3331 3331
Fork + Exec 1000 1000 1000 1000 1000 1000 3332 3332
Vfork + Exec 1000 1000 1000 1000 1000 1000 3937 3937
Compile 815 815 815 815 815 815 4447 4447
Linux 2.6
Fork Only 1000 1000 1000 1000 1000 1000 3939 3939
Fork+Exec 1000 2000 2000 1000 2000 2000 4938 4938
Vfork + Exec 1000 1000 1000 1000 1000 1000 3957 3957
Compile 748 1191 1191 748 1191 1191 2550 2550
Windows
Create 1000 1000 1000 1000 1000 1000 74431 74431
Compile 2602 2602 2602 2602 2602 2602 835248 835248

Table 4.2:Completeness for x86.The table shows the total number of creations and exits for pro-
cesses and address spaces reported by the operating system.The total number of process creations
and exits inferred by Antfarm are shown in comparison. Antfarm detects all process creates and exits
without false positives or false negatives on both Linux 2.4and Windows. Fork and exec, however,
lead to false positives under Linux 2.6 (bold face values). All false positives are due to the mismatch
between address spaces and processes, which is indicated bymatching counts for address space cre-
ates and inferred creates. Actual and inferred context switch counts are also shown for completeness
and are accurate as expected.

inferred by Antfarm must occur after any previous OS-reported process exit events with the
same ASID and before any subsequent OS-reported process creation events with the same
ASID.

Table 4.2 reports the process and address space event countsgathered by our guest OSes
and by Antfarm during an experiment utilizing two process-intensive workloads. The first
workload is synthetic. It creates 1000 processes, each of which runs for 10 seconds then
exits. The process creation rate is 10 processes/second. OnLinux, this synthetic workload
has three variants. The first creates processes using fork only; the second uses fork followed
by exec; the third employs vfork followed by exec. Under Windows, processes are created
using the CreateProcess API.

The second workload is a parallel compile of the bash shell sources using the command
“make -j 20” in a clean object directory. A compilation workload was chosen because it
creates a large number of short-lived processes, stressingAntfarm’s ability to track many
concurrent processes that have varying runtimes.

Antfarm incurs no false negatives in any of the tested cases,i.e., all process-related
events reported by our instrumented OSes are detected by theVMM. The fact that inferred
counts are always greater than or equal to the reported counts suggests this, but we also
verified that each OS-reported event is properly matched by at least one VMM-inferred
event.

Under Linux 2.4 and Windows, no false positives occur, indicating Antfarm can pre-
cisely detect address space events and that there is a one-to-one match between address
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spaces and processes for these operating systems. Under Linux 2.6, however, false posi-
tives do occur, indicated in Table 4.2 by the inferred event counts that are larger than the
OS-reported counts. This discrepancy is due to the implementation of the Linux 2.6 fork
and exec system calls.

UNIX programs create new user processes by invoking the forksystem call which,
among other things, constructs a new address space for the child process. The child’s
address space is a copy of the parent’s address space. In mostcases, the newly created
child process immediately invokes the exec system call which replaces the child’s virtual
memory image with that of another program read from disk.

In Linux 2.4, when exec is invoked the existing process address space is cleared and
reused for the newly loaded program. In contrast, Linux 2.6 destroys and releases the ad-
dress space of a process invoking exec. A new address space isallocated for the newly
exec’d program. Hence, under Linux 2.6, a process that invokes exec has two distinct ad-
dress spaces associated with it, which do not overlap in time. In other words, the runtime
of the process ispartitioned into two segments. One segment corresponds to the period
between fork and exec and the other corresponds to the periodbetween exec and process
exit. Antfarm, because it is based on address space tracking, concludes that two differ-
ent processes are created leading to twice as many inferred process creations and exits as
actually occurred.

Due to the idiomatic use of fork and exec, however, a process is partitioned in a distinc-
tive way. The Linux 2.6/x86 case in Figure 4.1 depicts the temporal relationship between
the two inferred pseudo-processes. The duration of the firstpseudo-process will nearly
always be small. For example, in the case of our compilation workload, the average time
between fork and exec is less than 1 ms, compared to the average lifetime of the second
pseudo-process, which is more than 2 seconds, a difference of three orders of magnitude.

The two pseudo-processes are separated by a short time period where neither is active.
This interval corresponds to the time after the original address space is destroyed and before
the new address space is created. During the compilation workload this interval averaged
less than 0.1 ms and was never larger than 2.3 ms. Since no userinstructions can be exe-
cuted in the absence of a user address space, the combinationof the two pseudo-processes
detected by Antfarm encompasses all user activity of the true process. Conventional use of
fork and exec imply that nearly all substantive activity of the true user process is captured
within the second pseudo-process.

Lag

The second aspect of process identification accuracy that weconsider is the time difference
between a process event and when the same event is detected bythe VMM. We define a
process to exist at the instant the fork (or its equivalent) system call is invoked. Exit is
defined as the start of the exit system call. These definitionsare maximally conservative.
In Figure 4.1 create lag is labeledA and exit lag is labeledB.

Lag is similar in nature to response time, so we expect it to besensitive to system
load. To evaluate this sensitivity, we conduct an experiment that measures lag times for
various levels of system load on Linux 2.4, Linux 2.6, and Windows. In each experiment,
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Figure 4.1:Effects of error. The figure shows where each type of process identification error occurs
for each tested platform. Error is either lag between when the true event occurs and when the VMM
detects it, (e.g., A and B in the figure) or consists of falselypartitioning a single OS process into
multiple inferred processes. In Linux 2.6/x86, this only occurs onexec, which typically happens
immediately after fork. On SPARC this partitioning happenswhenever a process calls eitherfork
or exec.



29

 0
 500

 1000
 1500
 2000
 2500
 3000

501010

C
re

at
e 

La
g 

(m
s)

Linux 2.4

Avg
Max

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

501010

E
xi

t L
ag

 (
m

s)

 

0.018
0.020
0.022
0.024
0.026
0.028
0.030
0.032

501010

Linux 2.6

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

501010

Concurrent Processes

 10
 20
 30
 40
 50
 60
 70
 80

501010

Windows NT

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

501010

 

Figure 4.2:Lag vs. System Load.The figure shows average and maximum create and exit lag time
measurements for a variety of system load levels in each of our x86 evaluation environments. Average
and worst case create lag are affected by system load in Linux2.4 and Windows, but are small and
nearly constant under Linux 2.6. Except for a large exit lag with no competing processes on Linux,
exit lag does not appear to be sensitive to system load.

0, 1, 10, or 50 CPU-bound processes were created. 100 additional test processes were then
created and the create and exit lag time of each were computed. Test process creations were
separated by 10 ms and each test process slept for one second before exiting.

The results of these experiments are presented in Figure 4.2. For each graph, the x-
axis shows the number of concurrent CPU-bound processes andthe y-axis shows lag time.
Create lag is sensitive to system load on both Linux 2.4 and Windows, as indicated by the
steadily increasing lag time for increasing system load. This result is intuitive since a call
to the scheduler is likely to occur between the invocation ofthe create process API in the
parent (when a process begins) and when the child process actually runs (when the VMM
detects it). Linux 2.6, however, exhibits a different process creation policy that leads to
relatively small and constant creation lag. Since Antfarm detects a process creation when
a process first runs, the VMM will always be informed of a process’s existence before any
user instructions are executed.

Exit lag is typically small for each of the platforms. The exception is for an otherwise
idle Linux which shows a relatively large exit lag average of10 ms. The reason for this
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anomaly is that most Linux kernel tasks, including the idle task, do not need an associated
user address space and therefore borrow the previously active user address space when
they need to run. This mechanism allows a kernel task to run without incurring the expense
of a TLB flush. In the case of this experiment, test processes were started at intervals of
10 ms and each process sleeps for one second; hence, when no other processes are ready
to run, approximately 10 ms elapse between process exit and when another process begins.
During this interval, the Linux idle task is active and prevents the previous address space
from being released, which leads to the observed delay.

The Big Picture

Figure 4.3 shows a set of timelines depicting how Antfarm tracks process activity over time
for a parallel compilation workload on each of our x86 platforms. The top curve in each
graph shows the true, current process count over time as reported by the operating system.
The middle curve shows the current process count as inferredby Antfarm. The bottom
curve shows the difference between the two curves calculated asInferred − Actual.

The result of the relatively large creation lag under Linux 2.4 is apparent in the larger
negative process count differences compared to Linux 2.6. For this workload and met-
ric combination, creation lag is of greater concern than thefalse positives experienced by
Linux 2.6. In another environment such as a more lightly loaded system, which would tend
to reduce lag, or for a metric like total cumulative process count, the false positives incurred
by Linux 2.6 could be more problematic.

Exit lag is not prominent in any of the graphs. Large, persistent exit lag effects would
show up as significant positive deviations in the differencecurves. The fact that errors due
to fork and exec do not accumulate over time under Linux 2.6 isalso apparent because no
increasing inaccuracy trend is present.

4.5.2 Overhead

To evaluate the overhead of our process awareness techniques we measure and compare the
runtime of two workloads under Antfarm and under a pristine build of Xen. The first work-
load is a microbenchmark that represents a worst case performance scenario for Antfarm.
Experiments were performed using Linux 2.4 guests.

Since our VMM extensions only affect code paths where page tables are updated, our
first microbenchmark focuses execution on those paths. The program allocates 100 MB
of memory, touches each page once to ensure a page table entryfor every allocated page
is created and then exits, causing all of the page tables to becleared and released. This
program is run 100 times and the total elapsed time is computed. The experiment was
repeated five times and the average duration is reported. There was negligible variance
between experiments. Under an unmodified version of Xen thisexperiment required an
average of 24.75 seconds to complete. Under Antfarm for Xen the experiment took an
average of 25.35 seconds to complete. The average slowdown is 2.4% for this worst case
example.
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Figure 4.3:Compilation Workload Timelines. For x86/Linux 2.4, x86/Linux 2.6 and x86/Windows
a process count timeline is shown. Each timeline depicts theOS-reported process count, the VMM-
inferred process count and the difference between the two versus time. Lag has a larger impact on
accuracy than false positives. x86/Linux 2.6, which exhibits significantly smaller lag than x86/Linux
2.4 is able to track process counts more accurately.
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Proc ASpc Inf Proc ASpc Inf Ctxt CS
Create Create Create Exit Exit Exit Switch Inf

SPARC/Linux
Fork Only 1000 1000 2000 1000 1000 2000 3419 3419
Fork & Exec 1000 1000 3000 1000 1000 3000 3426 3426
Vfork 1000 1000 1000 1000 1000 1000 4133 4133
Compile 603 603 1396 603 603 1396 1678 1678

Table 4.3:Completeness for SPARC.The table shows the results for the same experiments re-
ported for x86 in Table 4.2, but for SPARC/Linux 2.4. False positives occur for each fork due to an
implementation which uses copy-on-write. Antfarm also infers an additional, non-existent exit/create
event pair for each exec. This error is not due to multiple address spaces per process as on x86, but
rather stems from the flush that occurs to clear the caller’s address space upon exec.

The runtime for configuring and building bash was also compared between our modified
and unmodified versions of Xen. In the unmodified case the average measured runtime of
five trials was 44.49 s. The average runtime of the same experiment under our modified
Xen was 44.74 s. The variance between experiments was negligible yielding a slowdown
of about 0.6% for this process-intensive application workload.

4.5.3 SPARC Evaluation

Our implementation of process tracking on SPARC uses Simics. Each virtual machine
is configured with a 168 MHz UltraSPARC II processor and 256 MBof RAM. We use
SPARC/Linux version 2.4.14 as the guest operating system for all tests. We instrumented
the guest operating system to report the same information asdescribed for x86.

Completeness

We use the same criteria to evaluate process awareness underSPARC as under x86. Table
4.3 lists the total event counts for our process creation micro-benchmark and for the bash
compilation workload.

As on x86, no false negatives occur. In contrast to x86, the fork-only variant of the
microbenchmark incurs false positives. The reason for thisis the copy-on-write implemen-
tation of fork under Linux. During fork all of the writable portions of the parent’s address
space are marked read-only so that they can be copy-on-writeshared with the child. Many
entries in the parent’s page tables are updated and all of thecorresponding TLB entries
must be flushed. SPARC/Linux accomplishes this efficiently by flushing all of the parent’s
current TLB entries using a context demap operation. The context demap is incorrectly
interpreted by Antfarm as a process exit. As soon as the parent is scheduled to run again,
we detect the use of the address space and signal a matching spurious process creation.

The false positives caused by the use of fork under SPARC are different in character
than those caused by exec under x86. These errors are not limited (by convention) to
the usually tiny time interval between fork and exec. They will appear whenever fork is
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invoked, which for processes like a user shell can occur repeatedly throughout the process’s
lifetime. The Linux 2.4/SPARC case in Figure 4.1 depicts howa process that repeatedly
invokes fork might be partitioned into many inferred pseudo-processes by Antfarm.

When exec is used we see additional false positives, but for adifferent reason than under
x86/Linux 2.6. In this case the process inference techniquefalsely reports the creation of
new address spaces that don’t really exist. The cause of thisbehavior is a TLB demap
operation that occurs when a process address space is cleared on exec. This error mode is
different than under x86 where observed errors were due to a faulty assumption of a single
address space per process. On SPARC, the error occurs because our chosen indicator,
context demap, can happen without the corresponding address space being deallocated.

Given these two sources of false positives, one would expectour compilation workload
to experience approximately the same multiple of false positives as seen for the fork+exec
synthetic benchmark. We see, however, fewer false positives than we expect, due to the use
of vfork by both GNU make and gcc. Vfork creates a new process but does not duplicate
the parent’s address space. Since no parent page tables are changed, no flush is required.
When exec is invoked we detect the creation of thesinglenew address space. Hence, when
vfork and exec are used to create new processes under SPARC/Linux, Antfarm experiences
no false positives. The build process, however, consists ofmore than processes created by
make and gcc. Many processes are created by calls to an external shell and these process
creations induce the false positives we observe.

Lag

Lag between OS-recorded and VMM-inferred process events under SPARC/Linux is com-
parable to Linux on x86. The average and maximum lag values for SPARC/Linux under
various system loads are shown in Figure 4.4. Create lag is sensitive to system load. Exit
lag is unaffected by load as on x86.

Limitations

While the SPARC inference technique is simple, it suffers drawbacks relative to x86. As
shown, the technique incurs more false positives than the x86 techniques. In spite of the
additional false positives, Figure 4.5 shows that the technique can track process events
during a parallel compilation workload at least as accurately as x86/Linux 2.4.

Unlike the x86, where one can reasonably assume that a page directory page would
not be shared by multiple runnable processes, one cannot make such an assumption for
context IDs on SPARC. The reason is the vastly smaller space of unique context IDs. The
SPARC provides only 13 bits for this field which allows up to 8192 distinct contexts to be
represented concurrently. If a system exceeds this number of active processes, context IDs
must necessarily be recycled. In some cases, system software will further limit the number
of concurrent contexts it supports. For example, Linux on SPARC architectures uses only
10 of the available 13 context bits, so only 1024 concurrent address spaces are supported
without recycling.
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Figure 4.4:Lag vs. System Load, SPARC.The figure shows average and maximum create and
exit lag time measurements for the same experiments described in Figure 4.2. Create lag grows with
system load. Exit lag is small and nearly constant, independent of load.

Figure 4.6 shows the behavior of our SPARC process detectiontechniques when more
processes exist than can be distinguished by the available context IDs. Once the limit is
reached at 1024, the technique fails to detect additional process creations.

The importance of this second limitation is somewhat reduced because even very busy
servers rarely have more than 1000 active processes, a fact which no doubt influenced the
selection of the context ID field’s size.

Overhead

Since our SPARC techniques are implemented external to asimulatedmachine, they do
not contribute overhead to its execution. For this reason wedo not experimentally evaluate
their overhead. Intuitively the overheads should be very small. One hash table lookup
is added to two operations. The first is when a new context ID iswritten. This happens
during context switch, which is already a fairly heavyweight action. The second is context
demap. Context demaps most often occur during process creation and exit, which are also
heavyweight and relatively infrequent operations.
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Figure 4.5:Compilation Workload Timeline. SPARC/Linux compilation timeline. Compare to
Figure 4.3.

4.5.4 Association Evaluation

In this section we evaluate our association techniques. Ouranalysis focuses on I/O associ-
ation, as we have found that to be the most challenging association to maintain, due to its
asynchrony. We focus on accuracy, time overhead, and space overhead.

Accuracy

To measure the accuracy of I/O associations within the VMM, we instrumented the Linux
guest operating system to trace the individual requests issued from each process address
space. These traces were compared to corresponding traces of inferred VMM associations
to calculate the accuracy of the mechanisms.

To stress the I/O association ability of the VMM, we increasethe load on the system
and plot the resulting I/O association accuracy. Figure 4.7shows our results.

For low levels of concurrency, the simple context association method achieves a high
degree of accuracy. With a large number of process groups, however, the accuracy of
the context method declines dramatically; increased queuing delays between an I/O being
issued and its observation by the VMM cause a majority of the requests to be incorrectly
associated with other (CPU-bound) processes.

Event chaining, on the other hand, is able to achieve nearly perfect accuracy regardless
of the level of concurrency. Hence it is a robust technique for associating asynchronous I/O
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Figure 4.6: Context ID Overflow. When more processes exist than can be represented by the
available SPARC context IDs our techniques fail to detect context ID reuse.

events with the issuing process.

