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Abstract
We introducesplit-level I/O scheduling, a new frame-
work that splits I/O scheduling logic across handlers at
three layers of the storage stack: block, system call, and
page cache. We demonstrate that traditional block-level
I/O schedulers are unable to meet throughput, latency,
and isolation goals. By utilizing the split-level frame-
work, we build a variety of novel schedulers to readily
achieve these goals: our Actually Fair Queuing sched-
uler reduces priority-misallocation by 28×; our Split-
Deadline scheduler reduces tail latencies by 4×; our
Split-Token scheduler reduces sensitivity to interference
by 6×. We show that the framework is general and oper-
ates correctly with disparate file systems (ext4 and XFS).
Finally, we demonstrate that split-level scheduling serves
as a useful foundation for databases (SQLite and Post-
greSQL), hypervisors (QEMU), and distributed file sys-
tems (HDFS), delivering improved isolation and perfor-
mance in these important application scenarios.

1 Introduction
Deciding which I/O request to schedule, and when, has
long been a core aspect of the operating system storage
stack [11, 13, 22, 27, 28, 29, 31, 38, 43, 44, 45, 54]. Each
of these approaches has improved different aspects of I/O
scheduling; for example, research in single-disk sched-
ulers incorporated rotational awareness [28, 29, 44];
other research tackled the problem of scheduling within
a multi-disk array [53, 57]; more recent work has tar-
geted flash-based devices [30, 36], tailoring the behavior
of the scheduler to this new and important class of stor-
age device. All of these optimizations and techniques are
important; in sum total, these systems can improve over-
all system performance dramatically [22, 44, 57] as well
as provide other desirable properties (including fairness
across processes [17] and the meeting of deadlines [56]).

Most I/O schedulers (hereafter just “schedulers”) are
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built at the block level within an operating system, be-
neath the file system and just above the device itself.
Such block-levelschedulers are given a stream of re-
quests and are thus faced with the question: which
requests should be dispatched, and when, in order to
achieve the goals of the system?

Unfortunately, making decisions at the block level is
problematic, for two reasons. First, and most impor-
tantly, the block-level scheduler fundamentally cannot
reorder certain write requests; file systems carefully con-
trol write ordering to preserve consistency in the event of
system crash or power loss [21, 25]. Second, the block-
level scheduler cannot perform accurate accounting; the
scheduler lacks the requisite information to determine
which application was responsible for a particular I/O
request. Due to these limitations, block-level schedulers
cannot implement a full range of policies.

An alternate approach, which does not possess these
same limitations, is to implement scheduling much
higher in the stack, namely with system calls [19].
System-call schedulingintrinsically has access to neces-
sary contextual information (i.e., which process has is-
sued an I/O). Unfortunately, system-call scheduling is no
panacea, as the low-level knowledge required to build ef-
fective schedulers is not present. For example, at the time
of a read or write, the scheduler cannot predict whether
the request will generate I/O or be satisfied by the page
cache, information which can be useful in reordering re-
quests [12, 49]. Similarly, the file system will likely
transform a single write request into a series of reads and
writes, depending on the crash-consistency mechanism
employed (e.g., journaling [25] or copy-on-write [42]);
scheduling without exact knowledge of how much I/O
load will be generated is difficult and error prone.

In this paper, we introducesplit-level I/O scheduling,
a novel scheduling framework in which a scheduler is
constructed across several layers. By implementing a ju-
diciously selected set of handlers at key junctures within
the storage stack (namely, at the system-call, page-cache,
and block layers), a developer can implement a schedul-
ing discipline with full control over behavior and with no
loss in high- or low-level information. Split schedulers
can determine which processes issued I/O (via graph tags
that track causality across levels) and accurately esti-
mate I/O costs. Furthermore, memory notifications make
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schedulers aware of write work as soon as possible (not
tens of seconds later when writeback occurs). Finally,
split schedulers can prevent file systems from imposing
orderings that are contrary to scheduling goals.

