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Abstract
Cloud-based file synchronization services, such as Drop-

box, have never been more popular. They provide excel-

lent reliability and durability in their server-side storage,

and can provide a consistent view of their synchronized

files across multiple clients. However, the loose coupling

of these services and the local file system may, in some

cases, turn these benefits into drawbacks. In this paper,

we show that these services can silently propagate both

local data corruption and the results of inconsistent crash

recovery, and cannot guarantee that the data they store re-

flects the actual state of the disk. We propose techniques

to prevent and recover from these problems by reducing

the separation between local file systems and synchro-

nization clients, providing clients with deeper knowledge

of file system activity and allowing the file system to take

advantage of the correct data stored remotely.

1 Introduction
Cloud-based file synchronization services have exploded

in popularity in recent years. Dropbox is foremost among

them, having surpassed 100 million users as of November

2012 [5], and services like Google Drive and Microsoft

SkyDrive are also popular.

File synchronization services occupy a unique design

point between distributed file systems, like NFS or Coda,

and file backup services, like Mozy or Data Domain. Like

the former, file synchronization services provide a means

for users to access their files on any machine connected to

the service. Like the latter, however, file synchronization

services propagate local changes asynchronously, and of-

ten provide a means to restore previous versions of files.

Furthermore, they are only loosely integrated with the file

system, allowing them to be portable across a wide range

of devices.

While the automatic propagation of files as they are

modified is no doubt key to these services’ success, the

perceived reliability and consistency they provide is also

instrumental to their appeal. The Dropbox tour goes as far

as to state that “none of your stuff will ever be lost” [1].

Unfortunately, the loose coupling of cloud synchroniza-

tion services with the underlying file system gives the lie

to this claim. While the data stored remotely is generally

robust, local client software is unable to distinguish be-

tween deliberate modifications and unintentional errors,

potentially causing corruption to automatically propagate

to all machines associated with a user. Thus, despite the

presence of multiple redundant copies, synchronization

destroys the user’s data.

In this paper, we outline the underpinnings for *-Box1

(pronounced “star-box”), our project to analyze this phe-

nomenon in detail and correct it. We first examine how

these services can silently propagate data corruption and

then how they cannot guarantee data consistency with the

underlying file system after a crash. For both issues, we

investigate how the separation of the client from the file

system causes these problems, and then propose ways to

better integrate the two components to allow both preven-

tion and recovery. Due to its dominant market share, we

focus primarily on Dropbox, but our proposals are equally

applicable to similar services. We conclude with a dis-

cussion of the current status of the *-Box project and our

future work on it.

2 Background
A cloud-based file synchronization service generally con-

sists of two parts: server software that stores user data

and a client-side daemon that actively synchronizes one

or more directories with the server. The server software is

usually managed by the service provider, such as Dropbox

or Google, though it may run on a public cloud, like Ama-

zon’s EC2. While there are a wide variety of design and

implementation choices on the server side, the operation

of the server is opaque to the user, and service providers

almost never publish technical details. Thus, we focus our

attention on the client-side daemon.

Though clients are usually closed-source, we can ob-

serve their behavior on the user’s computer and infer

many of their design decisions. As an example, we now

use Dropbox to examine the two primary operations of a

synchronization service: detection and transmission.

Detection: The client must be able to automatically de-

tect changes, both remotely at the server and in the lo-

cal file system. Dropbox uses push-based notifications to

detect remote changes [8], while relying on a file-system

monitoring service, such as Linux’s inotify, to detect lo-

cal changes. To detect changes that occur while it is off-

line, Dropbox keeps detailed metadata for each file, in-

1“*” is a wild-card character that can be replaced with many desired

properties such as reliable, consistent, etc.
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cluding last modification and attribute change times, in a

local database. When booting, Dropbox scans its moni-

tored files, uploading any whose metadata (other than ac-

cess time) has changed in any way from their last known

value. Thus, Dropbox will upload any file with a different

modification time than the one it has recorded, even if the

new time precedes the recorded one.