Time Overhead

To measure the overhead imposed by I/O association, we measure the runtime and through-
put achieved by an I/O bound process when executed with event-chaining association en-
abled and again when executed on an unmodified Xen/Linux system. The test program
sequentially reads 200 MB of data with minimal think time between read requests. Each
experiment was repeated five times and the results averaged.Since all association activity
is initiated by I/O, an I/O-bound workload represents a worst case performance scenario
for the technique.

No significant difference in runtime or throughput between the experiments was de-
tected. Low overhead is expected because copy-based event chaining adds only a small
number of minor page faults to each heavyweight I/O operation.

Space Overhead

The storage requirements for the reverse map are comparableto the storage required for the
forward mapping,i.e., the system’s page tables; hence there is a noticeable spaceoverhead
(e.g., roughly 12 bytes per active mapping). However, these data structures need only
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I/Os and one compute-bound process. In the bottom graph, we add one process per group that issues
random I/Os. Two lines are plotted: simple context-based association and event-chain association.
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be maintained for processes that are actively running and generating enough I/O to be of
interest, likely lowering the space overhead quite substantially in practice.

4.5.5 Evaluation Summary

Our evaluation shows that a VMM can infer process creation, exit and context switch
using simple observations of guest OS MMU operations in three different environments
(x86/Linux, x86/Windows, and SPARC/Linux). On x86 under Windows and Linux 2.4,
Antfarm precisely identifies the desired process events. Asone might expect for any in-
ference technique the accuracy is not always perfect. Underx86/Linux 2.6 and under
SPARC/Linux some false positives occur. However, the falsepositives are stylized and
affect the ability of Antfarm to keep an accurate process count very little.

Context association is a simple and generic technique for associating any event observ-
able by a VMM with a process. It is accurate for synchronous events where the actual
occurrence of an event is not separated from the VMM’s detection of the event in time.
Event chaining enhances the accuracy of context association by tracking chains of related
events until one of them is known to occur in the context of theprocess of interest. Event
chaining incurs delay while the consumer of the event waits for the chain being used to
resolve itself. We found that event chaining is especially useful for enhancing the accuracy
of I/O associations as their processing inside the operating system is highly asynchronous.

4.6 Case Study: Anticipatory Scheduling

The order in which disk requests are serviced can make a huge difference to disk I/O perfor-
mance. If requests to adjacent locations on disk are serviced consecutively, the time spent
moving the disk head unproductively is minimized. Avoidingunnecessary seeks is the pri-
mary performance strategy of most disk scheduling algorithms. This case study explores
the application of one innovative scheduling algorithm called anticipatory scheduling[47]
in a virtual machine environment. The implementation makesuse of Antfarm for Xen.

4.6.1 Background

Iyer et al.[47] have demonstrated a phenomenon they calldeceptive idlenessfor disk ac-
cess patterns generated by competing processes performingsynchronous, sequential reads.
Deceptive idleness leads to excessive seeking between locations on disk. Their solution,
called anticipatory scheduling, introduces a small amountof waiting time between the com-
pletion of one request and the initiation of the next if the process whose disk request just
completed is likely to issue another request for a nearby location. This strategy leads to
substantial seek savings and throughput gains for concurrent disk access streams that each
exhibit spatial locality.

Anticipatory scheduling makes use of process-specific information. It decides whether
to wait for a process to issue a new read request and how long towait based on statistics
the disk scheduler keeps for all processes about their recent disk accesses. For example,
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the average distance from one request to the next is stored asan estimate of how far away
the process’s next access will be. If this distance is large,there is little sense waiting for
the process to issue a request nearby. Statistics about how long a process waits after one
request completes before it issues another are also kept in order to determine how long it
make sense to wait for the next request to be issued.

Anticipatory scheduling does not work well in a virtual machine environment. System-
wide information about disk requests is required to estimate where the disk head is located,
which is essential in deciding if a request is nearby. Information about individual process’s
I/O behavior is required to determine whether and how long towait. This information is not
completely available to either a single guest, which only knows about its own requests, or to
the VMM, which cannot distinguish between guest-level processes. While guests and the
VMM could cooperate to implement anticipatory scheduling,this requires the introduction
of additional, specialized VMM-to-guest interfaces. New interfaces may not be possible
in the case of legacy or binary-only components. In any case,such interfaces do not exist
today.

4.6.2 Information

To implement anticipatory scheduling effectively in a VMM,the VMM must be able to
distinguish between guest processes. Additionally, it must be able to associate disk read re-
quests with specific guest processes. Given those two piecesof information, a VMM imple-
mentation of anticipatory scheduling can maintain averageseek distance and inter-request
waiting time for processes across all guests. We use Antfarmto inform an implementation
of anticipatory scheduling inside of Xen.

To associate disk read requests to processes, we employ a simple context association
strategy that associates a read request with whatever process is currently active. This simple
strategy does not take potential asynchrony within the operating system into account. For
example, due to request queuing inside the OS, a read may be issued to the VMM after
the process in which it originated has blocked and context switched off the processor. This
leads to association error. The relatively low concurrencygenerated by the experiments
in this section do not merit the more complicated event-chaining techniques described in
Section 4.3.

4.6.3 Implementation

Xen implements I/O using device driver virtual machines (DDVM) [31]. A DDVM is a vir-
tual machine that is allowed unrestricted access to one or more physical devices. DDVMs
are logically part of the Xen VMM. Operationally, guests running in normal virtual ma-
chines make disk requests to a DDVM via an idealized disk device interface and the DDVM
carries out the I/O on their behalf. In current versions of Xen, these driver VMs run Linux
to take advantage of the broad device support it offers. A device back-end in the driver VM
services requests submitted by an instance of a front-end driver located in all normal VMs.

The standard Linux kernel includes an implementation of anticipatory scheduling. We
implement anticipatory scheduling at the VMM layer by enabling the Linux anticipatory
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scheduler within a Xen DDVM that manages a disk drive. To makethis existing implemen-
tation process-aware, we introduce a foreign process abstraction that represents processes
running in other VMs. When a disk request arrives from a foreign virtual machine, the
Xen back-end queries our process-aware Xen hypervisor about which process is currently
active in the foreign virtual machine. Given the ability to distinguish between processes we
expect that our VMM-level anticipatory scheduler (VMAS) will improve synchronous read
performance for competing processes whether they exist in the same or different VMs.

4.6.4 Evaluation

To demonstrate the effectiveness of our implementation of VMAS, we repeat one of the ex-
periments from the original anticipatory scheduling paperin a virtual machine environment.
Our experiment consists of running multiple instances of a program that sequentially reads
a 200 MB segment of a private 1 GB file. We vary the number of processes, the assignment
of processes to virtual machines, and the disk scheduler used by guests and by the VMM
to explore how process awareness influences the effectiveness of anticipatory scheduling
in a VMM. We make use of the Linux deadline I/O scheduler as ournon-anticipatory base-
line. Results for each of four scheduler configurations combined with three workloads
are shown in Figure 4.8. The workloads are: (1) one virtual machine with two processes,
(2) two virtual machines with one process each, and (3) two virtual machines with two
processes each.

The first experiment shows the results from a configuration without anticipatory schedul-
ing. It demonstrates the expected performance when anticipation is not in use for each of
the three workloads. On our test system this results in an aggregate throughput of about
8 MB/sec.

The second configuration enables anticipatory scheduling in the guest while the dead-
line scheduler is used by Xen. In the one virtual machine/twoprocess case, where the
guest has complete information about all processes actively reading the disk, we expect
that an anticipatory scheduler at the guest level will be effective. The figure shows that
this is in fact the case. Anticipatory scheduling is able to improve aggregate throughput by
75% from about 8 MB/sec to about 14 MB/sec. In the other cases,guest-level anticipatory
scheduling performs about as well as the deadline schedulerdue to its lack of information
about processes in other virtual machines.

Our third experiment demonstrates the performance of unmodified anticipatory schedul-
ing at the VMM layer. Similar to the case of anticipatory scheduling running at the guest
layer we would expect performance improvement for the two-virtual-machine/one-process-
each case to be good because a VMM can distinguish between virtual machines just as an
operating system can distinguish between processes. The improvement does not occur,
however, because of an implementation detail of the Xen DDVMback-end driver. The
back-end services all foreign requests in the context of a single dedicated task so the antici-
patory scheduler interprets the presented I/O stream as a single process making alternating
requests to different parts of the disk. The performance is comparable to the configuration
without anticipation for all workloads.

The final configuration shows the benefit of process awarenessto anticipatory schedul-
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Figure 4.8: Benefit of process awareness for anticipatory scheduling.The graph shows the
aggregate throughput for various configurations of I/O scheduler, number of virtual machines and
number of processes per virtual machine. The experiment uses the Linux deadline scheduler (DL),
the standard anticipatory scheduler (AS), and our VMM-level anticipatory scheduler (VMAS). Adding
process awareness enables VMAS to achieve single process sequential read performance in aggregate
among competing sequential streams. AS running at the guestlayer is somewhat effective in the 1
VM / 2 process case since it has global disk request information.
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ing implemented at the VMM layer. In each of the workload configurations anticipatory
scheduling works well, improving aggregate throughput by more than a factor of two, from
about 8 MB/sec to about 20 MB/sec. Because it is implemented at the VMM layer, anticipa-
tory scheduling in this configuration has complete information about all requests reaching
the disk. Our process awareness extensions allow it to trackstatistics for each individual
process enabling it to make effective anticipation decisions.

4.7 Assumptions

As is the case for any inference technique, Antfarm requiresthat certain assumptions hold
to produce correct results. This section lists and discusses the assumptions Antfarm makes
about the guest operating systems it observes. There are relatively few assumptions and
we believe they hold for nearly all widely available operating systems in common use on
workstation and server class computing systems today.
Processes:Antfarm assumes that an operating system uses heavy-weightprocesses to de-
fine the basic execution environment of all user-level programs including an address space
and I/O environment.
Hardware memory protection: Antfarm assumes that an operating system employs hard-
ware memory protection to implement isolated process address spaces. While nearly all
current operating systems take this approach, other options exist. The recent Singular-
ity [43] research operating system uses programming language techniques like type check-
ing to ensure that processes do not interfere with each othereven when they share a single
hardware address space.
One address space per process:Antfarm uses address space events as a proxy for process
events. This implies a one-to-one correspondence between address spaces and processes.
This is typically true for most operating systems, but we observed a subtle violation of
this assumptions by the implementation ofexec under Linux 2.6. Whenexec is invoked
a new address space is created so a process that is created viafork followed byexec
effectively uses two address spaces for a single logical process. This pattern is highly
stylized. The lifetime of the initial address space is nearly always tiny compared to that of
the second. For the applications of process information we have developed this violation
had no practical effect.
ASIDs are not multiplexed among active processes:Antfarm assumes that the value it
uses as an address space identifier (ASID) is used by a single process while that process
is active. On SPARC we observed that, due to the limited spaceof our chosen ASID (the
SPARC context ID), these values are subject to reuse when a large number of processes
(more than 8192) exist concurrently.
Address space data structures cleared before reuse:Antfarm reports process exit when
the data structures used to represent a process address space have been cleared and are
ready to be reused. On x86 this corresponds to clearing of page tables in memory. On
SPARC it corresponds to a context demap operation. This requirement is derived from the
basic operating system responsibility to maintain memory isolation between processes.
Address space data structure clearing is timely:Antfarm assumes that an operating sys-
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tem clears address space data structures in a timely manner.While an OS could arbitrarily
delay this operation for selected processes, in practice wehave found that the operating sys-
tems we have tested, including Linux and the Windows NT family, eagerly reclaim these
resources and the lag between actual process exit and data structure clearing is small.

4.8 Summary

In this chapter, we have described and evaluated techniquesthat allow a VMM to indepen-
dently discover information about processes for the Windows and Linux operating systems
and for the x86 and SPARC architectures. To do so, we have exploited the correspondence
between processes and address spaces and the ability of the VMM to observe events like
privileged register updates, TLB flushes, and page table updates. Process creation and con-
text switch events can be deduced by simply tracking the use of an address space-specific
value like the physical address of the page directory or the SPARC context ID. We detect
process exit by tracking the status of memory management structures like the page tables
and noting when such resources can be safely reused.

The accuracy achieved by Antfarm is excellent. All true process events are detected
without error. For certain versions of Linux, matching pairs of spurious events are detected
because the “one address space per logical process” model does not hold. Because of the
self-correcting nature and the very brief lifetime of theseerrors, they have little effect on
the ability of Antfarm to track the true current process list.

Antfarm is careful to avoid interposing on high-frequency,critical-path operations;
hence, it imposes very little overhead. In our experiments aworst case performance sce-
nario results in a small 2.4% slowdown. Less pathological, but still demanding, workloads
impose only a tiny 0.6% overhead.

We used an I/O scheduling case study to demonstrate that process information can
be utilized by a VMM to transparently improve overall systemperformance. By taking
process-specific I/O patterns into account, our VMM-layer anticipatory scheduler is able
to increase throughput for competing sequential streams, even from different virtual ma-
chines, by a factor of more than two.
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Chapter 5

Monitoring the Guest Buffer
Cache

In this chapter we describe a set of techniques that can be used by a VMM to infer in-
formation about a critically important OS sub-system, the unified buffer cache and virtual
memory system. The buffer cache’s job is deceptively straightforward. It simply caches
recently accessed blocks from disk. However, deciding which blocks to cache and for how
long involves a subtle trade-off between memory space and performance that depends on
workload, cache size, and user preference. The buffer cacheis often the largest consumer of
memory in a modern system; hence, the memory used by the buffer cache must be carefully
balanced with the memory needs of other user processes. Since, disk accesses typically ex-
hibit spatial and temporal locality, a well-managed buffercache can have a huge impact
on overall system performance by transforming glacially slow disk accesses into relatively
fast memory references.

A VMM is intimately involved in allocating and managing the memory resources in a
virtualized environment. We show in this chapter that a VMM can carefully observe guest
operating system interactions with virtual hardware like the MMU and storage devices to
detect when pages are inserted into or evicted from the operating system buffer cache. Such
information can then be used to more effectively manage local and remote disk caching
resources.

Geigeris an implementation of these techniques within the Xen virtual machine mon-
itor [27]. In this chapter, we discuss the details of Geiger’s implementation and perform a
careful evaluation of Geiger’s eviction detection techniques. A few of Geiger’s inferencing
techniques within the VMM are similar to those used by Chenet al.within a pseudo-device
driver [17]. Hence, our evaluation focuses on which of Geiger’s new techniques are needed
in different circumstances. First, we show that the unified buffer caches and virtual memory
systems found in modern operating systems require the VMM totrack not only disk traffic,
but memory allocations as well. Second, we show that a VMM must take basic storage
system behavior into account to accurately detect cache eviction. For example, the VMM
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must track whether a particular data block is live or dead on disk in order to avoid reporting
many spurious evictions. We also show that journaling file systems, such as ext3 in Linux,
require the VMM to distinguish between writes to the journaland writes to other parts of
storage to avoid an aliasing problem that leads to false eviction reporting. In summary, pas-
sively detecting cache events within modern operating systems requires new sophistication.
Without these techniques, passive inferencing can result in incomplete information which
can be worse than no information at all.

Via case studies, we demonstrate how the inferred eviction information provided by
Geiger can enable useful services inside a VMM. In the first case study we implement a
novel, VMM-based working set size estimator that complements existing techniques [101]
by allowing estimation in the case that a virtual machine is thrashing. A second study
explores how Geiger-inferred evictions can be used by a VMM to enable remote storage
caches to implement eviction-based cache placement [104] without changing the applica-
tion or operating system storage interface. Using existinginterfaces increases the probabil-
ity that such a feature is adopted in practice.

5.1 Geiger Techniques

We will begin our discussion of Geiger by describing the basic techniques Geiger uses to
infer page cache promotion and eviction. We then describe how Geiger performs more
complex inferences, in particular, how it handles unified buffer caches and virtual memory
systems that are present in all modern operating systems, and how it handles issues that
arise due to storage system interactions.

5.1.1 Basic Techniques

Buffer cachepromotionoccurs when a disk page is added to the cache. Buffer cache
evictionoccurs when a cache page is freed by the operating system and its previous contents
remain available to be reloaded from disk. For example, an eviction occurs if the contents
of an anonymous page are written to a swap partition and then the page is freed. Similarly,
an eviction occurs if a page that was read from the file system is later freed without writing
anything back to disk, since the data can be reloaded from theoriginal location on disk.
However, an eviction does not occur if the OS frees a page and its contents are lost (e.g.,
an anonymous page when its associated process exits).

To detect promotion and eviction, Geiger performs two tasks. First, Geiger tracks
whether the contents of a page are available on disk and, if so, where on disk the con-
tents are stored. We call the on-disk location associated with a memory page the page’s
Associated Disk Location(ADL). Second, Geiger must detect when a page is freed by the
OS. We describe each of these steps in turn.
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Associated Disk Locations

Geiger associates a disk location with each physical memorypage, whenever appropriate.
An associated disk location (ADL) is simply the pair<device, block offset>,
representing the most recent disk location with which a VMM can associate the page. A
VMM associates a disk location with a memory page whenever that page is involved in a
disk read or write operation. For example, if a page is the target of a read from disk location
A, the page becomes associated withA. Similarly, if a page is the source of a write to disk
locationB the page becomes associated withB. These associations persist until replaced
by another association, the memory page is freed, or the relevant disk blocks are freed.