We demonstrate the generality of split scheduling by
implementing three new schedulers: AFQ (Actually-Fair
Queuing) provides fairness between processes, Split-
Deadline observes latency goals, and Split-Token iso-
lates performance. Compared to similar schedulers in
other frameworks, AFQ reduces priority-misallocation
errors by 28×, Split-Deadline reduces tail latencies by
4×, and Split-Token improves isolation by 6× for some
workloads. Furthermore, the split framework is not spe-
cific to a single file system; integration with two file sys-
tems (ext4 [34] and XFS [47]) is relatively simple.

Finally, we demonstrate that the split schedulers pro-
vide a useful base for more complex storage stacks.
Split-Token provides isolation for both virtual machines
(QEMU) and data-intensive applications (HDFS), and
Split-Deadline provides a solution to the database com-
munity’s “fsync freeze” problem [2, 9, 10]. In sum-
mary, we find split scheduling to be simple and elegant,
yet compatible with a variety of scheduling goals, file
systems, and real applications.

The rest of this paper is organized as follows. We
evaluate existing frameworks and describe the challenges
they face (§2). We discuss the principles of split schedul-
ing (§3) and our implementation in Linux (§4). We im-
plement three split schedulers as case studies (§5), dis-
cuss integration with other file systems (§6), and evalu-
ate our schedulers with real applications (§7). Finally,
we discuss related work (§8) and conclude (§9).

2 Motivation
Block-level schedulers are severely limited by their in-
ability to gather information from and exert control over
other levels of the storage stack. As an example, we
consider the Linux CFQ scheduler, which supports an
ionice utility that can put a process in idle mode. Ac-
cording to the man page:“a program running with idle
I/O priority will only get disk time when no other pro-
gram has asked for disk I/O”[7]. Unfortunately, CFQ
has little control over write bursts from idle-priority pro-
cesses, as writes are buffered above the block level.

We demonstrate this problem by running a normal pro-
cessA alongside an idle-priority processB. A reads se-
quentially from a large file.B issues random writes over
a one-second burst. Figure1 shows the result:B quickly
finishes whileA (whose performance is shown via the
CFQ line) takes over five minutes to recover. Block-level
schedulers such as CFQ are helpless to prevent processes
from polluting write buffers with expensive I/O. As we
will see, other file-system features such as journaling and
delayed allocation are similarly problematic.
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Figure 1: Write Burst. B’s one-second random-write
burst severely degradesA’s performance for over five minutes.
PuttingB in CFQ’s idle class provides no help.

The idle policy is one of many possible scheduling
goals, but the difficulties it faces at the block level are
not unique. In this section, we consider three differ-
ent scheduling goals, identifying several shared needs
(§2.1). Next, we describe prior scheduling frameworks
(§2.2). Finally, we show these frameworks are funda-
mentally unable to meet scheduler needs when running
in conjunction with a modern file system (§2.3).

2.1 Framework Support for Schedulers
We now consider three I/O schedulers: priority, deadline,
and resource-limit, identifying what framework support
is needed to implement these schedulers correctly.

Priority: These schedulers aim to allocate I/O re-
sources fairly between processes based on their priori-
ties [1]. To do so, a scheduler must be able to track which
process is responsible for which I/O requests, estimate
how much each request costs, and reorder higher-priority
requests before lower-priority requests.

Deadline: These schedulers observe deadlines for I/O
operations, offering predictable latency to applications
that need it [3]. A deadline scheduler needs to map an
application’s deadline setting to each request and issue
lower-latency requests before other requests.

Resource-Limit: These schedulers cap the resources
an application may use, regardless of overall system
load. Limits are useful when resources are purchased and
the seller does not wish to give away free I/O. Resource-
Limit schedulers need to know the cost and causes of I/O
operations in order to throttle correctly.