Transmission: When sending changed files to and

from the server, Dropbox uses deduplication to reduce

network traffic, calculating a SHA-1 hash for each 4 MB

chunk in the file. It then sends the hash for that chunk

to the destination first; if the chunk is present, it is not

sent. For partially modified chunks, Dropbox uses rsync

to transmit only the changed portions. Finally, to achieve

atomicity at the client, Dropbox downloads chunks of files

to a staging area, assembles them, and then renames them

to their final location.

3 Data Reliability
One might think that a local file system synchronized with

Dropbox will provide better data reliability, due to the re-

dundant copies of data on the cloud and the excellent pro-

tection offered by the service provider. However, focusing

on the back-end risks neglecting the other part of the sys-

tem: the local file system, which is especially crucial in

Dropbox’s case.

Because the Dropbox client has only minimal knowl-

edge of file system activity, it may propagate undetected

data corruption to the server, which will then pollute the

copies on all machines connected to the account. While

Dropbox allows the user to revert to a clean copy, it only

keeps revisions for thirty days ordinarily; thus, if the user

fails to notice the corruption, the data could be perma-

nently lost. Even if the file system detects corruption, the

user still has to manually revert the file to the clean copy

in Dropbox, a process that should ideally be automated.

In this section, we first introduce the problem of corrup-

tion propagation in Dropbox-like file synchronization ser-

vices. Then we discuss approaches to prevent such prop-

agation and recover from the corruption.

3.1 The Corruption Problem
Data corruption is not uncommon and can occur due

to defects on disk media, bugs in drive firmware and

disk controllers, and even software bugs in operating sys-

tems [3, 12]. Without a file synchronization service, the

corruption remains local. However, a synchronization ser-

vice running atop a local file system may propagate cor-

ruption to every copy synchronized with the service.

To determine how a disk corruption could be propa-

gated to the cloud, we perform a series of fault injec-

tion experiments with a variety of file synchronization ser-

vices, as listed in Table 1. We first inject disk corruption to

a block in a file that is synchronized with the cloud. Then

Data Metadata

FS Service write mtime ctime atime

ext4

(Linux)

Dropbox × × ×

ownCloud × ×

FileRock × ×

HFS+

(Mac

OS X)

Dropbox × ×

ownCloud × ×

GoogleDrive × ×

SugarSync ×

Syncplicity × ×

Table 1: Corruption Propagation. “×”: corrupt data

uploaded to server. Blank: no changes detected, so corruption

is not uploaded.

we perform several test workloads and see if the corrupted

block is propagated to the cloud.

Our test workloads fall into two categories: metadata-

only operations, which do not alter file data, and data op-

erations, which change the uncorrupted portion of the file.

For metadata, we focus on the timestamps stored in the

inode: access time (touch -a), modification time (touch

-m) and change time (chown and chmod). For data oper-

ations, we execute regular appends and in-place updates

both close to and far from the corrupted block. These data

operations always update the modification time of the file.

We perform the experiments on ext4 [9] in Linux (ker-

nel 3.6.11) and HFS+ [2] in Mac OS X (10.5 Lion). The

results are shown in Table 1. We can see that the cor-

ruption gets propagated to the cloud whenever the client

detects a change to the file. Clients also propagate cor-

ruption when the modification time is changed without

writing the file; they detect the changes in the file (due

to the injected corruption) and upload the corrupted ver-

sion. SugarSync is an exception, waiting until the file’s

contents change or until it restarts to upload the file.

3.2 Solution Space
We believe that the key to solving this problem is to dis-

tinguish legitimate changes (actual updates) from “unau-

thorized” changes (corruption). We investigate two differ-

ent solutions: data checksumming and fine-grained file-

system monitoring.

3.2.1 Data Checksumming

Usually, detecting corruption requires checksums from

the file system, and recovering from corruption requires

redundant copies. Only a few file systems, such as ZFS [4]

and btrfs [11], provide such detection and recovery mech-

anisms, while many other popular file systems, such as

ext4, omit them. Therefore, we can either use ZFS or btrfs

directly, or enhance file systems such as ext4 with data

block checksumming. We should note that ZFS, as well

as btrfs, can only detect corruption on disk, not in mem-

ory. More aggressive checksumming techniques, such as
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page-cache level checksums, are required to detect mem-

ory corruption [13, 14].