Since the VMM virtualizes all disk I/O, disk reads and writesinitiated by a guest are
explicitly visible to the VMM and no special action on the part of the VMM is required to
establish the ADL of a page. However, to correctly invalidate an ADL when the disk block,
to which it refers, is no longer in use requires detecting when the disk block is freed. We
discuss this further in Section 5.1.3.

Detecting Page Reuse

Geiger must also determine when a memory page has been freed by the OS. However,
the guest OS does not explicitly notify the VMM when it frees apage. Often the only
difference between an active and a free page is an entry in a private OS data structure, such
as a free list or bitmap. We assume that the VMM does not have the detailed, OS-specific
information required to locate or interpret these data structures. Hence, instead of detecting
that a page has been freed, Geiger detects that a page has beenreused. Since reuse implies
that a page was freed between uses, it is an appropriate proxyfor the page free event.

Geiger uses numerous heuristics to detect that a page has been reused. Each heuristic
corresponds to a different scenario in which a guest OS allocates a page of memory. If
Geiger detects a page allocation and the newly allocated page has a current ADL, then
Geiger signals that the previous contents of the page, as defined by the ADL, have been
evicted.

The two most basic techniques used by Geiger are monitoring disk reads and disk
writes. This builds on the previous work of Chenet al. [17] which monitors reads and
writes in a device driver within an OS.

Disk Read: Geiger uses disk reads to infer that a new page may have been allocated.
When a page is read from disk, a new page is allocated in the OS buffer cache. If the allo-
cated page has a current ADL that refers to a different disk location than the one currently
being read, Geiger reports that the page’s previous contents have been evicted. The ADL
of the affected page is updated to point to the new disk location as a consequence of this
kind of eviction.

Disk Write: Geiger uses disk writes to infer that a new page may have been allocated. If
a full page of data is written to disk and the page does not already reside in the page cache,
then the OS may allocate a new page to buffer the data until it is asynchronously written to
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disk. Geiger detects this case by observing all disk writes and signaling an eviction if the
write source is a page with a current ADL that is different than the target disk location of
the write. Note that if a previous read or write caused the disk block to already exist in the
cache, Geiger will not erroneously signal a duplicate eviction since the page’s ADL will
not change. As with the read-eviction heuristic, the ADL of the affected page is updated to
refer to the target disk location.

5.1.2 Techniques for Unified Caches

Techniques from previous research [17] work well with old-style file system buffer caches,
which were kept distinct from the virtual memory system. However, virtually all modern
operating systems, including Linux, *BSD, Solaris, and Windows, have a unified buffer
cache and virtual memory system. Unification complicates inferences: Geiger must be
able to detect page reuse for additional cases associated with the virtual memory system.
Hence, we introduce two new detection techniques.

Copy On Write: Copy-on-write (COW) is a technique widely used in operatingsystems
to implement efficient read sharing of memory. A page shared using COW is marked read-
only in each process’s virtual address space that shares it.When one of these processes
attempts to write to a COW-shared page, the action causes a page fault. The operating sys-
tem then transparently allocates a new, private page and copies the data from the old page
into the new page. Subsequently, a new writable virtual memory mapping is established
which refers to the new page. Because the private copy requires allocation of a free page,
it can lead to page reuse.

Geiger detects page reuse that occurs as a result of COW by observing page faults
and page table updates. When Geiger detects a page fault whose cause is a write into a
read-only page, it saves the affected virtual address and page table entry in a small queue.
If, a short time later, the guest OS creates a new writable mapping for the same virtual
address, but a different physical page, Geiger infers that the new physical page was newly
allocated. If the newly allocated page has an active ADL, then Geiger signals an eviction.
This heuristic clears the ADL of the newly allocated page because it is a modified private
copy of an existing page and is not associated with any disk location.

Allocation: Most modern operating systems allocate memory lazily. Whenan applica-
tion requests memory (e.g., usingbrk or an anonymousmmap), the OS does not immedi-
ately allocate physical memory; instead the virtual address range is “reserved” and physical
memory is allocated on-demand when the page is actually accessed. This property means
that physical memory allocation nearly always occurs in thecontext of servicing a page
fault.

Similar to the COW heuristic, Geiger observes page faults that are due to a guest ac-
cessing a virtual page that has no virtual-to-physical mapping and saves the affected virtual
address in a small queue. If, a short time later, the guest OS creates a newwritable map-
ping for the faulting virtual address, Geiger infers a page allocation. If the newly allocated
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physical page has a current ADL, then Geiger signals an eviction.

The allocation eviction heuristic contains some simplifications that could lead to false
positive inferences. First, the technique makes use of the fact that memory is rarely write-
shared between address spaces. If a page is write-shared, however, the creation of a new
writable mapping as described above does not imply a page allocation, but will be counted
as such by our heuristic leading to false positives. Second,if a page belonging to an
mmapped disk file is initially brought into the page cache viaa write operation, the disk
page will first be read from disk (potentially causing a read eviction) and a new writable
mapping will be created (causing an allocation eviction). Hence, a single write could lead
to two eviction reports, one of which is a false positive. Themore common case of a shared,
read-only mapping of a disk file is handled correctly, however, since the allocation heuristic
ignores it and only a single read-eviction is generated whenappropriate.

5.1.3 Techniques for Storage

Storage systems also introduce some nuances into the inferences made by Geiger. In par-
ticular, file system features like journaling lead to analiasingproblem; further, the fact that
disk blocks can be deleted leads to the problem ofliveness detection. We now describe
these issues and how Geiger handles them in turn.

Journaling

The basic write heuristic signals an eviction whenever the contents of a page that has an
ADL are written to a location on disk which does not match thatADL. For example if
a page has ADLA and is written to disk locationB an eviction will be reported for the
contents of disk locationA. The basic write heuristic over-reports evictions in caseswhere
data are written from the same buffer cache page to multiple disk locations; we view this
as analiasingproblem, as the same page is wrongly associated with two diskaddresses.

Journaling file systems, such as Linux ext3 [96], ReiserFS [76], JFS [10], and XFS [94],
routinely write to two locations on disk from the same cache page, namely the journal
location and the fixed disk location. In the worst-case journaling scenario, where both data
and metadata are first written to the journal, twice the actual number of write evictions will
be reported. In the more common case of metadata-only journaling, a much smaller penalty
is incurred.

The negative effect of journaling and virtual memory can be mitigated if the VMM
identifies writes to the file system journal. This is straightforward in most systems, since
the journal is either placed on a separate, easily identifiable partition or in a file within
a file system partition to which a reference is made from the file system superblock [97].
Hence, to avoid the problem of journal aliasing, Geiger monitors the disk addresses of write
requests and ignores writes directed to the journal.
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Block Liveness

Geiger signals that a page has been evicted only if that page has a current ADL. It is
possible that the blocks to which an ADL refers are deallocated on disk between the time
that the ADL mapping is first established and when Geiger detects that the associated page
has been reused. In this case, Geiger will falsely report an eviction, because an ADL exists
but the data to which the ADL refers have been deallocated andare no longer accessible.
This problem ofblock livenesscan lead to large numbers of false evictions for workloads
in which files are regularly deleted, truncated, or when processes die that have significant
parts of their virtual memory swapped to disk.

File systems: A virtual machine monitor can passively trackfile systemblock liveness
in the same way a smart disk system can track block liveness [85]. The allocation state
for each file system block is typically noted in some on-disk structure like a bitmap. The
file system superblock, which is stored at a known, fixed location on disk, can be used to
locate these bitmap structures. By examining guest operating system writes to these on-
disk areas, a VMM can snoop on the file system to determine whendisk blocks to which
an ADL refers have been freed. If the blocks to which an ADL refers are deallocated, the
ADL must be invalidated so that a future reuse of the affectedpage is not misinterpreted as
an eviction.

Implementing block liveness by observing only disk writes has one significant draw-
back; there is often substantial lag between when a file system structure like an allocation
bitmap is updated in memory and when it is written to disk. In many operating systems
this interval can be 30 seconds or more. If Geiger does not observe that the file system
blocks, to which a page’s ADL points, have been deallocated until after the page has been
reused, a false eviction will occur. Hence, the timeliness of block deallocation notification
is important.

A VMM can improve the timeliness of block deallocation notification by tracking up-
dates to the in-memory versions of the allocation bitmaps. Given the known locations of the
bitmaps, the VMM can observe when bitmaps are loaded from disk into memory. At that
time, the VMM can mark all such buffers read-only. When a guest updates an in-memory
bitmap, a minor page fault will occur. The VMM can observe that the fault is due to an
attempted bitmap update and respond by invalidating affected ADLs.

Geiger implements this style of in-memory block liveness tracking. Bitmap blocks
are identified by reading and parsing the file system superblock for known file system
types. Pages used to cache file system allocation bitmaps aremarked read-only in memory
by Geiger. When a write to such a page is detected, due to a pageprotection fault, the
effect of the faulting instruction is emulated on the guest memory and register state and
the faulting instruction is skipped; hence, every bitmap update is synchronously observed
and appropriate action is taken by the VMM. The overhead of block liveness tracking is
kept low in spite of additional minor page faults due to the relatively low frequency of disk
bitmap updates.

Like Sivathanu [86], we consider embedding file system layout information, such as
the format of the superblock, within a VMM a reasonable technique. There are few com-
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monly used file systems and the on-disk data structure formats for those file systems change
slowly. A VMM can be provided with layout information for allcommonly used file sys-
tems and the information can be expected to remain valid for along time. The on-disk
format of ext2, for example, has not changed since its introduction in 1994. This is a far
longer interval than the typical system software upgrade cycle.

Swap space: The liveness tracking techniques Geiger uses for file systempartitions do
not apply to disk space used as a swap area. As a rule, swap space does not contain any
on-disk data structures that track block allocation because data in swap is not expected to
persist across system restarts. All swap allocation information is managed exclusively in
volatile system memory. There are two swap liveness tracking techniques we have found
to be effective for some workloads in preventing false evictions due to ADLs that point to
deallocated swap space.

The first technique invalidates any ADL that points to a set ofdisk blocks that is over-
written. When disk blocks are overwritten, the data to whichan ADL refers has been de-
stroyed; hence, ADL invalidation is appropriate. This technique is implemented by main-
taining a reverse mapping between cached disk blocks and ADLs.

The second technique makes use of implicitly obtained process lifetime information
like that provided by Antfarm [49]. Given accurate information about guest OS processes
and a mapping of memory pages to the owning OS process, many ADLs can be invalidated
when the process exits. Specifically, an ADL from a page belonging to a dead process
that points to a swap space disk block can be invalidated. This second technique appears
promising but has not been fully implemented in the current version of Geiger.

5.2 Implementation

Geiger is implemented as an extension to the Xen virtual machine monitor version 2.0.7.
Xen [27] is an open source virtual machine monitor for the Intel x86 architecture. Xen
provides a paravirtualized [103] processor interface, which enables lower overhead vir-
tualization at the expense of porting system software. We explicitly do not make use of
this feature of Xen; hence, the mechanisms we describe are equally applicable to a more
conventional virtual machine monitor such as VMWare [91, 101].

Geiger consists of a set of patches to the Xen hypervisor and Xen’s block device back-
ends. Changes are concentrated in the handlers for events like page faults, page table
updates and block device reads and writes. The Geiger patches consist of approximately
700 lines of code across three files. About 25 other files from the Xen hypervisor and the
Linux kernel required small changes in order to implement instrumentation and tracing.

All experiments described in this paper were performed on a PC with a 2.4 GHz Pen-
tium IV processor, 2 GB of system memory, and two WD1200BB ATAdisk drives. We
used Linux kernel version 2.6.11 in the Xen control domain and Linux kernel version 2.4.30
for all unprivileged domains. We use either the ext2 or ext3 file system, depending upon
the experiment. The Xen control domain is configured with 512MB of memory. Unless
otherwise noted, each unprivileged guest virtual machine is assigned 128 MB of memory.
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5.3 Evaluation

In this section we evaluate the ability of Geiger to accurately infer page cache evictions
and promotions occurring within guest operating systems. We begin by describing our
workloads and metrics; we then evaluate Geiger using a set offour microbenchmarks and
four application workloads. We conclude by measuring the overheads that Geiger imposes
on the system.

Microbenchmark Description
Read Evict Sequentially reads a section of a file

larger than available memory multiple times
Write Evict Sequentially writes a file larger than

available memory. Repeated multiple times.
COW Evict Allocates a memory buffer approximately the

size of available physical memory, then writes to
each virtual page to ensure a physical page is
allocated, then forks and writes to each
page in the child.

Allocation Evict Allocates a memory buffer that exceeds the
size of available memory and writes to each
virtual page to ensure a page is allocated.

Figure 5.1:Microbenchmark Workloads. This table describes the four microbenchmarks used to
isolate a specific type of page eviction.

Application Description
Dbench [95] File system benchmark simulates load

on a network file server
Mogrify [44] Scales and converts a large bitmap image
OSDL-DBT1 [70] TPC-W-like web commerce benchmark

simulating web purchase transactions in
an online store.

SPC Web Search 2 [90] Storage performance council block device
traces from a web search engine server.
Traces are replayed to a real file system.

Figure 5.2:Application Workloads. This table describes each of the four application workloads.

5.3.1 Workloads

Throughout the experimental evaluation of Geiger, we use two sets of workloads. The first
workload set consists of four microbenchmarks. Each of these four microbenchmarks have
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Application Read % Write% COW% Alloc%

Dbench 41.13% 58.85% 0.00% 0.00%
Mogrify 53.22% 22.31% 0.01% 24.25%
OSDL-DBT1 77.02% 2.14% 0.54% 20.29%
SPC Web Search 2 99.6 % 0.03% 0.00% 0.00%

Figure 5.3:Application Workload Eviction Mix. This table reports the percentage of total eviction
events caused by each eviction type.

been constructed to generate a specific type of page cache eviction: Read, Write, Copy-
On-Write (COW), or Allocate. Thus, these microbenchmarks isolate Geiger’s ability to
track evictions due to specific events. The microbenchmarksare described in more detail
in Figure 5.1.

The second set of workloads consists of four application benchmarks. These represent
more realistic workloads. Each workload contains a mix of eviction types, whether read,
write, COW, or allocation. Figure 5.2 describes the application workloads. Figure 5.3
shows the breakdown of eviction types generated by each application workload. Hence,
these application workloads stress Geiger’s ability to track evictions that may occur for
several different reasons.

5.3.2 Metrics

Our methodology for evaluating the accuracy of Geiger is to compare the trace of evictions
signaled by Geiger to a trace of evictions produced by the guest operating system; we have
modified the Linux kernel to generate this trace. Since the guest operating system has
complete information about which pages are evicted and when, our comparison is against
the ideal eviction detector. The eviction records in both traces contain the physical memory
address, the disk address of the evicted data, and a time stamp.

We consider three different metrics for accuracy. The first metric is simply theeviction
countreported by Geiger compared to that reported by the guest OS over time. The second
metric isdetection lag, or the time between when a particular eviction takes place in the
OS and when it is detected by Geiger. Finally, the third metric is thedetection accuracy,
which tracks the percentage of records from the inferred andactual traces that match in a
one-to-one mapping; we report both the percentage of false negatives (i.e., actual evictions
not detected by Geiger) and false positives (i.e., inferred evictions that did not correspond
to OS-reported evictions).

5.3.3 Microbenchmarks

We begin by running workloads consisting of the four microbenchmarks. Figure 5.4 shows
the resulting eviction count time-lines. For all microbenchmarks, the eviction counts in-
ferred by Geiger closely match the actual OS counts; however, depending upon the work-
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Figure 5.4:Eviction Inference Counts. The figure compares inferred vs. actual eviction counts
over time for microbenchmarks that isolate each eviction type inferred by Geiger.

load, some interesting differences may occur along the way.For example, during the COW
workload, the guest OS reclaims pages in groups, leading to aslight stair-step eviction pat-
tern; Geiger’s inferences lag slightly behind in this case.In the write workload, the guest
OS begins evicting pages early and continues to evict eagerly throughout the experiment.
Because the pages being evicted are dirty, they must be written to disk before they are freed
which significantly delays their reuse. Geiger’s inferences are based on page reuse; hence,
eviction is not detected until a page is reused, and inferredevictions lag noticeably behind
actual evictions when caused primarily by writes.

Figure 5.5 shows the cumulative distributions of eviction lag times for each of the mi-
crobenchmarks. As expected, the lag times for read, COW, andallocation eviction are
concentrated at very small values. However, the lag times for the write microbenchmark
are concentrated at about three seconds due to the glut of disk writes caused by dirty pages
being evicted.

Figure 5.6 reports Geiger’s detection accuracy in both false negatives and false posi-
tives. For all workloads, false negatives are uncommon: at worst, fewer than 2.5% of the
total number of evictions are missed by Geiger. False positives are even less common: at
worst, Geiger over-reports 1.45% of its inferred evictions.