Although these schedulers have distinct goals, they
have three common needs. First, schedulers need to be
able tomap causesto identify which process is respon-
sible for an I/O request. Second, schedulers need toesti-
mate costsin order to optimize performance and perform
accounting properly. Third, schedulers need to be able to
reorder I/O requests so that the operations most impor-
tant to achieving scheduling goals are served first. Unfor-
tunately, as we will see, current block-level and system-
call schedulers cannot meet all of these requirements.
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Figure 2: Scheduling Architectures. The boxes show
where scheduler hooks exist for reordering I/O requests or do-
ing accounting. Sometimes reads and writes are handled dif-
ferently at different levels, as indicated by “R” and “W”.

2.2 Framework Architectures
Scheduling frameworks offer hooks to which schedulers
can attach. Via these hooks, a framework passes infor-
mation and exposes control to schedulers. We categorize
frameworks by the level at which the hooks are available.

Figure 2(a) illustrates block-level scheduling,
the traditional approach implemented in Linux [8],
FreeBSD [41], and other systems [6]. Clients initiate
I/O requests via system calls, which are translated
to block-level requests by the file system. Within
the block-scheduling framework, these requests are
then passed to the scheduler along with information
describing them: their location on storage media, size,
and the submitting process. Based on such information,
a scheduler may reorder the requests according to some
policy. For example, a scheduler may accumulate many
requests in its internal queues and later dispatch them in
an order that improves sequentiality.

Figure2(b) show the system-call scheduling architec-
ture (SCS) proposed by Craciunaset al. [19]. Instead
of operating beneath the file system and deciding when
block requests are sent to the storage device, a system-
call scheduler operates on top of the file system and
decides when to issue I/O related system calls (read,
write, etc.). When a process invokes a system call, the
scheduler is notified. The scheduler may put the process
to sleep for a time before the body of the system call
runs. Thus, the scheduler can reorder the calls, control-
ling when they become active within the file system.

Figure2(c) shows the hooks of the split framework,
which we describe in a later section (§4.2). In addition to
introducing novel page-cache hooks, the split framework
supports select system-call and block-level hooks.

2.3 File-System Challenges
Schedulers allocate disk I/O to processes, but processes
do not typically use hard disks or SSDs directly. Instead,
processes request service from a file system, which in
turn translates requests to disk I/O. Unfortunately, file
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Figure 3:CFQ Throughput. The left plot shows sequen-
tial write throughput for different priorities. The right plot the
portion of requests for each priority seen by CFQ. Unfortu-
nately, the “Completely Fair Scheduler” is not even slightly
fair for sequential writes.

systems make it challenging to satisfy the needs of the
scheduler. We now examine the implications of write-
back, delayed allocation, journaling, and caching for
schedulers, showing how these behaviors fundamentally
require a restructuring of the I/O scheduling framework.

2.3.1 Delayed Writeback and Allocation
Delayed writeback is a common technique for postpon-
ing I/O by buffering dirty data to write at a later time.
Procrastination is useful because the work may go away
by itself (e.g., the data could be deleted) and, as more
work accumulates, more efficiencies can be gained (e.g.,
sequential write patterns may become realizable).

Some file systems also delay allocation to optimize
data layout [34, 47]. When allocating a new block, the
file system does not immediately decide its on-disk lo-
cation; another task will decide later. More information
(e.g., file sizes) becomes known over time, so delaying
allocation enables more informed decisions.

Both delayed writeback and allocation involve file-
system level delegation, with one process doing I/O work
on behalf of other processes. A writeback process sub-
mits buffers that other processes dirtied and may also
dirty metadata structures on behalf of other processes.
Such delegation obfuscates the mapping from requests
to processes. To block-level schedulers, the writeback
task sometimes appears responsible forall write traffic.

We evaluate Linux’s priority-based block scheduler,
CFQ (Completely Fair Queuing) [1], using an asyn-
chronous write workload. CFQ aims to allocate disk
time fairly among processes (in proportion to priority).
We launch eight threads with different priorities, ranging
from 0 (highest) to 7 (lowest): each writes to its own file
sequentially. A thread’s write throughput should be pro-
portional to its priority, as shown by the expectation line
of Figure3 (left). Unfortunately, CFQ ignores priorities,
treating all threads equally. Figure3 (right) shows why:
to CFQ all the requests appear to have a priority of 4, be-
cause the writeback thread (a priority-4 process) submits
all the writes on behalf of the eight benchmark threads.
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Figure 4:Journal Batching. Arrows point to events that
must occur before the event from which they point. The event
for the blocks is a disk write. The event for anfsync is a return.