Recovering from detected corruption usually requires

additional space or extra disks to store redundant copies.

This is often not desired or affordable by regular users.

However, in this case, the Dropbox server already pro-

vides these copies; we simply need to enable the file sys-

tem to take advantage of them.

3.2.2 Fine-grained File-System Monitoring

If checksumming is not an option, we can still prevent

the propagation of corrupted data by implementing a

more fine-grained file-system monitoring mechanism and

adapting the client to use it. For example, Linux’s inotify

framework only provides file-level monitoring and cannot

tell which part of a file has been modified. When a Drop-

box client detects a change, it uses the rsync algorithm to

determine which parts of the file were modified, upload-

ing any deltas to the cloud. Rsync usually reads the whole

file from disk and is unable to distinguish corruption from

legitimate changes. Therefore, adding the range of the up-

date to each modify event will allow the client to upload

only the data in this range, thus preventing the corruption

on disk from being uploaded to the server.

The client can then detect corruption by checksumming

the file and verifying it against the remote copy. This

method will not, however, detect corruption that was read

by the application and written out without being modified,

as might occur with an insertion in a document or when

a file is written to a temporary location and then renamed

over the original file.

4 Crash Consistency
While cloud back-end storage is often only eventually

consistent, as in Dynamo [6] and similar systems, a sub-

stantial body of work exists on masking that inconsistency

from the user. These techniques provide a solid foun-

dation for securing user data in the cloud but fail to ad-

dress inconsistencies that may arise at the client, espe-

cially those resulting from crash recovery. While Dropbox

could provide substantial assistance in recovering from

crashes, it often does not. At best, it preserves the sta-

tus quo; at worst, it actively propagates inconsistent data

resulting from partial recovery. Dropbox does so because

it lacks a full view of the events that occur in its monitored

directories. This leads to a broader, application-level in-

consistency problem, in which Dropbox is unable to guar-

antee that its remote contents reflect the complete state of

the local disk at any point in time.

In this section, we first discuss the twin problems

of crash consistency and application-level inconsistency

present in Dropbox and similar synchronization services.

We then analyze the solution space and the trade-offs in

performance and freshness that it contains.

4.1 The Consistency Problem

The consistency problems in Dropbox and similar ser-

vices primarily manifest themselves when crashes oc-

cur. The first problem, that of crash recovery, arises

from Dropbox’s interactions with the underlying file sys-

tem recovery mechanisms. The second, an inconsistent

application-level image of the underlying file system, will

affect a wider variety of file systems and must be ad-

dressed in order for Dropbox to provide complete recov-

ery in the event of catastrophic failure, like that of a disk.

As the crash recovery problem is the more specific of the

two, we analyze it first; from there, we examine broader

application-level inconsistency.

4.1.1 Crash Recovery

Recovering gracefully from crashes has been a key goal

of file system developers since the introduction of fsck,

if not earlier [10]. Today, two primary mechanisms ex-

ist for achieving this: copy-on-write, used in btrfs and

ZFS, and journaling, used in Linux’s ext4 and Mac OS

X’s HFS+, among others. As their name implies, copy-

on-write (COW) file systems never overwrite data when

issuing an update, ensuring they can roll back to a con-

sistent version of the file system after a crash. In con-

trast, journaling file systems issue their writes to a log (or

journal) before committing them to a fixed location, al-

lowing for replay or rollback, as appropriate. If all data

and metadata are written to the journal, journaling will

provide nearly the same consistency as COW. However,

because doing so requires all blocks to be written twice,

it is more common to only journal metadata and simply

ensure that the data blocks are written first, as in ext4’s

ordered mode. This method provides complete metadata

consistency but may result in data reflecting only part of

an update.

To explore how Dropbox deals with crash recovery in

each type of file system, we initialize Dropbox with a sin-

gle file present on disk and in the cloud at version v0. We

then write a new version, v1, and inject a crash. As the

system recovers from the crash, we observe Dropbox’s be-

havior. We perform this experiment on ZFS and on ext4

using ordered mode (without delayed allocation).