In our final microbenchmark experiment, we explore Geiger’sability to detect aliased
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Figure 5.5:Eviction Lag. The figure shows the cumulative lag distribution for microbenchmarks
that isolate each eviction type.

writes to the file system journal. We use the write workload tostress this detection. Fig-
ure 5.7 shows the accuracy of Geiger with and without the specialization to disregard write
traffic to the file system journal. Without this specialization, Geiger performs satisfactorily
when journaling is disabled or when only metadata is journaled (i.e., Linux ext3 ordered-
mode); with metadata journaling, relatively few blocks have aliases. However, with data
journaling, many blocks have aliases and, as a result, more than half of the evictions re-
ported by the un-specialized Geiger are false positives. Incontrast, the full version of
Geiger accurately handles all journaling modes of Linux ext3; even with data journaling,
Geiger has a false positive percentage of only 0.06%.

5.3.4 Application Benchmarks

We next consider workloads containing more realistic applications. Figure 5.8 reports the
detection accuracy of Geiger on these application workloads. For all workloads, false neg-
ative ratios are small: in the worst case, Geiger misses only2.24% of the evictions reported
by the OS. However, the Dbench and Mogrify workloads have interesting behavior regard-
ing false positives.
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Workload False Neg % False Pos %
Read Evict 0.96% 0.58%
Write Evict 1.68% 0.03%
COW Evict 2.47% 1.45%
Alloc Evict 0.17% 0.17%

Figure 5.6:Microbenchmark Heuristic Accuracy. The table reports the false positive and false
negative ratios for the complete set of eviction heuristicsfor each of the microbenchmark workloads.

Workload w/o Journal Opt w/ Journal Opt
F. Neg % F. Pos % F. Neg % F. Pos %

No Journal 1.68% 0.03% 1.68% 0.03%
Metadata 1.83% 0.33% 0.61% 0.08%
Data 1.43% 61.91% 2.51% 0.06%

Figure 5.7:Effect of Journaling. The table reports the false positive and false negative ratios for
the write-eviction microbenchmark workload when run with no journaling, with metadata journaling
(ordered mode), and data journaling with the Linux ext3 file system. The table shows the benefits of
turning on the Geiger specialization to detect writes to thejournal.

Block Liveness

The Dbench and Mogrify workloads illustrate the benefit of having Geiger attempt to track
the liveness of each block on disk. Dbench creates and deletes many files; as a result,
many pages in memory are reused for different files (and different disk blocks). Mogrify
causes large amounts of swap to be allocated and deallocatedduring its execution. If the
VMM uses only the change in association between a memory pageand its disk block to
infer an eviction, then the VMM concludes that many evictions have occurred that actually
have not (i.e., many false positives). Thus, without live block detection, Geiger has a
30.2% false positive rate for Dbench and a 23% false positiverate for Mogrify. However,
when Geiger tracks whether a particular disk block is free, it can detect when a page is
simply reused without the previous contents being evicted;as a result, the false positive rate
improves dramatically to 5.7% for Dbench and 2.46% for Mogrify. Thus, to adequately
handle delete-intensive (or truncate-intensive) workloads, Geiger includes techniques to
track disk block liveness.

Limitations

As mentioned previously, we do not expect our current techniques for tracking block live-
ness in swap space to be adequate in all situations. To demonstrate this remaining problem,
a microbenchmark was crafted that results in large numbers of false positives despite the
best efforts of Geiger to track block liveness. The program forces a large buffer (allocated
usingmmap) to be swapped to disk and then the buffer is released. In Linux, as the buffer
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Workload Geiger Opts False Neg % False Pos %
Dbench w/o block liveness 1.10% 30.23%
Dbench w/ block liveness 2.30% 5.72%
Mogrify w/o block liveness 0.05% 22.99%
Mogrify w/ block liveness 0.65% 2.46%
TPC-W 0.14% 3.12%
SPC Web 2 2.24% 0.32%

Figure 5.8:Application Heuristic Accuracy. The table reports the false positive and false negative
ratios for Geiger on the four application workloads. For theDbench and Mogrify workloads, we
evaluate Geiger both without and with the optimizations to detect whether a block is live on disk.

is released, the associated swap space is also deallocated,but Geiger does not detect that
event. As additional memory is allocated by the program, pages are reused whose ADLs
point to deallocated swap space resulting in an eviction false positive ratio of about 37%.

5.3.5 Overhead

Geiger observes events that are intrinsically visible to a VMM like page faults, page table
updates, and disk I/O. Except in the case of disk block liveness tracking, no additional
memory protection traps or I/O requests are caused by Geiger. Liveness tracking imposes
one additional minor page fault for each disk bitmap update which occur relatively rarely.
Hence, we expect the runtime overhead imposed by Geiger to besmall. To validate this
expectation, we compare the runtime of workloads running onan unmodified version of
Xen to that of Geiger. We are interested in two performance regimes. The first regime
is the more common case, in which a workload has sufficient memory and few evictions
occur. The second regime occurs when a machine is thrashing,since this implies that many
evictions are taking place and Geiger’s inference mechanisms are being stressed.

We evaluate each of these four cases using two carefully chosen workloads. Since
Geiger interposes on code paths for handling page faults, page table updates and disk I/O,
we use the microbenchmark “allocation-evict” described inFigure 5.1 and Dbench de-
scribed in Figure 5.2. Allocation-evict causes many page faults and page-table updates
stressing that portion of Geiger’s inference machinery. Dbench causes a large number of
file creations, reads, writes, and deletes which exercise those portions of Geiger’s heuris-
tics.

Figure 5.9 shows the results of the experiment. Each value shown is the average of five
runs; the standard deviation is shown with error bars. The largest observed overhead is
2.19%, which occurs for a thrashing Dbench. For all cases, the results for Geiger and the
unmodified Xen are comparable.

Geiger requires some extra space per physical memory page totrack ADLs. In our
prototype this amounts to 20 bytes per memory page. In our test system, configured with
2 GB of physical memory, a total of 10 MB of additional memory is allocated by the VMM,
leading to a space overhead of approximately 0.5%. If this space overhead is a concern, it
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Figure 5.9:Geiger Runtime Overhead.The figure shows that Geiger imposes very small runtime
overheads for two workloads that stress its inference heuristics.

could be substantially reduced, given the preallocated, fixed size, and sparsely-populated
data structures of our prototype.

5.4 Case study: Working Set Size Estimation

Geiger’s eviction detection techniques are useful for implementing a number of pieces
of functionality. In our first case study, we show how Geiger can be used to implement
MemRx, a VMM service that tracks the working sets of guest VMs. We begin by describing
the implementation of MemRx and then present performance results.

5.4.1 MemRx Design

Previous research by Waldspurger [101] for ESX Server has shown how a VMM can deter-
mine the system working set size of a VM whose memory footprint fits in physical mem-
ory. MemRx complements the ESX Server technique by enablinga VMM to determine the
working set size for athrashingvirtual machine.

MemRx does this by simulating the buffer cache behavior of the guest operating system
as if more memory were allocated to it. Geiger allows MemRx tomonitor buffer cache
evictions and promotions. Figure 5.10 shows a schematic of the page cache simulation
implemented by MemRx. Using the ADL mechanism, Geiger knowswhich blocks on
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Figure 5.10:MemRx Operation. The figure shows a schematic of the cache simulation imple-
mented by MemRx. A) When a page is evicted by a guest, this event is detected by MemRx and an
entry is added to the head of a series of queues. B) If necessary, queue entries ripple from the tail
of one queue to the head of the next. C) Upon reload, the associated queue entry is removed and an
array entry associated with that queue is incremented. Eachentry tracks which sub-queue it appears
in to enable fast depth estimation.

disk correspond to an evicted page. When a page is evicted, a reference to the page’s
location on disk is inserted at the head of a queue maintainedin LRU order by MemRx.
Subsequent evictions push previous references deeper in the queue. When a previously
evicted page is read from disk,i.e., promoted into the page cache, the reference to that page
is removed from the queue and its distanceD from the head of the queue is computed. The
distance is approximately equal to the number of evictions that have taken place between
that page’s eviction and its subsequent reload. MemRx then usesD to compute the amount
of memory that would have been required to prevent the original evictions from taking
place assizepage × (D +1). This information is used to compute a miss-ratio curve [107].
The working set size can be read from the miss-ratio curve by locating the curve’s primary
knee.

For example, if a page is evicted and immediately reloaded before any other pages are
evicted, MemRx would record that the eviction could have been prevented by one addi-
tional page of physical memory. If a page’s eviction is followed by 1024 evictions of 4 KB
pages, MemRx would report that(1024 + 1) × 4 KB (roughly 4 MB) of additional
memory would be required to prevent the original eviction.

Our general strategy, which is similar to Pattersonet al.’s ghost buffering scheme [71],
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Benchmark Activity
FS Sequential Sequentially scan a 256 MB section

of a file system file 10 times
VM Sequential Sequentially scan 256 MB section

of allocated virtual memory 10 times
FS Random Randomly read page-sized blocks from

a 256 MB file system file two times
VM Random Randomly touch virtual memory pages from

256 MB virtual memory allocation 2 times

Figure 5.11:Calibrated Microbenchmarks. The table describes each of the microbenchmarks
used to evaluate VMM-MemRx.

relies upon certain properties of the operating system cache replacement policy to function
correctly. Specifically, the algorithm used must (roughly)preserve theinclusionor stack
property [61]. The key aspect of the stack property is that a cache of a sizeN + 1 has the
same contents as a cache of sizeN , plus the one additional buffer which has some other
block within it. LRU and LFU obey this property; FIFO does not[9]. By assuming the
stack property holds, the VEC can efficientlysimulatethe contents of larger caches, safe
in the knowledge that the buffers of the main page cache wouldbe comprised of the same
contents even if more memory were available.

Neither Linux, nor most other operating systems, employ a page replacement strategy
that perfectly maintains the stack property. Our evaluation demonstrates, however, that
MemRx is quite robust to these deviations under Linux for many useful cases.

5.4.2 Evaluation

We first evaluate the accuracy of MemRx by using it to measure the working set size of
microbenchmark workloads for which the working set size is approximately known. Ta-
ble 5.11 lists each of the microbenchmarks and the actions they perform; the working set
size for each is approximately 256 MB and the virtual machineis configured with 128 MB
of memory. Second, we compare the working set size predictedby MemRx to the working
set size determined by trial and error for more realistic application workloads, in particular,
Mogrify and Dbench.

Figure 5.12 shows the predicted and actual miss ratio curvesfor the four microbench-
mark workloads. The miss ratio curve shows the fraction of the capacity cache misses
occurring in the smallest memory configuration (i.e., 128 MB) that remain misses in larger
memory configurations. Thepredictedcurve is calculated by MemRx using measurements
taken during a single run at the smallest memory configuration and then simulating the
page cache behavior of the guest operating system on-line for several larger memory con-
figurations in increments of 32 MB. Theactualcurve is calculated by running the workload
at each of the noted memory sizes and counting actual capacity misses in the page cache.

These calibrated tests show that MemRx can locate the working set size of simple
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Figure 5.12:VMM-MemRx Predicted vs. Actual Miss Ratio. The figure shows the miss ratio
predicted by VMM-MemRx vs. the actual miss ratio measured for varying memory sizes. The known
working set of 256 MB is marked by a vertical dashed line.

workloads very accurately. The prediction made by MemRx is identical to that found by
direct measurement using trial and error. The result is not surprising, because under these
simple workloads, Geiger incurs few eviction false positives.

Figure 5.13 shows the results for the two application workloads, Mogrify and Dbench.
The leftmost two graphs show the predicted and actual miss ratio curves. In these cases, the
inferred working set size predicted by MemRx is slightly larger than the actual working set
size found using trial and error. To determine whether the discrepancy was due to Geiger
(e.g., false positive/negative evictions or lag) or to MemRx (e.g., cache simulation error)
we implemented MemRx within Linux [51] and compared the predicted and actual miss
ratio curves produced by that version. Within the operatingsystem, MemRx has access
to precise eviction and promotion information, which eliminates Geiger as a source of
error. The rightmost two graphs in Figure 5.13 show the miss ratio curves obtained for the
Mogrify and Dbench workloads using our operating system implementation of MemRx.

For the Dbench workload, the version of MemRx in the OS shows the same deviation
as the one produced by MemRx in the VMM; this leads us to conclude that the cause of the
deviation is MemRx simulation error. MemRx models the guestbuffer cache using a strict
LRU policy that does not exactly match the policy used by Linux, which is something more
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Figure 5.13:Application Predicted vs. Actual Miss Ratio. The figure shows the miss ratio curve
predicted by MemRx vs. the actual miss ratio measured for varying memory sizes for two application
workloads. Results from MemRx implemented in the VMM (left)and MemRx implemented in the OS
(right) are shown.

akin to 2Q [48]. The difference between the modeled policy and the true policy leads to
simulation errors like the one shown. In the case of Mogrify,however, the OS-based miss
ratio curve matches the actual curve closely, leading us to believe that the error observed
in the VMM-predicted working set size is due to the small inference errors imposed by
Geiger and the granularity of the experiment.

In summary, the information provided by Geiger enables a VMMto estimate the work-
ing set sizes of thrashing VMs. The predictions made by MemRxare accurate enough to be
highly useful when allocating memory between competing VMson a single machine [101]
or when selecting an appropriate target host during virtualmachine migration [105].

5.5 Case study: Eviction-Based Cache Placement

In our second case study, we show how Geiger can be used to convey eviction information
to a secondary cache. The basic idea is that the VMM uses Geiger to infer which pages have
been evicted from the OS buffer cache, then sends this information (e.g., with a DEMOTE
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operation [104]) to the storage server, which is potentially remote. The storage server uses
this explicit information to perform eviction-based cacheplacement.

5.5.1 Implementation

Our implementation of an eviction-based secondary cache has two components. First, the
VMM interposes on the virtual block device interface provided by Xen to see the block
request stream generated by the workload. Second, the VMM uses Geiger to infer which
blocks have been evicted from the guest OS buffer cache; these events are then communi-
cated to the remote storage server. We simulate the behaviorof a storage server by using
the actual trace gathered from running Geiger for a given workload as input. We refer to
our approach as Eviction-Geiger.

To evaluate our implementation, we compare it with three alternatives. In the first ap-
proach (Eviction-OS) the operating system is modified to report actual evictions; this rep-
resents the ideal case. In the second approach (Eviction-Buffer), the VMM performs only
the eviction detections that are possible using client buffer addresses as used by Chenet
al. [17] (i.e.read and write evictions). Finally, we simulate a storage cache that uses no
information about client evictions and performs traditional, demand-based placement. In
all cases we use an LRU-based replacement policy.

5.5.2 Evaluation

We use the application workloads listed in Figure 5.2 to evaluate our VMM implementation
of eviction-based cache placement. For each workload, we consider remote caches from
32 MB to 512 MB. We evaluate the four placement policies: Eviction-OS, Eviction-Geiger,
Eviction-Buffer, and Demand. Our metric is cache hit ratio.

Figure 5.14 shows graphs of the cache hit ratio vs. cache sizefor the four workloads
and four cache policies. In all cases, OS and Geiger eviction-based placement outperform
demand-based placement, sometimes significantly. The largest gains occur for moderate
cache sizes where the working set of the application fits neither in the client cache nor
in the storage cache individually, but does fit within the aggregate cache. OS and Geiger
eviction-based placement are able to improve cache hit rateby as much as 28 percentage
points for these workloads. For example, under the Mogrify workload using a secondary
cache size of 96 MB, the cache hit ratio goes from 14.9% under demand placement to
42.9% when eviction-based placement is used. When the secondary cache size is large
enough to contain the full system working set, OS and Geiger eviction-based placement
perform similarly to demand-based placement. In the case ofSPC web search, the traces
exhibit almost no locality. The results are included for completeness only.

For one workload, Dbench, eviction-based placement with OSsupport outperforms
that with inferred evictions, even with Geiger. For example, with a secondary cache size of
416 MB, we observe a difference in hit rates of about 15 percentage points. This perfor-
mance difference is due to the significant time lag between the actual and inferred write-
eviction events (approximately 2 seconds for most events inthis experiment). Because
some inferred evictions are delayed, the secondary cache loses the opportunity to place a
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Figure 5.14:Secondary Cache Hit Ratio.The figure compares the cache hit ratio in a secondary
storage cache for various workloads when demand placement (Demand), eviction placement based
on inferred evictions (Eviction-Buffer and Eviction-Geiger), and eviction placement based on actual
evictions (Eviction-OS) is used. Experiments are performed using cache sizes from 32 MB to 512 MB.

block prior to the block being referenced by the client, and acache miss occurs. How-
ever, the eviction-based approaches still perform significantly better than demand-based
placement.

Eviction-Geiger always performs as good or better than Eviction-Buffer. In fact, Eviction-
Buffer sometimes performs significantlyworsethan straightforward demand-based place-
ment. The problem occurs because Eviction-Buffer may detect fewer evictions than actu-
ally occur (i.e., large false negatives). For workloads, such as Mogrify andTPC-W, where a
significant number of non-I/O based evictions occur, missing evictions lead to poorer over-
all cache performance. Missing evictions are particularlya problem with large secondary
caches, because few blocks are placed effectively, even though adequate cache space is
available. In the case of TPC-W, missing eviction events change the cache hit rate by about
10 percentage points, while under Mogrify the difference isabout 40 points.