2.3.2 Journaling
Many modern file systems use journals for consistent up-
dates [15, 34, 47]. While details vary across file systems,
most follow similar journaling protocols to commit data
to disk; here, we discuss ext4’s ordered-mode to illustrate
how journaling severely complicates scheduling.

When changes are made to a file, ext4 first writes the
affected data blocks to disk, then creates a journal trans-
action which contains all related metadata updates and
commits that transaction to disk, as shown in Figure4.
The data blocks (D1, D2,D3) must be written before the
journal transaction, as updates become durable as soon
as the transaction commits, and ext4 needs to prevent the
metadata in the journal from referring to data blocks con-
taining garbage. After metadata is journaled, ext4 even-
tually checkpoints the metadata in place.

Transaction writing and metadata checkpointing are
both performed by kernel processes instead of the pro-
cesses that initially caused the updates. This form of
write delegation also complicates cause mapping.

More importantly, journaling prevents block-level
schedulers from reordering. Transaction batching is a
well-known performance optimization [25], but block
schedulers have no control over which writes are
batched, so the journal may batch together writes that are
important to scheduling goals with less-important writes.
For example, in Figure4, supposeA is higher priority
thanB. A’s fsync depends on transaction commit, which
depends on writingB’s data. Priority is thus inverted.

When metadata (e.g., directories or bitmaps) is shared
among files, journal batching may be necessary for cor-
rectness (not just performance). In Figure4, the journal
could have conceivably batchedM1 andM2 separately;
however,M1 depends onD2, data written by a process
C to a different file, and thusA’s fsync depends on the
persistence ofC’s data. Unfortunately (for schedulers),
metadata sharing is common in file systems.

The inability to reorder is especially problematic for a
deadline scheduler: a block-request deadline completely
loses its relevance if one request’s completion depends
on the completion of unrelated I/Os. To demonstrate,
we run two threadsA (small) andB (big) with Linux’s
Block-Deadline scheduler [3], setting the block-request
deadline to 20 ms for each. ThreadA does 4 KB appends,
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Figure 5: I/O Latency Dependencies. ThreadA keeps
issuingfsync to flush one block of data to disk, while threadB
flushes multiple blocks usingfsync. This plot shows howA’s
latency depends onB’s I/O size.

calling fsync after each. ThreadB does N bytes of ran-
dom writes (N ranges from 16 KB to 4 MB) followed by
anfsync. Figure5 shows that even thoughA only writes
one block each time,A’s fsync latency depends on how
much dataB flushes each time.

Most file systems enforce ordering for correctness, so
these problems occur with other crash-consistency mech-
anisms as well. For example, in log-structured files sys-
tems [42], writes appended earlier are durable earlier.

2.3.3 Caching and Write Amplification
Sequentially reading or writing N bytes from or to a file
often does not result in N bytes of sequential disk I/O
for several reasons. First, file systems use different disk
layouts, and layouts change as file systems age; hence,
sequential file-system I/O may become random disk I/O.
Second, file-system reads and writes may be absorbed by
caches or write buffers without causing I/O. Third, some
file-system features amplify I/O. For example, reading
a file block may involve additional metadata reads, and
writing a file block may involve additional journal writes.
These behaviors prevent system-call schedulers from ac-
curately estimating costs.

To show how this inability hurts system-call sched-
ulers, we evaluate SCS-Token [18]. In SCS-Token, a
process’s resource usage is limited by the number of to-
kens it possesses. Per-process tokens are generated at a
fixed rate, based on user settings. When the process is-
sues a system call, SCS blocks the call until the process
has enough tokens to pay for it.