In ZFS, Dropbox always synchronizes the cloud to the

state on the disk, even if v0 is on disk and v1 is in the

cloud. This case occurs if Dropbox synchronizes v1 be-

fore ZFS commits it to disk. When ZFS reboots, it still

has the original version, v0, which contains the old mod-

ification time. This local timestamp differs from the one

recorded in Dropbox’s database, so Dropbox treats it as

a local update and uploads the file, correctly propagating

the file system state.

Dropbox’s interactions with ext4’s ordered mode jour-

naling are less predictable, depending on the precise state

of the file system and Dropbox’s databases at the time of
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M1 D1 D2

Original On-Disk State (v0):

On-Disk State w/o Crash (v1):

M2 D1 D3 D4

On-Disk State A!er Crash:

M1 D1 D3 D4

Figure 1: A Crash in Ext4 Ordered Mode. This im-

age shows a file whose data is rendered inconsistent by a crash

in ext4 ordered mode. The original state of the file on disk (v0)

is shown at left, with its inode block, M1, pointing to two data

blocks, D1 and D2. An application then overwrites the last block

(D2) with D3 and appends a new block, D4, resulting in an up-

dated inode block, M2. If there is no crash, the final state of

the file will be v1, as shown in the upper right. All newly writ-

ten blocks are marked with gray. If a crash occurs before M2 is

journaled but after D3 and D4 are written, the file will be in an

inconsistent state after recovery, as shown in the lower right.

the crash. Again, Dropbox updates the cloud to the state

on disk; this works well for cases where both the data and

metadata for v1 are either completely written (commit-

ted) or completely unwritten before the crash. However,

if the crash occurs before v1’s transaction commits but af-

ter some of v1’s data is written to disk, the local file will

have inconsistent data. As shown in Figure 1, after re-

boot, the metadata of the file is consistent on disk at v0

but the file’s data is an inconsistent mixture of v0 and v1.

Such data inconsistency cannot be detected and corrected

by fsck. In this case, if Dropbox has already updated its

database with v1’s modification time, which differs from

the local timestamp (v0), it will immediately propagate

the inconsistent file.

4.1.2 Application-level Inconsistency

Because it only communicates with the file system via a

notification system, such as Linux’s inotify, Dropbox has

a weak sense of what changes are occurring in the file

system. In particular, it cannot determine when data and

metadata become persistent on disk, leading to its prob-

lems during crash recovery. In addition, because Dropbox

uploads asynchronously, generally at a much slower rate

than the local disk [8], there is no guarantee that the cur-

rent version of the files stored in Dropbox reflect a consis-

tent application-level image of the local file system.

To illustrate how this inconsistency can cause prob-

lems, consider synchronizing a photo-editing suite that

keeps photos and their thumbnail previews in separate

files. As Dropbox uploads small files first, the thumbnail

is likely to reach its servers before the photo. In the event

of a crash after editing a photo and updating its thumb-

nail, Dropbox may have the most recent version of the

thumbnail but only an old copy of the photo. The result-

ing mismatch may lead to user confusion or, depending

on the nature of the edits, potential embarrassment when

looking through photos at a later date.

This problem is exacerbated by Dropbox’s inability to

upload a file that is being actively modified, as doing so

may combine incomplete portions of several writes. The

resultant delay increases the likelihood that frequently

modified files will experience data loss. Conversely, this

strategy cannot detect when updates between files depend

on each other, and, as in the previous example, may result

in an uploaded state that would never occur on disk.

4.2 Solution Space

Recovering gracefully from a crash and preventing

application-level inconsistency requires Dropbox to have

a strong sense of what data is persistent on disk at spe-

cific points in time. While delaying uploads of actively

modified files provides some of this knowledge during

normal operation, obtaining it in the event of failure is

more challenging. In this section, we propose a variety of

approaches for obtaining application-consistent disk im-

ages in Dropbox and then using these images to recover

from crashes. As ZFS handles basic recovery correctly,

we target journaling file systems; however, our propos-

als for application-level consistency are also applicable to

COW file systems.