In summary, Geiger can be used effectively to notify a secondary cache of the evictions
that have been performed by clients. As confirmed in other studies [17, 16, 104], secondary
caches using eviction-based placement can perform much better than those using demand-
based placement. Our results show that the eviction information provided by Geiger is
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nearly as good as that which could be provided directly by theOS (if the OS were modified
to do so). The one exception occurs when a significant lag occurs in the time between the
actual eviction and the inference; however, even in this case, Geiger enables much better hit
rates than those with simple demand-based placement. With eviction-based placement, it is
essential to not miss evictions in the clients; eviction detection based only on I/O reads and
writes can miss important evictions, leading to hit rates that are actually worse than simple
demand-based placement. Therefore, the full set of techniques within Geiger should be
used for buffer cache inferences.

5.6 Assumptions

As is the case with Antfarm, described in Chapter 4, Geiger also makes some basic as-
sumptions about how operating systems work to form its inferences about the buffer cache.
This section enumerates and discusses those assumptions.
Memory allocation mechanisms:Geiger assumes that most memory is allocated by an
operating system via the small number of mechanisms listed below.

• Buffer-cache allocation during disk read and write

• Copy-on-write sharing

• Lazily in response to a not-present page fault

Geiger knowingly ignores other types of memory allocation as they are typically rare or
concern small amounts of memory. Examples of memory allocations that Geiger ignores
are non-cache kernel allocations (e.g., inodes, directory entries, and other special purpose
data structures).
Write sharing in memory is rare: The write and allocation eviction heuristics assume that
processes do not often write-share large amounts of memory.While this is typically true,
it would be simple to create a contrived workload that sharedlarge amounts of writable
memory. If this occurs, Geiger will spuriously report an extra eviction whenever a memory
page within the writable buffer is lazily allocated by the operating system for any process,
except the first, sharing the buffer.
Filesystems update in place:Some of the filesystem optimizations employed by Geiger
to reduce false positives assume that the filesystem in use updates data in place. Nearly
all filesystems have this feature. Some special purpose filesystems like WAFL [40], which
is used on dedicated storage appliances, or ZFS [92], a new dynamic filesystem designed
for the Solaris operating system, do not overwrite existingdata on update in order to easily
support filesystem features like creating and maintaining snapshots. WAFL is used in a
proprietary appliance environment where system virtualization is unlikely. ZFS is a general
purpose filesystem, but is quite new and not widely used.
Operating systems avoid unnecessary data copying:Some of Geiger’s heuristics assume
that operating systems avoid copying data around in memory.Such copying could break
the association that Geiger tracks between disk locations and memory pages. In practice
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we have found that operating systems go to great lengths to avoid copying for performance
reasons. In some cases copying is unavoidable. For example,in legacy systems using the
ISA peripheral bus, devices are limited in the addresses they are allowed to use for DMA.
In such a situation, the OS must copy data from low to high memory when necessary, a
technique known asbounce-buffering.

5.7 Summary

In this chapter, we have explored techniques to make inferences about when pages are
added to or removed from a guest OS buffer cache. We have foundthat modern operating
systems, which typically incorporate unified system cachesand journaling file systems,
require new inferencing techniques that account for some previously ignored subtleties like
anonymous memory allocation, aliasing and block liveness.

Geiger’s full range of inference techniques are needed under different circumstances.
For example, our COW and Allocation techniques are needed tohandle an important class
of applications that allocate significant amounts of anonymous memory; live block detec-
tion improves the accuracy of workloads that delete or truncate files; finally, writes to the
journal must be isolated to handle file system data journaling. These features make a real
impact on performance. For example, in some cases the numberof false positives can be
reduced by more than a factor of nine by taking block livenessinto account.

Overall, our techniques are efficient. Our largest observedruntime overhead was 2.19%
and overheads for more typical workloads were much less than1%. In some cases we
observed that the lag between actual and inferred events reduced the value of inferred in-
formation, but in general the information provided by Geiger is timely with average lag
measured in small numbers of milliseconds.

Geiger allows us to implement two useful prototype case studies: MemRx, a work-
ing set size estimator that compliments and extends existing commercial techniques, and
eviction-based cache placement for second-level caches. Recently, another group of re-
searchers have proposed using Geiger and MemRx as components in their dynamic, virtual
machine-based cluster management system [105].



Chapter 6

Detecting and Identifying Hidden
Guest Processes

Stealth rootkits that can hide processes are an important security issue. According to statis-
tics gathered from Microsoft’s widely deployedMalicious Software Removal Tool[63],
a significant fraction of the malware it encounters and removes consists of stealth rootk-
its with process and other resource hiding capabilities [67]. Half of unpatched Windows
systems surveyed by the Microsoft tool are affected by a single rootkit alone. Often the
stealth rootkit components are bundled and used by other kinds of destructive malware like
remote control programs for botnets and spyware, extendingtheir capabilities and compli-
cating their detection and removal. The ability to detect and respond to malicious hidden
processes is a clear advantage in the race to defend network-attached computers.

One way to detect that processes have been hidden is by using atechnique calledcross-
viewvalidation [102]. Cross-view validation works by observing a resource, like operating
system processes, from multiple perspectives and noting inconsistencies between them.
One view is obtained from an untrusted, high-level vantage point. The other is obtained
from a low level in the system that is unlikely to have been subverted by an attacker; hence,
its information is considered trustworthy. If a resource appears in the trusted view and does
not appear in the untrusted view, a detector based on the cross-view principle can conclude
that a resource has been hidden independent of the techniqueused to hide it.

One serious problem with cross-view validation is the inevitable race that develops be-
tween attackers and defenders to control the lowest reachesof a system. If an attacker sub-
verts the level from which the trusted view is obtained, cross-view validation fails. Clearly,
the deeper within a system a trusted view can be extracted thebetter. In this paper we
describe a cross-view technique for detecting hidden processes that obtains its trusted view
from deep within the system at the VMM-layer.

A virtual machine monitor (VMM) is an attractive place to deploy security monitoring
services like anomaly detection systems [35, 52]. By virtueof their location behind the
relative security of the virtual machine interface, VMM-based services are better shielded
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from malicious attacks that originate from within a guest virtual machine [55], even if the
guest operating system kernel is compromised. In spite of being separated from guests by
a secure barrier, a VMM maintains good visibility into the the activities and state of its
guest virtual machines. For example, a VMM can easily read and write guest registers and
memory and can observe guest I/O like disk and network requests.

The VMM-based security services that have been proposed to date assume that the
VMM has detailed implementation information about the guest operating systems they
observe [35, 52]. These services use information about the memory locations of private
operating system variables and functions, the layout of compound structures, the call sig-
natures of important operating system functions, and detailed semantics of various operat-
ing system components to perform their work. Some of this information can be obtained
automatically from debugging symbols [35]. Other kinds of information are only available
via careful study of system source code or reverse engineering [52].

VMM-level services based on explicit implementation information are effective, but
there are drawbacks. One interesting consequence is that they may be just as susceptible
to evasion by an attacker that has subverted the guest operating system as if they were
located within the guest itself. In spite of their location at the VMM-layer, these services
depend on guest-level information which is still open to simple guest-level manipulation.
For example, if a service depends on the correctness of the guest operating system process
list, a kernel-resident attacker can modify the list to hideits presence. If a security system
depends on monitoring the location of a function likefork to be informed of process
creation, it may be thwarted by an attacker that re-directs invocations of the system call to
their own implementation.

In this chapter we present the design, implementation, and evaluation ofLycosid, a
VMM-based security service that detects and identifies hidden processes. Lycosid does not
depend on explicit guest operating system implementation information. Instead, general
operating system principles and observations of architecture-level activity are used to infer
required information about the activities and state of guest virtual machines. Like previous
VMM-based security services, Lycosid is resilient to malicious guest attack by virtue of its
location within a VMM. Unlike previous work, Lycosid obtains and uses true VMM-level
information about guest operating systems which should render it less susceptible to guest
evasion attacks. Additionally, by decoupling Lycosid froma specific operating system
version and patch-level, the service can be deployed in diverse environments without the
burden of maintaining version-specific implementation information.

The detection and identification of specific hidden processes provided by Lycosid en-
able a VMM to engage in a targeted response to this kind of malicious activity. A VMM
that knows which processes are hidden can provide more specific and detailed logging.
Per-process profiling information can be generated via a technique like on-demand emula-
tion [41]. This additional detail enables a more effective post-mortem malware analysis.
Finally, an aggressive VMM security policy might elect to pro-actively kill hidden pro-
cesses, while allowing untainted processes to continue running.

We evaluate our Lycosid implementation using both Windows and Linux guests and
find that it is highly accurate in a wide range of extremely challenging environments. This
result comes despite the fact that the implicitly obtained information about guest virtual
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machines used by Lycosid is noisy and sometimes wrong [49, 50]. Accuracy is achieved
via a targeted use of statistical inference techniques likehypothesis testing and linear re-
gression that trade time for accuracy. Despite low quality inputs, Lycosid provides a robust,
highly accurate, and portable service usable even in security environments where the con-
sequences for wrong decisions can be high.

Lycosid bases most of its decisions on passively obtained information. In some cases,
however, we find that passive information is inadequate to reliably identify which of many
candidate processes has been hidden. Lycosid introduces a new technique calledCPU
inflation that allows a VMM to influence the runtime of specific processes by carefully
patching a process’s executable code. Using CPU inflation, Lycosid can often transform
a detectable, but unidentifiable, hidden process into a hidden process that can be reliably
identified, enabling an appropriate response.

6.1 Process Hiding

When a system is compromised, it is common for an attacker to leave programs behind that
advance the attacker’s goals. This approach is especially favored when the attacker accesses
a machine from a remote location over a network. For example,an attacker will often leave
behind a back door program that listens to the network and allows the attacker to regain
a privileged presence on a compromised system without re-exploiting a vulnerability [81].
In other cases, key capture or file system scanning programs are left running to collect
additional useful information like login names, passwords, and financial records.

The presence of unexplained processes, network connections, or files is an indicator to
a system administrator or intrusion detection system that asuccessful attack has occurred.
To avoid tipping off a defender, an attacker will often attempt to hide their malicious pro-
cesses, network connections or data files [14]. Hiding is typically accomplished by modi-
fying some aspect of the system using a suite of tools called astealth rootkit. For example,
some rootkits modify program binaries likeps, netstat, andls [64]. Other rootkits
hook into the call path between a user application and the kernel by modifying libraries,
dynamic linker structures, system call tables, or operating system functions that report sys-
tem status [42]. Finally, some rootkits manipulate kernel data structures using so-called
direct kernel object manipulation (DKOM) [32]. Rootkit hooks and modified kernel data
structures lead to corrupted results of user requests, effectively hiding the presence of ma-
licious resources [20, 83]. The list of techniques available to hide system resources is long
and growing.

Long lived malicious processes are the most likely candidates for hiding. The proba-
bility of detecting a short lived malicious process via a process introspection tool likeps
is relatively small, so an attacker rarely goes to the trouble of hiding a short-lived process.
The long-lived nature of maliciously hidden processes has implications for the kinds of
detection techniques that are feasible.
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6.2 Detection

The Lycosid service is partitioned into detection and identification components. We discuss
the detection component in this section. Detection consists of determining if any processes
running within a guest virtual machine have been hidden. Thedetection algorithm does not
identify which specific processes are hidden. Identification is discussed in Section 6.3.

6.2.1 Approach

If a process has been hidden using any of the methods described in Section 6.1, it will
not appear on a user-level process listing. It will, however, appear on a suitably obtained,
trusted process list. Hence, to detect a hidden process we can compare the lengths of
process lists obtained at a trusted and an untrusted level. If the trusted list is longer than the
untrusted list we can conclude that at least one process has been hidden.

On an idle system, simply obtaining a single instance of the two process lists and com-
paring them would suffice to detect hidden processes. On an active system, however, where
processes are being created and destroyed, the situation becomes more complicated. For
example, Lycosid cannot perfectly synchronize the times atwhich it makes its two process
list observations, so they may reflect different process-related states of the system. Addi-
tionally, the measurements taken within the VMM can be delayed, further complicating the
inference. As the system experiences higher levels of process creation and exit activity, the
problem becomes worse.

Lycosid overcomes these issues by employing statistical inference techniques. Specif-
ically, it obtains many pairs of measurements over time and performs a series of paired-
sample hypothesis tests [75]. Each pair consists of a process count obtained from within
the VMM and a process count obtained from within the guest. Using a hypothesis test, we
can determine if the two process lists differ in length even when the system process state
is in dramatic flux. The test procedure also provides the ability to quantitatively limit the
chance that we assert one or more processes are hidden when infact no hiding is taking
place,i.e., the false positive rate can be explicitly controlled.

Formally, letT be the length of the trusted process list and letU be the length of the
untrusted process list. Our null and alternative hypotheses are then:

H0 : T − U ≤ 0 (6.1)

H1 : T − U > 0 (6.2)

We use the non-parametric Wilcoxon rank-sign statistic [75] in our tests because it
makes no assumptions about the distribution of the population from which our samples are
drawn. Data analysis indicates that the distribution ofT − U is quite symmetric, but has a
slight negative skew and is not normally distributed.

If we can reject the null hypothesisH0 in favor of the alternative hypothesisH1 at an
appropriate level of confidence, we can quantitatively conclude that one or more processes
is being hidden. The hypothesis test p-value indicates the probability of a false positive,
i.e., indicating hiding when the null hypothesisH0 (no processes are hidden) is true. As
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with most anomaly detection systems, the consequences for false positives in the detection
performed by Lycosid are significant. Too many false positives degrade the confidence
in the system and render the information it provides less valuable. Hence, we choose a
conservative threshold confidence value (α = 2×10−6). If the one-sided p-value computed
during the hypothesis test falls belowα, Lycosid reports that one or more processes have
been hidden.

In addition to a hidden process indicator, the average difference observed between the
two lists during the detection phase provides an estimate ofthe number of processes that
have been hidden. This point estimate is used as input to the hidden processidentification
algorithm described in Section 6.3.

6.2.2 Details

Lycosid obtains a trusted view of guest processes from within a VMM. The VMM-based
approach has advantages over any technique that obtains trusted information from within
the guest itself because a VMM is typically much harder to subvert than guest software
services or even the guest operating system kernel. This fact follows from the relatively
smaller and well-defined virtual machine interface that separates the guest from the VMM [55].

VMI [35], for example, uses this advantage to provide various resilient security services
within a VMM, one of which is hidden process detection. Lycosid differs from VMI in the
way it obtains trusted information about the guest operating system. VMI exploits detailed
information about the location and semantics of private kernel data structures to obtain a
low-level guest process list. In contrast, Lycosid obtainsits low-level guest information
implicitly. This is a key advantage of Lycosid. No detailed implementation information
about the guest is required. As a result, Lycosid can be deployed without taking versions
and patch levels of the target operating systems into account.

Lycosid uses Antfarm [49] to obtain its low-level view of guest operating system pro-
cesses. Antfarm is a VMM component that implicitly obtains information about guest oper-
ating system events like process creations and exits by observing closely related events like
virtual address space creation and destruction. Information about virtual address spaces is
explicitly visible to a VMM. Antfarm can also provide estimates of other process-related
quantities like CPU time consumed, working set size, and context switch counts by observ-
ing their virtual address space analogues.

Lycosid obtains its untrusted view of guest operating system processes the same way
that VMI does. A network connection is made from the VMM to theguest and a user-level
program within the guest is invoked to enumerate processes.On a UNIX-like system the
ps command can provide this information. On Windows systems, various utilities like
pslist.exe [21] or the built-intasklist.exe can be used. To minimize the data
that must be transported over the network, Lycosid uses a custom process enumeration
utility that returns only the information it requires. We use a custom utility to reduce the
time required to obtain information from a guest, improvingthe synchronization between
VMM and guest measurements.

Lycosid obtains trusted and untrusted process lists at short random intervals. A window
of the most recent samples is preserved for use in hypothesistesting. The size of the
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window and the sample interval are configurable. In our implementation, samples are
obtained every one second on average. Up to the most recent 600 samples are used in
each hypothesis test. Approximately every minute, we test the null hypothesis that the two
lists are the same length. Given the detection thresholdα = 2 × 10−6, our configuration
corresponds to about one expected false positive per year.

6.3 Identification

After detecting that one or more processes have been hidden,the natural next step is to
identifywhich processes have been hidden. By identifying the specific processes that have
been hidden we enable a more effective VMM response to the malicious activity.

Given only the information provided by the hiding detector,each process visible from
within the VMM is equally likely to be the culprit. Our approach for identifying which pro-
cesses have been hidden is to select a measurable quantity associated with hidden processes
and use it to select from the set of candidate processes.

6.3.1 Approach

As a process executes, it consumes CPU time. Both the operating system and a process-
aware VMM like Lycosid can account CPU time to specific processes. LetGi denote
the CPU time for processi as observed from within a guest. LetVj be the CPU time
accumulated by processj as seen by the VMM. Then, when hiding occurs, the quantity

H =
∑

j

Vj −
∑

i

Gi (6.3)

represents the total CPU time observed within the VMM that isnot accounted for by pro-
cesses visible to the guest,i.e., it is the CPU time used by hidden processes. We can
construct a linear equation usingH and the per-process CPU times we have obtained from
within the VMM.