We attempt to isolate a processA’s I/O performance
from a processB by throttlingB’s resource usage. If SCS-
Token works correctly,A’s performance will vary little
with respect toB’s I/O patterns. To test this behavior, we
configureA to sequentially read from a large file whileB
runs workloads with different I/O patterns. Each of theB

workloads involve repeatedly accessing R bytes sequen-
tially from a 10 GB file and then randomly seeking to
a new offset. We explore 7 values for R (from 4 KB to
16 MB) for both reads and writes (14 workloads total).
In each case,B is throttled to 10 MB/s.
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Figure 6: SCS Token Bucket: Isolation. The perfor-
mance of two processes is shown: a sequential reader,A, and
a throttled process,B. B may read (black) or write (gray), and
performs runs of different sizes (x-axis).

Figure6 shows howA’s performance varies withB’s
I/O patterns. Note the large gap between the performance
of A with B reading vs. writing. WhenB is perform-
ing sequential writes,A’s throughput is as high as 125
MB/s; whenB is performing random reads,A’s through-
put drops to 25 MB/s in the worst case. Writes appear
cheaper than reads because write buffers absorb I/O and
make it more sequential. Across the 14 workloads,A’s
throughput has a standard deviation of 41 MB, indicat-
ing A is highly sensitive toB’s patterns. SCS-Token fails
to isolateA’s performance by throttlingB, as SCS-Token
cannot correctly estimate the cost ofB’s I/O pattern.

2.3.4 Discussion
Table1 summarizes how different needs are met (or not)
by each framework. The block-level framework fails to
support correct cause mapping (due to write delegation
such as journaling and delayed allocation) or control over
reordering (due to file-system ordering requirements).
The system-call framework solves these two problems,
but fails to provide enough information to schedulers
for accurate cost estimation because it lacks low-level
knowledge. These problems are general to many file sys-
tems; even if journals are not used, similar issues arise
from the ordering constraints imposed by other mecha-
nisms such as copy-on-write techniques [16] or soft up-
dates [21]. Our split framework meets all the needs in
Table1 by incorporating ideas from the other two frame-
works and exposing additional memory-related hooks.

3 Split Framework Design
Existing frameworks offer insufficient reordering con-
trol and accounting knowledge. Requests are queued,
batched, and processed at many layers of the stack, thus
the limitations of single-layer frameworks are unsurpris-
ing. We propose a holistic alternative: all important deci-
sions about when to perform I/O work should be exposed
as scheduling hooks, regardless of the level at which
those decisions are made in the stack. We now discuss
how these hooks support correct cause mapping (§3.1),
accurate cost estimation (§3.2), and reordering (§3.3).

Block Syscall Split
Cause Mapping ✖ ✔ ✔

Cost Estimation ✔ ✖ ✔

Reordering ✖ ✔ ✔

Table 1:Framework Properties. A ✔ indicates a given
scheduling functionality can be supported with the framework,
and an✖ indicates a functionality cannot be supported.
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data and journal I/O to the real causes, P1 and P2, not P3.

3.1 Cause Mapping
A scheduler must be able to map I/O back to the pro-
cesses that caused it to accurately perform accounting
even when some other process is submitting the I/O.
Metadata is usually shared, and I/Os are usually batched,
so there may be multiple causes for a single dirty page
or a single request. Thus, the split framework tags I/O
operations with sets of causes, instead of simple scalar
tags (e.g., those implemented by Mesnieret al. [35]).

Write delegation (§2.3.1) further complicates cause
mapping when one process is dirtying data (not just sub-
mitting I/O) on behalf of other processes. We call such
processesproxies; examples include the writeback and
journaling tasks. Our framework tags proxy process to
identify the set of processes being served instead of the
proxy itself. These tags are created when a process starts
dirtying data for others and cleared when it is done.