4.2.1 Establishing Application-level Consistency

One basic approach is to ensure that files are uploaded

in the order in which their transactions commit to disk.

This requires the underlying file system to notify Dropbox

when it commits a transaction, informing Dropbox of the

files involved. While this will work well for workloads

that modify only a few files at a time, involving minimal

amounts of bookkeeping, it may encounter difficulties in

workloads featuring complex access patterns to a variety

of files. Because Dropbox cannot upload files atomically,

it may need to delay uploading a set of files until all I/O

to them has quiesced completely.

An alternative to this approach is to employ snapshots,

gathered either implicitly or explicitly. Implicit snap-

shots use a similar technique to the previous consistency

method; rather than imposing a specific ordering, how-

ever, they simply link a file’s newest revision in Drop-

box to the last transaction in which the file was modified.

Explicit snapshots, on the other hand, upload in-memory

copies of the write data associated with each transaction.

Implicit snapshots will likely require fewer changes to

both the operating system and the client than explicit, but

may lead to staler remote copies. Conversely, explicit

snapshots are likely to impose higher overheads.

Finally, if only certain data need to be consistent, we

could employ an fsync-like primitive that blocks an ap-

plication until the data reaches the cloud. This strictly

enforces consistency, but it also constrains applications to

Dropbox’s available bandwidth, which will generally be

lower than that of the disk [8].
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4.2.2 Recovering From Crashes

Given knowledge of consistent disk states, recovery be-

comes relatively simple. A straightforward approach

could simply choose the most recent point known to be

consistent, and restore all files to that point. However, this

requires verifying the contents of all the files that Dropbox

monitors to ensure that each has consistent data.

Ideally, we should restore only those files affected by

the crash; most journaling file systems, however, do not

provide this information. One way to determine this is

to record in the journal the names of all files with pending

modifications in the current committing transaction before

writing any of their data blocks. This is similar to the

declared-mode journaling proposed by Denehy et al. [7]

and will likely exhibit similar performance.

5 Status and Future Work
Currently, *-Box, our project to remedy consistency and

reliability problems in cloud-based synchronization ser-

vices, focuses on two file systems: ZFS and ext4. While

we have diagnosed both sets of problems, we have thus

far only implemented solutions for reliability.

Since ZFS already provides data checksumming, we

enhance ZFS with the ability to recover detected corrup-

tion using Dropbox. We modify ZFS’s recovery policy,

so that, when ZFS fails to recover from local redundant

copies, it sends a recovery request to a user-level daemon.

The daemon then fetches the requested block from the

Dropbox server through the REST API and returns it to

ZFS. ZFS re-verifies the integrity of the block before it

uses the data to perform recovery.

For ext4, we avoid adding checksums and instead add

update ranges to inotify modification events. We then

modify an open-source file synchronization service, own-

Cloud, to upload only the ranges specified in these events

to the server, via the HTTP PATCH command. Once the

file is uploaded, the client compares its local checksum of

the file with the checksum from the server; if these differ,

the client assumes its version is corrupt and downloads the

server’s version to a safe location.

We next plan to implement solutions for consistency

and crash recovery using implicit and explicit snapshots.

Because ZFS recovers from crashes automatically, we

will focus our efforts on ext4, using the declared-mode

journaling described earlier to determine which files need

to be recovered. As there seem to be substantial trade-offs

between implicit and explicit snapshots, we will pay close

attention to their performance overheads under a variety

of workloads.

Ultimately, though, all of these approaches are some-

what stop-gap in nature, attempting to maximize bene-

fit for a minimum of infrastructure changes. Remov-

ing the separation between the cloud synchronization ser-

vice and the underlying file system is a powerful con-

cept, however, and a system that fully integrates the two

could realize even greater improvements. For instance,

our proposed recovery system could allow for substan-

tially relaxed journaling requirements; we can also com-

bine metadata between the synchronization service and

file system, improving time and space overheads during

basic operations. Eventually, we seek to create such an

integrated design, building a cohesive system that pro-

vides capabilities beyond those that synchronization ser-

vices and file systems can provide in isolation.
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