H = β1V1 + β2V2 + ... + βnVn (6.4)

Equation 6.4 holds if the coefficientsβj take the value1 for processes that are hidden
and0 for non-hidden processes. We can identify likely hidden processes by fitting a multi-
ple variable linear model using least-squares regression on Equation 6.4 and choosing the
N variables from the model that best explain the variance observed inH , whereN is the
estimated number of hidden processes obtained during the detection phase. Hence, hidden
process identification in Lycosid is a multiple linear regression variable selection problem.

There is no universal, automated technique available for variable selection in multiple
regression that is guaranteed to select the best set of variables to include in a model. Step-
wise procedures attempt to refine an over-specified or under-specified model iteratively, but
often choose bad models. All-possible-subsets regressionis guaranteed to choose the best
model as long as the number of variables to include is known inadvance. As the name
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implies, all-possible-subsets does this by trying all possible variable combinations of the
specified size and maximizing a provided model statistic like the multipleR2 measure. Un-
fortunately the cost of all-possible-subsets variable selection grows like

(

N

E

)

whereN is the
total number of processes andE is our estimate of the number of hidden processes. Since
the number of processes to choose from is often large in our environment, this technique is
usually far too expensive.

Lycosid uses a simple variable selection heuristic that incorporates what we know about
the form of the true model. We know that the coefficients of thevariables representing
hidden processes should be close to1.0 and we have an estimate for the total number
of hidden processes. Once an initial model has been fit, thosevariables corresponding
to processes that are obviously not related to the extra observed CPU time are removed
from the model. Specifically, variables with negative estimated slopes and variables whose
estimated slopes are much greater than1.0 (e.g., greater than5 in our implementation)
are removed. A new model is then fit using only the remaining variables. Finally, theN
variables whose positive relationship to the extra CPU timeis strongest are chosen. The
strength of a variable’s relationship to the extra CPU time is represented by the p-value
that results from testing the null hypothesis that the variable’s estimated coefficient is zero.
Note that we do not attempt to interpret the resulting p-value as a probability related to
our identification task. The p-value is simply used to order the variables according to the
strength of their relationship to the extra observed CPU time. The topN variables from the
ordered list are selected. As in the detection case, we employ a conservative threshold p-
value (α = 1×10−5) to reduce the chance of false positives,i.e., of incorrectly identifying
a process as hidden when it is not. If we do not findN variables with sufficiently small p-
values, additional samples are taken and the procedure continues until a configurable upper
limit of samples is reached.

6.3.2 Details

Lycosid obtains CPU time information about processes from both the VMM and from the
guest operating system. CPU times for VMM-visible processes are obtained using Ant-
farm. As in the detection phase, Lycosid uses a custom network utility that calls docu-
mented APIs to obtain and return per-process CPU time information.

Samples are obtained from the VMM and from the guest operating system at small
random intervals. In our prototype, samples are obtained about once per second on average.
A sample consists of a set of process identifiers and the CPU time used by each associated
process since the last measurement interval.

Figure 6.1 shows a notional data set used for identification purposes. Note that Ly-
cosid is unaware of the mapping from guest process IDs to the abstract internal process IDs
available within the VMM. No simple method of inferring thismapping currently exists.
Otherwise identification would consist of a simple set subtraction operation.

Over time, samples are collected and stored. Once adequate samples have been ob-
tained, a model can be fit and evaluated for hidden process identification. In our current
implementation, an initial model is fit oncemax(40, number of processes) sam-
ples has been obtained. Up to a maximum of 1000 samples are obtained for use in identifi-
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# VMM PID VMM proc runtime (s)
0x3a40 1.219
0xad3f 0.203
0xf003 0.491
...
# Guest PID Guest proc runtime (s)
30 1.103
495 0.422
933 0.001
...

Figure 6.1: Sample Identification Data. The figure shows a notional data set used to identify
hidden processes. There is no correlation between VMM and guest process IDs.

cation.

6.3.3 CPU Inflation

The key feature used by our identification algorithm is the CPU time consumed by each
process as observed from within the VMM and from within the guest operating system. It is
important to note that the identification technique, unlikethe detection technique, requires
that the hidden process actually runs. Lycosid can detect, but not identify a completely idle
hidden process.

Lycosid uses a new technique, calledCPU inflation, that allows it to influence the CPU
time used by a process. It is an intrusive technique used onlywhen the passive methods al-
ready described fail to reliably identify a hidden process.CPU inflation works by transpar-
ently placing patches in guest program code. By forcing processes to run more frequently
and more aggressively than they normally would, CPU inflation effectively increases the
resolving power of Lycosid’s identification techniques.

Details

When control is about to return from the VMM to a guest and CPU inflation is enabled,
Lycosid determines the address where execution will resumeand places a small patch con-
taining a tight loop at that location. The patch forces the associated process to fully utilize
its scheduling quantum until it is removed, effectively maximizing the amount of CPU time
used by a process.

Patches are only placed when control returns to user-mode. In our VMM environment,
nearly all VMM-to-guest transitions return to kernel-mode. Lycosid must therefore manu-
facture situations where the VMM returns to user-mode. It accomplishes this by arranging
for high-resolution timer interrupts to occur a short time after a return to kernel-mode. The
small extra interval allows the operating system to complete its current task (e.g., inter-
rupt processing) and return to user-mode where the guest is ultimately interrupted. The
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ideal length of the timer interval can be determined experimentally within the VMM by
repeatedly increasing the interval until most timer interrupts occur in user-mode. By lim-
iting patches to user-mode code, the normal guest operatingsystem scheduler is free to
de-schedule a patched process and the system remains stable.

In our implementation, after a patched process accumulatesa certain amount of CPU
time, chosen from a configurable, uniformly random interval, the patch is removed and
the process is allowed to continue its normal execution. Patches are installed repeatedly
according to a configurable patch schedule. Processes that are patched experience reduced
performance, but are still allowed to make progress. When CPU inflation is enabled, patch-
ing is applied across all running processes. Lycosid enables CPU inflation when the detec-
tion module indicates hiding but the identification module is unable to identify the hidden
processes.

6.4 Threat Model

Lycosid assumes few limitations on the abilities of an attacker. Our threat model allows
an adversary complete control of a virtual machine including full system administrator
privileges and the ability to observe and modify the operating system kernel. Indeed, hiding
processes often requires an attacker to possess these abilities because privileged utilities,
like ps on UNIX, operating system functions, likeEnumProcesses on Windows, and
key OS structures, like the process list, must be modified to implement malicious hiding.

The only limitation we place on the abilities of an attacker is that the VMM itself cannot
be compromised. Clearly, an attacker that has control of theVMM could interfere with the
functionality of Lycosid, which is also implemented at the VMM layer. We believe this
limitation is reasonable because the architectural interface provided by a VMM to a guest
operating system is relatively lean and, so far, has proven resilient to misbehaving and
malicious guest software. While researchers have shown howto use a VMM toimplement
malware [57, 79], to our knowledge there have been no verifiedcases where a commercial-
grade VMM has been compromised from outside by a guest.

6.4.1 Definition of Success

We consider it a success if Lycosid complicates successfully hiding malicious processes
sufficiently such that the cost of hiding is significantly increased. As process hiding be-
comes more complicated and dangerous, an attacker will typically select a different stealth
technique or forgo stealth altogether. We believe that Lycosid is a positive defensive step
that helps to gradually remove opportunities to be stealthyfrom attackers.

6.5 Evasion

We claim that Lycosid is less vulnerable to evasion by guest software than previously pre-
sented VMM-based security services. Demonstrating that one system is more secure than
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another in general is notoriously difficult (or impossible). In this section we describe our
rationale for the claim and why we believe implicit techniques can represent a net benefit
for VMM-level system defense.

If a VMM-based security service depends on the correctness of any guest-level com-
ponent, it is vulnerable to malicious corruption of that component [28]. For example, if
a VMM uses the integrity of the guest operating system process list to determine when
processes have been hidden, it is subject to evasion when a rootkit based on direct kernel
object manipulation corrupts the list. The rootkit leaves the list in a consistent, but incorrect
state. A VMM could use additional explicit information about other system components
(e.g., thread scheduling queues) to detect inconsistency.The same approach has been taken
by guest-level hiding detectors [78], for which there are, unfortunately, malicious work-
arounds [1]. In this case, the VMM has no detection advantageover a guest-level tool
because the information the VMM uses is fundamentally obtained from the guest.

Lycosid is based on implicitly obtained information about the observed guest virtual
machine. The information is derived from the basic behaviorof the guest operating system.
For example, Lycosid uses process information provided by Antfarm. Antfarm obtains its
process information by observing how a guest operating system manages its virtual address
spaces. To evade Antfarm, an attacker must modify how the operating system implements
a fundamental feature (virtual memory) and must do so in a waythat remains consistent
with its desired user-level view of processes.

In summary, Lycosid is perhaps best described as “differently” subject to gaming and
evasion on the part of compromised guests. We believe the effort required to deceive Ly-
cosid about ongoing process hiding while still maintaininga fully consistent outward ap-
pearance exceeds that of earlier VMM-based detectors. Thisis a feature of VMM-based
security services based on implicitly obtained information and raises the bar against mali-
cious process hiding.

6.6 Implementation

Lycosid is an extension to the Xen [27] VMM. The implementation of Lycosid is split
between the Xen hypervisor and user-level programs that runin Xen’s privileged control
virtual machine.

Antfarm [49] is one hypervisor component. It infers information about guest operat-
ing system processes by observing architectural events like page table updates and context
switches. Antfarm provides the basis for Lycosid’s hidden process detection and identifi-
cation. CPU inflation is also implemented as a core hypervisor feature. It interposes on
Xen’s virtual CPU scheduling and shadow page table handlingto selectively and safely
patch user-level program code. Lycosid adds approximately850 lines of C code to the
hypervisor.

The data collection and analysis components of Lycosid thatimplement its hidden pro-
cess detection and identification features are implementedas user-level programs running
in a Linux guest virtual machine. They communicate with the hypervisor components of
Lycosid via private VMM interfaces that are only available in Xen’s privileged control VM.
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The analysis components are written in python and total approximately 6000 lines of code
including statistics libraries and interfaces to libR.so [74], a statistical computing library.

By partitioning Lycosid, only necessary components are added to the hypervisor itself
allowing it to remain relatively small, which is a desirablesecurity property. The analy-
sis components are normal user mode programs which can fail and be restarted without
compromising the integrity of the whole system. They operate in polled batch mode which
removes them from any synchronous critical path and allows them to amortize the cost of
their communication with the VMM over many observations.

6.7 Evaluation

In this section we evaluate the performance of Lycosid’s process detection and identifica-
tion. We want to measure accuracy, timeliness, and runtime overhead. Accuracy is the
ability of Lycosid to correctly detect and identify hidden processes measured in terms of
false positives and false negatives. Our timeliness experiments measure how long it takes
Lycosid to come to its conclusions.

6.7.1 Experimental Environment

Lycosid is an extension to the Xen [27] VMM version 3.0.3-testing. We use the Linux ker-
nel version 2.6.16 in Xen’s privileged control virtual machine. We evaluate Lycosid using
two guest operating systems. The first is the retail version of Microsoft Windows 2000 Pro-
fessional. The second is a default installation of Redhat Enterprise Linux 4.3. Both guests
run unmodified using Xen’s full virtualization support enabled by the Intel virtual machine
extensions (VTx) [46]. Our experimental host has a 3.0 GHz Pentium D processor and
is configured with 4 GB of system memory. Both privileged and unprivileged virtual ma-
chines are allocated 512 MB of memory. The system contains a single Seagate 7200 RPM
Barracuda SATA hard disk drive.

6.7.2 Detection Evaluation

In Section 6.2 we noted that hidden process detection is complicated by multiple factors.
For example, measurements make by the VMM cannot be perfectly synchronized, implicit
information can be subtly inaccurate, and unrelated process creation and exit activity make
the measurements obtained by Lycosid unstable. The key variable affecting the ability of
Lycosid to detect hidden processes is how much unrelated process creation and exit activity
is occurring within the monitored virtual machine. Processcreation and exit activity tends
to inject variability into the quantities measured by Lycosid and can magnify other, latent
sources of variance inherent in the implicit measurement process like lag. To evaluate if
Lycosid can accurately detect a hidden process in spite of these concerns, we perform many
detection tests at various levels of process creation and exit activity.
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Figure 6.2:Process Count Difference Timelines.The figure shows a timeline of the difference
between the process list length obtained within the VMM and from the guest operating system for
various levels of process creation and exit activity. As process activity increases the variability in the
measured difference increases.
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Figure 6.3:Detection Timelines.The figure shows a timeline of the hypothesis test p-values used
in the detection process for each of several levels of process creation/exit activity. The p-values
approach the detection threshold over time.
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Detection with Interference

Our detection experiments evaluate the accuracy and timeliness of Lycosid when detecting
a single hidden process. When more than one process has been hidden, the difference be-
tween the VMM and user process lists is larger, making detection easier. Hence, detecting
a single hidden process is a worst case detection scenario.

The tests we perform explore how sensitive the detection techniques used by Lycosid are
to unrelated process creation and exit activity. To generate process activity we use a syn-
thetic process generator that spawns processes randomly. Harchol-Balter and Downey in-
dicate in their study [39] that process arrivals are burstier than Poisson. We use a pareto
distribution with shape parameterk = 1 for process inter-arrival times. We control the
average rate of process creation by varying the pareto location parameter. This distribution
leads to large process creation bursts which stress the detection techniques. The process
lifetime distribution described by Harchol-Balter and Downey applies to processes whose
lifetime exceeds one second. The arrival rates we use to stress Lycosid, however, are too
high to support such long lived processes. As a result, we choose process lifetimes from
the uniform distribution on the interval from 0–1 second, which allows our test system to
remain stable.

To hide processes under Windows, we use the toolfu.exe and its accompanying
device drivermsdirectx.sys [32]. This tool hides Windows processes by unlinking
the target process from the kernel process list.fu.exe is the most frequently encountered
stealth rootkit removed by Microsoft’s automated anti-malware tools [67]. Under Linux we
simulate hidden processes by filtering process informationin our guest process reporting
tool. Unlikefu.exe, most recent Linux rootkits hide themselves and manipulatevarious
logging and security features making them inconvenient in aresearch setting.

To motivate our use of statistical techniques, Figure 6.2 shows how the magnitude of
the difference between VMM process count and guest process count used by Lycosid varies
over time when the system is subjected to different levels ofprocess creation and exit
activity under Windows. As process activity increases fromone to an average of 100 pro-
cesses/second, the variance and amplitude of the signal representing the difference increase.
This characteristic of the detection problem suggests the use of statistical inference tech-
niques to probabilistically determine if hiding is occurring.

Figure 6.3 provides intuition about how the p-value resulting from the hypothesis test
used by Lycosid incrementally approaches the detection threshold for the cases depicted
in Figure 6.2. The test process is hidden immediately when each experiment begins. De-
tection occurs when the p-value drops belowα = 2 × 10−6, which is shown as a dashed
horizontal line. In each case an orderly progression towarddetection can be seen.

Figure 6.3 also hints that detection time increases with process activity. To quantify this
effect, time to detection was measured for our various process activity levels. The results
for Windows are shown in Figure 6.4 where the Y-axis reports the time to detection and the
X-axis indicates the process activity level. The values shown for each level are the average
of 10 trials. The standard deviation of detection time is shown using error bars. Both
detection time and its variance increase with process creation and exit activity. In the worst
measured cases, under severe process load, Lycosid requires several minutes to detect the
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Figure 6.4:Time to Detection. The figure shows how the time to detect a hidden process varies
for Windows as process creation and exit activity increasesfrom 0 processes/second to 100 pro-
cesses/second. The values shown are an average of 10 trials.Error bars show the standard deviation
of detection time.

hidden process. Since hidden processes are typically long lived (on the order of hours or
days) detection times of several minutes are not a real concern. In all of the experiments
shown, Lycosid correctly detects the hidden process.

An important output of a positive detection result is an estimate of the number of pro-
cesses that have been hidden. In the detection experiments described above, a single pro-
cess was hidden, so, in each case a good estimate will be closeto one. Figure 6.5 shows
a summary of the estimated number of hidden processes obtained when a single process
has been hidden under Windows. When process load is small to moderate, the estimated
number of hidden processes is good, leading to a correct inference of one hidden process.
Under extreme process creation and exit load, the estimatesbegin to experience larger er-
ror and greater variance. Under the most extreme (and most uncommon) load, 5 of 10
estimates are too high. This error may result in falsely identifying a non-hidden process
as hidden during the identification phase. However, our conservative p-value identification
threshold tends to reduce the chance of false positive identifications.

Portability

To explore the portability of Lycosid we repeat selected experiments performed for Win-
dows guests using Linux. The setup of the Linux experiments mirrors that for the Windows
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Figure 6.5:Estimating the Number of Hidden Process.The figure shows how the estimate of
the number of hidden processes obtained from the detection phase varies for Windows as process
creation and exit activity increases from 0 processes/second to 100 processes/second when a single
process has been hidden. The values shown are an average of 10trials. Error bars show the minimum
and maximum hidden process estimate observed.

guests,i.e., a single process is hidden with varying levels of process creation and exit in-
terference. Figure 6.6 and Figure 6.7 show detect time and hidden process estimates. As
in the Windows experiments, the values shown are averages of10 trials. Error bars show
the standard deviation of detection time and the minimum andmaximum hidden process
estimates observed. Under Linux, Lycosid correctly detects the hidden process in all cases.
In most cases, detection occurs within the first 60 second test interval. For extreme inter-
ference levels, average detection time grows moderately with significantly larger variation
between trials.

Under Linux, Lycosid estimates the number of hidden processes accurately except for
very large process creation and exit activity. Interestingly, the direction of the error ex-
perienced by Lycosid when observing Linux guests is opposite of that experienced under
Windows. Under Windows, Antfarm detects process creationbeforethe operating system
reports its creation,i.e., process creation lag is negative under Windows. The opposite
is true under Linux; Antfarm detects process creation afterthe OS reports it. High inter-
ference and load levels exacerbate the lag under both operating systems leading to larger
deviations, but in opposite directions. Detection is not hampered, however, as our test
statistic is not based on averages and does not depend on a specific distribution.
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Figure 6.6: Time to Detection. The figure shows how the time to detect a hidden process
varies for Linux as process creation and exit activity increases from 0 processes/second to 100 pro-
cesses/second. The values shown are an average of 10 trials.Error bars show the standard deviation
of detection time.

False Positives

In addition to reliable detection, it is important that Lycosid not report hidden processes
spuriously,i.e., that its false positive rate is small. Our statistical procedure predicts about
one false positive result per year. To explore this questionempirically, an experiment was
performed using a Windows guest in which no process was hidden in our most challenging
detection environment (100 process creations and exits/second). An 11 hour timeline from
the experiment is shown in Figure 6.8. As can be seen, no trendtoward false detection is
apparent and no false detections occur. The experiment doesnot prove the formal claim of
few false positives, but provides graphic empirical support.

Performance Overhead

Lycosid detection is meant to run continuously, so it is important that it impose minimal
runtime overhead. To evaluate the overhead of the detectionphase of Lycosid we compare
the runtimes for three Windows benchmarks when they are run under Lycosid in detection
mode and when run under an unmodified Xen hypervisor. Table 6.1 shows the results. Each
value is an average of five trials. We observed no significant variance between trials.

Lycosid primarily adds overhead to Xen’s shadow page table handling and virtual ad-
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Figure 6.7:Estimating the Number of Hidden Process.The figure shows how the estimate of the
number of hidden processes obtained from the detection phase varies for Linux as process creation
and exit activity increases from 0 processes/second to 100 processes/second when a single process
has been hidden. The values shown are an average of 10 trials.Error bars show the minimum and
maximum hidden process estimate observed.

dress space switching. The first two benchmarks spend nearlyall of their time performing
these two tasks and can be considered worst case scenarios for Lycosid’s detection perfor-
mance. TheCreateProcbenchmark creates and then destroys 1000 processes as quickly as
possible. TheMemAllocbenchmark allocates a 200 MB segment of memory, then touches
each page, causing many minor page faults and page table updates. MemAlloc is repeated
five times in each trial. Our prototype experiences 5.3% overhead for CreateProc and 3.6%
overhead for MemAlloc. The final benchmark is representative of a more common, but still
demanding, workload. It consists of compiling a large C program using gcc. In this case,
Lycosid adds a tiny 0.7% overhead.

6.7.3 Identification Evaluation

In this section we evaluate the ability of the identificationalgorithm described in Section 6.3
to identify which processes have been hidden once the detection component provides a pos-
itive hiding indicator. As in the evaluation of the detection phase, this evaluation focuses
on Lycosid’s accuracy and timeliness. In this case, accuracy is Lycosid’s ability to cor-
rectly identify hidden processes. Our timeliness experiments quantify how long it takes to
positively identify the correct hidden processes.
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Figure 6.8: Timeline without Hiding. The figure shows an approximately 11 hour detection
timeline when no processes are hidden and very aggressive process creation/exit activity (100 pro-
cesses/second) is present. The top graph shows the single-sided hypothesis test p-value. The bottom
graph shows the difference between the VMM and guest processcounts. No false detections occur.

Identification Among Many Running Processes

Our first experiment measures how Lycosid performs when forced to choose among vary-
ing numbers of active processes. In the experiments, a number of processes (from 1 to 50)
is created. Each of the test processes alternately runs and sleeps. The runtime is chosen
randomly from the range 0–500 ms using a uniform distribution. Similarly, a sleep interval
is chosen from the interval 0–1000 ms. One of the test processes is hidden using the same
techniques described in Section 6.7.2. Experiments were performed with 1, 10, 25, and 50
total processes. At each level, 10 identification trials were performed. Lycosid correctly
identifies the single hidden process in all cases. The time toidentify the hidden process
for both Windows and Linux guests is shown in Figure 6.9. The left hand bars show how
identification time and standard deviation increase as the number of active processes grows
when one process has been hidden. Detection time and variance grow because larger num-
bers of competing processes decrease the effective runtimeof the hidden process. Hence,
more samples are required to associate the runtime of the hidden process with the regres-
sion response variable in the face of measurement noise.

Hiding multiple processes is a common scenario when an attacker has several distinct
tasks to accomplish on a compromised system. For example, anattacker may leave behind
a network backdoor to enable remote control, a keylogger to steal passwords, and a network
sniffer to acquire the addresses and open ports for targets on the same network. Does iden-
tification become more difficult when more than one process has been hidden? Our second
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Figure 6.9:Time to Identification. The figure shows how the time to identify hidden processes
grows as the number of total active processes increases from1 to 50 processes for both Windows (up-
per graph) and Linux (lower graph). The values shown are an average of 10 trials. Lycosid identified
the correct hidden processes in all cases on both platforms.Error bars show the standard deviation
of identification time. The left bar corresponds to trials inwhich a single process was hidden. The
right bar shows results when 5 processes were hidden.
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Benchmark Lycosid Xen % Overhead
Runtime Runtime

CreateProc 6.551 s 6.222 s 5.3%
MemAlloc 6.803 s 6.565 s 3.6%
Compile 25.386 s 25.210 s 0.7%

Table 6.1:Detection Runtime Overhead.The table shows runtimes and overheads for three bench-
marks run under Lycosid and under a pristine version of Xen.

Average Average
Runtime (s) Sleep (s) % True ID % False ID % No ID

0.25 0.5 100% 0% 0%
0.025 0.5 90% 0% 10%

0.0025 0.5 0% 0% 100%
0.25 5.0 100% 0% 0%
0.25 50.0 0% 0% 100%

Table 6.2:Identification under Reduced Runtime.The table reports the identification accuracy of
Lycosid for a set of experiments in which a single hidden process must be identified among 10 active
processes when the hidden process runs exponentially less and less often. As the relative runtime
decreases, Lycosid’s ability to classify a process as hidden or benign is impaired.

experiment is similar to the first, but in this case 5 out of the10, 25, or 50 total processes
have been hidden. Again, Lycosid correctly identifies all hidden processes correctly for
both platforms. The right hand bars in Figure 6.9 show that the time to identification grows
for the multi-process case, but not significantly. Hence, Lycosid identification is accurate,
portable across guest operating systems and applicable in cases where multiple processes
have been hidden.

Identifying Mostly Idle Hidden Processes

Our next series of experiments demonstrates that a lower runtime bound exists beneath
which Lycosid cannot identify which of several processes ishidden. We then test the ability
of CPU inflation to overcome the issue.

We first perform two variants of an earlier experiment in which one process is hidden
among 10 total active processes under Windows. In each variant we change the runtime
of the hidden process along one of two axes. The first axis is busy time, i.e., the time
between sleep intervals. The second axis is run frequency,i.e., the length of the sleep
intervals. Reducing runtime along either axis decreases the signal-to-noise ratio between
hidden process CPU time and the measurement error experienced by Lycosid. The effect
is to make identification more challenging.

In the first set of experiments we exponentially reduce hidden process busy time by
factors of 10 and measure the ability of Lycosid to identify the hidden process. In the
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Average Average
Runtime (s) Sleep (s) % True ID % False ID % No ID

0.025 0.5 100% 0% 0%
0.0025 0.5 100% 0% 0%

0.00025 0.5 100% 0% 0%
0.025 5.0 100% 0% 0%
0.025 50.0 100% 0% 0%
0.025 500.0 100% 0% 0%
0.025 5000.0 20% 0% 80%

Table 6.3:Effect of CPU Inflation. The table shows how CPU inflation can help make hidden
processes that run relatively little identifiable by Lycosid. In the experiments, a single hidden process
must be identified among 10 active processes when the hidden process runs very little or infrequently.
CPU inflation forces the hidden process to run more, providing Lycosid with the information it needs
to make a positive identification. When average sleep time exceeds the maximum sample period,
Lycosid naturally fails to reliably identify all hidden processes.

second round of experiments we exponentially increase the sleep interval by factors of 10
and again evaluate if Lycosid can identify the hidden process. Table 6.2 lists the runtime
parameters for the hidden process in each experiment and thepercentage of 10 trials in
which Lycosid successfully identifies the single hidden process.

When the busy time is reduced from earlier experiments by a factor of 10 Lycosid cor-
rectly identifies the hidden processes in only 9 of 10 trials.After reducing the runtime
by a factor of 100, no process exceeds the identification threshold p-value before the im-
plementation sample limit of 1000 is reached; hence, no process is identified as hidden.
When the sleep time increases by a factor of 10 or 100, none of 10 trials produces a pos-
itive hidden process identification. Note that in no case do false positives occur,i.e., no
innocent processes are accused of being hidden. We see, however, that if a hidden process
runs for limited periods, even if it runs regularly, or if a hidden process runs infrequently,
Lycosid cannot identify it properly. Even in these cases, however, Lycosid correctly detects
that process hiding is taking place.

Table 6.3 shows the results of applying CPU inflation to identification tasks in which
the hidden process runs for short periods of time or rarely runs. Our evaluation shows that
CPU inflation enables Lycosid to identify processes whose average busy time is as low as
250µs. The table also shows that even when a hidden process runs relatively rarely (e.g.,
once every 500 seconds on average) CPU inflation makes the hidden process identifiable
by Lycosid. Finally, when the hidden process’s average sleep time exceeds the amount of
time over which Lycosid makes observations (once every 5000seconds vs. approximately
1000 seconds of observation time in this experiment) Lycosid is naturally unable to reliably
identify the hidden process. Our evaluation shows that CPU inflation is a powerful tool that
significantly extends the set of hidden processes that Lycosid can reliably identify.
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6.8 Attacks on Lycosid

Lycosid depends on an untrusted, user-level process view. One way to attack Lycosid is to
manipulate its user-level view.

Figure 6.10:Desynchronization Attack. The figure demonstrates the desynchronization attack
concept against Lycosid hidden process detection.

6.8.1 Desynchronization

The attack works bydesynchronizingthe untrusted, user-level view used by Lycosid and
the user-level view used by a defender to detect unexpected processes (e.g., Windows task
manager). In the desynchronization attack, an adversary hides the presence of a malicious
process from a defender, but doesn’t hide it from Lycosid. Inthis way Lycosid fails to
detect hiding because, from its perspective, no hiding takes place. A defender fails to
detect the hidden process because, from their perspective,the malicious process does not
exist. Figure 6.10 shows a conceptual example of the desynchronization attack.

To successfully mount this style of attack, an adversary must be able to reliably identify
process enumeration requests made on behalf of Lycosid. In the general case, this task
will be difficult because Lycosid uses the same standard APIsto enumerate processes as
any other process introspection tool likeps or the Windows task manager. Additionally,
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Lycosid is not limited to using a single tool with a fixed signature to obtain its user-level
process view, so an attacker cannot easily rely on a fixed signature database of known
Lycosid probe programs. In the same way, there are many different tools that can be used
by a defender to enumerate processes (e.g., ps, top, task manager pslist, tasklist). For the
sake of this discussion, we will assume an attacker can reliably identify and preferentially
handler any Lycosid process enumeration request.

6.8.2 Countermeasures

Lycosid is designed to be a part of a larger, comprehensive security monitoring framework.
Such a framework would include a process monitoring component that continuously ob-
serves the process list and generates an alert when unexpected or suspicious processes are
encountered. It is just such a security feature that an attacker hopes to deceive by hiding
their malicious processes. The desynchronization attack described above assumes that the
process view used by the process monitor component is different from the view used by
Lycosid. By integrating the process monitor and Lycosid so that they both use the same
user-level process view, the opportunity to desynchronizeis removed and the attack fails.

6.9 Assumptions

Lycosid makes certain assumptions about operating systemsand the attacker. Assumptions
made beyond the threat model stated in Section 6.4 are enumerated and discussed in this
section.
Whole-process hiding: Lycosid targets onlywhole-process hidingin which a malicious
user-level program is executed normally and the presence ofthat normal process is hidden,
using arbitrary techniques, from a defender. Other hiding techniques exist such as injecting
a thread into an already existing, long running process, hiding in plain sight by mimick-
ing the name and other characteristics of an existing, benign process, or dispensing with
a user-level process altogether by deploying completely operating system kernel-resident
malware. Lycosid, because it is based on user-level processinformation, does not detect
these less common, alternative hiding techniques.
Statistical inference assumptions:Lycosid uses hypothesis testing and linear regression
to detect and identify hidden processes. These techniques require certain assumptions to
produce reliable inferences. We use a non-parametric statistic during the Lycosid detec-
tion phase, so no distributional assumptions are required.Linear regression, used during
identification, assumes independence of errors, constant error variance, linearity, and nor-
mality of errors. Data analysis shows that the data used by Lycosid meets all regression
requirements except normality of errors.

Residuals obtained using the models created by Lycosid are not normal, but are quite
symmetric. Non-normality of errors affects the reliability of the p-value produced during
the hypothesis test of whether a model coefficient is zero. However, we do not directly
interpret these values as probabilities. They are only usedto order the coefficients during
model selection. Hence, we believe this slight deviation isjustified.
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6.10 Summary

Stealth rootkits that allow attackers to hide malicious processes are a current and alarm-
ing security issue. In this chapter we have described, implemented, and evaluated a novel
VMM-based hidden process detection and identification service called Lycosid. Lycosid dif-
fers from prior VMM-layer process hiding detectors becauseit uses noisy information
about internal guest operating system state and events available implicitly to a VMM. Ly-
cosid provides an accurate and reliable service in spite of its noisy inputs by using statistical
inference techniques like hypothesis testing and regression to trade detection and identifi-
cation time for accuracy.

In our evaluation, Lycosid correctly detected process hiding in each of hundreds of
trials. Identification is similarly robust except in cases where a hidden process does not
run long enough or frequently enough. To overcome this limitation, we have introduced
CPU inflation to force processes into an execution regime in which a hidden process can
be positively identified.

The performance-critical portions of Lycosid are based on Antfarm and exhibit similar
runtime overheads. In a worst-case performance scenario, Lycosid’s detection phase ex-
hibits less than 6% overhead. For a more typical, process-intensive workload, Lycosid im-
poses a mere 0.7% penalty.

An interesting consequence of our use of implicit information is that Lycosid is likely
less susceptible to evasion attacks on the part of a compromised guest OS. To evade Ly-
cosid, an attacker must modulate externally visible behavior in very specific ways, and
achieve their hiding goals at the same time. This complicates hiding and may drive at-
tackers into more difficult, error-prone, or risky hiding scenarios like thread-injection or
kernel-resident malware.

Our implementation of Lycosid demonstrates that implicit operating system informa-
tion can be effectively used at the VMM-level even when the cost of being wrong is high
as in a security monitoring service.
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Chapter 7

Related Work

The work described in this dissertation focuses on developing, implementing, and evalu-
ating techniques that allow a VMM to implicitly obtain and exploit information about im-
portant software constructs within the guest operating systems running above it. We have
benefited from previous research efforts that have exploredhow to obtain and use infor-
mation across layer boundaries in hierarchical layered systems. In this chapter we survey
related work and describe how our own research fits into the context that it provides.

7.1 Gray-box systems

The termgray-box[5] refers to any technique that uses observation and measurement to
obtain information about software or hardware across a system layer boundary. The system
call interface that separates an operating system from userapplications is an example of
such a boundary. A system can use gray-box information to optimize its own performance
or to control the behavior of cross-layer components.

For example, gray-box information about operating system memory management can
be exploited by a user application to reorder its disk accesses to prefer blocks already
resident in the OS buffer cache [13] or to carefully manage its memory allocation to avoid
paging [5]. Overriding the default file system layout schemeto optimize for cross-directory
access patterns in a web server [69] is an example of exertinginfluence across a system
boundary using gray-box techniques when no explicit control interface exists.

Gray-box information has also proven itself useful to components logically below the
operating system. For example, Sivathanuet al., have shown that file system semantic in-
formation, such as how disk blocks are grouped to form files ormetadata, and whether disk
blocks are live or dead in the file system, can be used to createRAID storage systems that
degrade gracefully in the face of multiple failures [86] andto reduce downtime resulting
from failure by recovering only live blocks [85]. Bairavasundaramet al., use gray-box
knowledge of file systems within a storage device to infer which blocks are resident in
a client buffer cache [7]. Gray-box information about client cache contents can be used
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to implement an effective exclusive caching component [104] within the storage system
without modifying the storage interface.

The techniques described in this dissertation focus on inferring information across a
different system boundary, namely the virtual architecture interface that separates a VMM
from its guest operating systems. Like gray-box storage systems, our modified VMM re-
sides below the operating system and bases its inferences oninterpreting the stream of
requests supplied by the OS and user applications. The typesof information available to a
VMM are considerably richer than that available to a storagesystem and include processor
interrupts, virtual memory configuration, memory contents, and I/O requests. Richer infor-
mation enables additional applications not feasible or appropriate within a storage device.

7.2 Guest Information in a VMM

Other researchers have recognized the value of OS-level information in a VMM. We cate-
gorize this body of work by the method used to obtain information about the guest OS.

7.2.1 Paravirtualization and Explicit Interfaces

One straightforward and widely used method to obtain information about the internal state
of a guest operating system is to create new interfaces that provide the information di-
rectly. Paravirtualization [27, 103] is a virtualization technique that replaces expensive,
implicit guest requests like page table updates and I/O requests [31] by a virtualization-
aware interface similar to a system call. The primary goal ofparavirtualization is to reduce
virtualization overhead. Overhead is typically reduced bystreamlining guest-to-VMM in-
terfaces and via batching, which allows a guest to amortize the cost of VMM invocation
across many requests.

The goal of our work is to transparently enable useful VMM-level services. In many
cases our goal requires information about high-level guestOS abstractions like processes
and I/O caches. Paravirtual interfaces were not designed with this goal in mind and do
not include the ability for a guest OS to inform a VMM about itshigh-level internal state
or events. While explicit interfaces would greatly simplify the task of obtaining guest
information within a VMM, such interfaces do not exist today. Porting operating systems
to take advantage of new explicit interfaces requires significant engineering effort. Creating
standard, multi-vendor interfaces requires immense political effort. These costs will likely
hamper the creation and adoption of standard, multi-OS VMM interfaces.

7.2.2 Explicit Information

Several recent projects obtain guest level information by embedding details about the
version-specific memory layout and OS-specific data structure semantics of a guest into
a VMM [35, 52, 56, 72, 68]. Required implementation details can sometimes be automat-
ically extracted from debugging symbols and libraries [35], but often detailed source or
binary analysis is needed to obtain them [52, 72, 68]. Systems that take this approach read
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kernel data structures, like the process list, program headers, and system call tables, di-
rectly. Some use information about the location and semantics of key kernel functions like
fork, exec, mmap, or try to swap out to stay informed of important guest events.
Reading and using data drawn directly from guest kernel memory ties a VMM to specific
guest OS vendors and versions, and creates an implicit relationship of trust between the
VMM and the guest. Implicit techniques, like those described in this dissertation, help to
combat these drawbacks at the expense of more limited and slightly less reliable informa-
tion.

7.2.3 Implicit Information

Other attempts to obtain implicit information about guest operating systems have mostly
been confined to determining how a guest utilizes the virtualresources it has been allo-
cated. Disco [12], for example, determines when a guest is not using is CPU allocation by
detecting when it enters a low-power processor mode. VMWare’s ESX Server [101] uses
page sampling to determine the utilization of physical memory assigned to each of its vir-
tual machines to aid in page reallocation. Work by Uhliget al. [98] introduces techniques
to manage processor resources more intelligently in a multiprocessor VMM environment.
It is most similar to our own work because it infers the state of a guestsoftwareconstruct.
Specifically, they deduce when no kernel locks are held by observing when the guest OS
is executing in user versus kernel mode. The techniques we describe target different, more
complex software abstractions like processes and disk caches. Implicit techniques can be
easily composed to form more comprehensive solutions.

7.3 Statistical Techniques

Lycosid uses statistical techniques like hypothesis testing and regression to transform un-
certain, implicitly obtained input information into reliable intelligence that can be confi-
dently acted upon. Many other systems employ statistical techniques to infer behavior,
to provide input to control algorithms, and to implement security classifiers. For exam-
ple, MS Manners [26] uses hypothesis testing to regulate thescheduling of low-priority
background processes and to reduce their performance impact on high priority foreground
jobs. Junget al. [54] use sequential hypothesis techniques to probabilistically determine
whether remote hosts are conducting port scanning by using sequential hypothesis testing
techniques [100]. Bayesian spam filters [80] and statistical anomaly detection systems [30]
use statistical learning techniques to build a model of normal behavior, then compare that
model to arriving email, network packets, or other measurable system features to determine
if they are abnormal.

7.4 Case Studies

To demonstrate the practical value of guest OS information within a VMM we have de-
veloped several applications as case studies. We drew thesecase studies from existing
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applications implemented using different techniques or ina different system layer. In this
section we briefly discuss the origin of some of our case studies and how our VMM-based
variations compare with previous implementations.

7.4.1 Working Set Size

In a virtualized environment, knowing theworking set size[24, 25] of a virtual machine is
useful for allocating the appropriate amount of memory to it. When migrating VMs [19, 82]
in a distributed computing environment [29, 106] working set size information enables
the job scheduler to intelligently select a new host with an adequate amount of available
memory.

Techniques for estimating the working set size of a virtual machine have been explored
by Waldspurger and are part of the VMware ESX Server product [101]. However, the ESX
Server technique can only determine the working set size forvirtual machines that are using
less than their full allocation. Our working set size estimator complements the ESX Server
technique by directly supporting situations where a virtual machine needs more memory,
i.e., it is thrashing.

7.4.2 Secondary-level Caching

Knowledge of the contents of the OS buffer cache is useful in avirtualized environment
when implementing an effectivesecondary-level cache. For example, when multiple VMs
run on the same machine, the VMM can manage a shared secondarycache in its own mem-
ory, increasing the utilization of memory when the VMs sharepages [12]. Additionally,
when the hosted OS is a legacy system that cannot address a large amount of memory, a
secondary cache can enable the legacy OS to exceed its natural addressing limits. Finally,
the VMM can explicitly communicate with a remote storage server cache, informing it of
which pages are currently cached within each VM [104].

Designing a secondary cache management policy is non-trivial. Secondary storage
caches exhibit less reference locality than client caches because the reference stream is
filtered through the client cache [66]. This, plus the fact that secondary storage caches
are often about the same size as client caches has led to innovations in cachereplacement
policies [108] and in cacheplacementpolicies [104]. We have implemented one promis-
ing placement policy called “eviction-based placement” which inserts blocks into the sec-
ondary cache only when they have been evicted from the clientcache. This approach
tends to make the caches overlap less and leads to more effective secondary cache utiliza-
tion [17, 104]. Eviction-based placement is similar to micro-architectural victim caches in
the processor cache hierarchy [53].

Passive eviction detection in support of exclusive secondary caching has been explored
to some extent by storage system researchers. For example, X-RAY [7] uses file system
semantic information (e.g., which storage blocks contain inodes) to snoop on updates toa
file’s accessed time field. Knowing which files have been recently accessed allows X-RAY
to build an approximate model of a client’s cache. However, X-RAY is somewhat limited
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in its inferences because the storage system only has accessto the I/O block stream outside
the OS.

Other exclusive caching work has assumed that one has accessto more OS information;
for example, Chenet al. [16, 17] perform their inferencing within a pseudo-device driver
that has access to the addresses of the memory pages that are being read and written. Thus,
they are able to infer that an eviction has occurred when a memory page that is storing disk
data is reused for other disk data.

Our approach to secondary disk caching is most similar to that of Chenet al., but uses
additional information available to a VMM to improve its ability to accurately infer cache
events. The key differences include: handling unified buffer caches and virtual memory
systems, recognizing when blocks on disk are free to avoid false evictions, and taking file
system journaling into account to avoid disk block aliasing.

7.4.3 Hidden Process Detection

Cross-view validation for hiding detection has been studied and variously implemented in
user applications [22], within the operating system kernel[102], inside a virtual machine
monitor [35], and using dedicated coprocessor hardware [72]. The key aspect of cross-view
validation that differentiates these efforts is the mechanism used to obtain the low-level,
trusted view of the resource of interest.

Garfinkel et al., have shown the value of VMM-level cross-view validation for de-
tecting hidden processes with VMI [35]. VMI uses explicit operating system debugging
information like the memory addresses of variables and the layout and semantics of com-
pound structures to locate and interpret private kernel data types at runtime. This insight
into operating system data structures is used to obtain a trusted view of the guest operating
system process list. Lycosid extends the VMI concept by using only implicitly obtained
guest information within a VMM.
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Chapter 8

Conclusion

Virtualization technology is rapidly penetrating commodity computing systems. Key mi-
croprocessor vendors like Intel, AMD, and IBM are supplyinghardware virtualization as-
sistance that promises to vastly reduce the overheads imposed by virtualization. VMM
implementations like VMware and the POWER5 hypervisor are mature and robust. Lead-
ing operating systems like Microsoft Windows, Linux, Solaris, and i5/OS already include
or will soon include virtualization as a core feature.

In a system that includes a virtualization layer, the VMM is anatural place to implement
certain key features. For example, only the VMM has the necessary insight and control to
globally optimize resource allocation and scheduling, making these tasks a good match for
VMM-level implementation. VMM-based security services are another example; they can
monitor vulnerable, network-facing guest operating systems and applications from behind
the relative safety of the virtual machine interface.

We, and other researchers, have shown that many potential VMM-layer innovations
require information about high-level guest software abstractions–information that a VMM
does not intrinsically have. This dissertation has explored a portion of the VMM-service
design space that has been mostly ignored. We have shown how aVMM can independently
and implicitly obtain information about key guest OS software abstractions by observing
how the guest interacts with virtual hardware resources like the MMU and storage devices.
Our techniques have proven to be accurate, low overhead, andportable across multiple
guest operating systems.

8.1 Lessons Learned

In the process of developing our techniques and creating ourprototype implementations
we have been able to make several general observations aboutbuilding services within a
VMM.
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OS responsibilities and available architectural featuresconstrain guest
implementations

General purpose operating systems like Windows and Linux all share certain key constructs
and responsibilities. For example, all support the basic OSabstractions like processes,
threads, address spaces, and persistent data storage in filesystems. All provide certain
characteristics like process memory isolation, starvation-free scheduling, and basic virtual
memory semantics. An OS must implement these features usingthe mechanisms provided
by the underlying hardware architecture, such as the memorymanagement unit, timers,
memory, and disk devices. The constraints imposed by commonarchitectural features and
OS requirements lead to generic, externally observable patterns in the behavior of guest
operating systems that a VMM can observe and use.

In general, the less implementation flexibility provided bythe architecture to the OS,
the more constrained and easy to interpret the behaviors of the OS will be. For example,
the hardware-defined page tables of the x86 architecture provide a more concrete basis for
address space tracking than the software managed TLB provided by SPARC.

Reuse is a good proxy for release

The inference techniques described in this dissertation are often based on detecting when
a resource is allocated and deallocated. For example, process creation and exit correspond
to address space allocation and deallocation. We have foundthat detecting allocation is
often quite simple. Detecting deallocation is often more difficult. The principle that reuse
implies release has been helpful in detecting deallocationin several cases.

Time is of the Essence

In the process of building VMM-based services, we have foundthatwhena certain guest
OS event has occurred is important. This stands in contrast to much previous gray-box
research which has focused on discovering static configuration parameters (e.g., the cache
replacement policy) or the current state of a resource (e.g., whether a file block is cached).
Invariably, the time at which a VMM observes that an event hasoccurred using implicit
techniques is different from the time the event occurred as defined by the guest OS. Lag
between actual and inferred events places practical limitson how implicit information can
be used. We have seen that delayed, but correct, process and cache information can be
useless, while short term errors cause no harm or even help certain applications. In general,
minimizing lag is just as or more important than rigidly reproducing the same set of events
as experienced by a guest OS.

Hardware that hides, hurts

Recent hardware-assisted virtualization [37] has the potential to significantly reduce the
overhead imposed by a VMM. The current implementation of hardware-assisted virtual-
ization for the x86 architecture [3, 46] can, in some cases, hide information about certain
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events, like page faults and page table updates, from a VMM. This side effect inadvertently
complicates some powerful software-based optimization opportunities, including some dis-
cussed in this dissertation. Other research [2] shows that current hardware virtualization
can interfere with important features of a sophisticated software VMM and can ultimately
reduce overall performance. Hence, hardware virtualization features must be carefully de-
signed so that they do not unintentionally reduce the flexibility and power of a software
VMM to employ code and workload-specific optimizations.

Portability does not imply guest-independence

We have built portable VMM-based services; the same implementation can be applied suc-
cessfully to very different guest operating systems like Windows and Linux. The concrete
results obtained under each guest, however, can vary substantially. For example, Linux
kernel version 2.6 exhibits false positive process events not suffered by Windows or Linux
2.4. Creation lag under Linux 2.4 can be three orders of magnitude larger than under Linux
2.6. An application wishing to utilize implicit information within a VMM must take such
platform variations into account.

Online statistical inference helps manage uncertainty

Variation and uncertainty in the form of false positive events and lag are a recurring theme
in this dissertation. Elementary statistical inference techniques, like hypothesis testing, that
can be applied continuously and automatically within a VMM can transform uncertainty
due to variance into inferences about a guest that can be usedwith quantifiably high levels
of confidence.

8.2 Future Work

The space of possible applications implemented at the VMM layer or with VMM assistance
is large and has only begun to be explored. In this section we discuss some possible fu-
ture avenues of inquiry relating to OS-aware services within a VMM beginning with tasks
closely related to those we have already discussed and then wandering further afield.

8.2.1 Targeting Other Guest Abstractions

There are many other important guest operating system abstractions like threads, users, and
network protocols that we have not considered in our work, but which could be useful when
implementing services in a VMM. In the same way we have extended a VMM to observe
the MMU and disk devices to infer information about OS processes and caches, a VMM
can observe other virtual devices, like the microprocessorand network interface cards, to
inform itself about additional OS abstractions.
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8.2.2 Resource Association

We were able to show in Section 4.3 how a VMM can reliably associate disk read requests
with their originating process. This is just one part of a much larger, general problem of log-
ically connecting asynchronous guest OS events (like I/O requests) to implicitly observed
entities (like processes, users, and threads). Our existing approach exploits the direction
of data movement through memory toward a user process to identify its destination and
make an association. The same technique cannot be used when data moves in the opposite
direction. A new approach is required.

Other asynchronous requests like network sends and receives are also difficult to asso-
ciate with a specific process from within a VMM. Does the typical approach to network
protocol processing employed by most operating systems provide opportunities for effi-
ciently associating network packets with a sending or receiving process? Accurate and
early network packet association can be used, for example, to selectively implement novel
VMM-based security features like process-specific filtering to protect applications from
exploits targeting known vulnerabilities and taint tracking [41] to prevent network-based
code injection attacks.

8.2.3 Observing Memory Structure

There are other sources of information about guest operating systems than the stream of
service requests and fault notifications that we use in our work. One that seems particularly
interesting is the content and structure of guest OS memory.An operating system’s memory
image is a collection of dynamic, interconnected structures. The organization and content
of these structures can reveal a great deal about the currentstate of the guest OS. A VMM
may be able to discover the location and the semantics of someof these structures on its
own, without resorting to external information sources like debugging symbols.

For example, an OS process is typically represented in memory by a compound memory
structure, often referred to as theprocess control block. The complete set of processes is
usually represented by a dynamic, pointer-based collection of process control blocks like
a list or a tree. By employing on-demand emulation [41] to selectively observe which
memory addresses are accessed temporally close to process-related architectural events,
like address space context switch, a VMM can identify many process management-related
memory locations.

Compound memory structures are often accessed using base plus offset variants of load
and store instructions which can be parsed to identify the base pointer of a structure and the
offsets of commonly used individual fields. Each field accessed within a structure also has
an implicit data type consisting of the size, range, and roleof the memory operand (e.g.,
small integer, bit vector, pointer). By combining field offsets and data types, an implicit
compound type for a structure can be created and used to identify other structures of the
same type in memory. By analyzing the data types of individual fields and how structures
of similar type point to each other in memory it may be possible for a VMM to infer the
organization and partial semantics of important dynamic data structures like the guest OS
process list.
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Chilimbi et al. [18], have employed similar techniques to discover invariants in appli-
cation heap memory like the average pointer in-degree and out-degree of heap allocated
data structures. They then use the invariants to discover bugs in pointer manipulating code.
Petroniet al. [68], scan kernel memory from within a PCI device for violations of pre-
defined correctness invariants using explicit, user-supplied kernel memory layout informa-
tion. Using the approach described above, these techniquescould be extended to allow a
VMM to identify kernel data structures and check security invariants without requiring ex-
plicit implementation information. For example, a self-contained and independent VMM
service could ensure that all active processes are linked into the system process list.

8.3 Closing Remarks

In this dissertation we have focused on implicitly obtaining and exploiting information
about certain guest operating system abstractions. We assumed as our starting point the
basic organization and division of labor between the VMM andguest operating systems that
exist today. We have argued that the broad deployment of system virtualization suggests
that certain OS features should migrate from the OS into the VMM. Our approach has
been to implement these OS-like features within a VMM without changing the guest OS
by using implicit information.

Operating systems and VMMs will change over time. The question of if and how
the relationship between the operating system and the VMM should change is important.
Which features currently implemented in the operating system would make more sense
implemented within a VMM? How should the interfaces betweenthe VMM and the OS
change to facilitate communication without compromising the key desirable features of
each?

The inclusion of a system virtualization layer as a core component in most system-level
software represents an exciting and fundamental evolution. Finding an acceptable balance
between isolation and cooperation among diverse operatingsystems and VMMs will re-
quire significant technical and political innovation. Until the perfect balance is discovered
and adopted, there will be room for implicit methods like those we have described here.
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