Figure7 illustrates how our framework tracks multiple
causes and proxies. Processes P1 and P2 both dirty the
same data page, so the page’s tag includes both processes
in its set. Later, a writeback process, P3, writes the dirty
buffer to disk. In doing so, P3 may need to dirty the
journal and metadata, and will be marked as a proxy for
{P1, P2} (the tag is inherited from the page it is writing
back). Thus, P1 and P2 are considered responsible when
P3 dirties other pages, and the tag of these pages will be
marked as such. The tag of P3 is cleared when it finishes
submitting the data page to the block level.

3.2 Cost Estimation
Many policies require schedulers to know how much I/O
costs, in terms of device time or other metrics. An I/O
pattern’s cost is influenced by file-system features, such
as caches and write buffers, and by device properties
(e.g., random I/O is cheaper on flash than hard disk).

Costs can be most accurately estimated at the lowest
levels of the stack, immediately above hardware (or bet-
ter still in hardware, if possible). At the block level, re-
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quest locations are known, so sequentiality-based models
can estimate costs. Furthermore, this level is below all
file-system features, so accounting is less likely to over-
estimate costs (e.g., by counting cache reads) or under-
estimate costs (e.g., by missing journal writes).

Unfortunately, writes may be buffered for a long time
(e.g., 30 seconds) before being flushed to the block level.
Thus, while block-level accounting may accurately esti-
mate the cost of a write, it is not aware of most writes un-
til some time after they enter the system via awrite sys-
tem call. Thus, if prompt accounting is more important
than accurate accounting (e.g., for interactive systems),
accounting should be done at the memory level. With-
out memory-level information, a scheduler could allow
a low-priority process to fill the write buffers with giga-
bytes of random writes, as we saw earlier (Figure1).

Figure 8 shows the trade-off between accounting at
the memory level (write buffer) and block level (request
queue). At the memory level, schedulers do not know
whether dirty data will be deleted before a flush, whether
other writers will overwrite dirty data, or whether I/O
will be sequential or random. A scheduler can guess
how sequential buffered writes will be based on file off-
sets, but delayed allocation prevents certainty about the
layout. After a long delay, on-disk locations and other
details are known for certain at the block level.

The cost of buffered writes depends on future work-
load behavior, which is usually unknown. Thus, we be-
lieve all scheduling frameworks are fundamentally lim-
ited and cannot provide cost estimation that is both
prompt and accurate. Our framework exposes hooks at
both the memory and block levels, enabling each sched-
uler to handle the trade-off in the manner most suitable to
its goals. Schedulers may even utilize hooks at both lev-
els. For example, Split-Token (§5.3) promptly guesses
write costs as soon as buffers are dirtied, but later revises
that estimate when more information becomes available
(e.g., when the dirty data is flushed to disk).

3.3 Reordering
Most schedulers will want to reorder I/O to achieve good
performance as well as to meet more specific goals (e.g.,
low latency or fairness). Reordering for performance re-
quires knowledge of the device (e.g., whether it is useful

to reorder for sequentiality), and is best done at a lower
level in the stack. We enable reordering at the block level
by exposing hooks for both block reads and writes.

Unfortunately, the ability to reorder writes at the block
level is greatly limited by file systems (§2.3.2). Thus, re-
ordering hooks for writes (but not reads, which are not
entangled by journals) are also exposed above the file
system, at the system-call level. By controlling when
write system calls run, a scheduler can control when
writes become visible to the file system and prevent or-
dering requirements that conflict with scheduling goals.

Many storage systems have calls that modify meta-
data, such asmkdir andcreat in Linux; the split frame-
work also exposes these. This approach presents an ad-
vantage over the SCS framework, which cannot correctly
schedule these calls. In particular, the cost of a metadata
update greatly depends on file-system internals, of which
SCS schedulers are unaware. Split schedulers, however,
can observe metadata writes at the block level and ac-
cordingly charge the responsible applications.

File-system synchronization points (e.g.,fsync or
similar) require all dependent data to be flushed to disk
and typically invoke the file system’s ordering mecha-
nism. Unfortunately, logically independent operations
often must wait for the synchronized updates to com-
plete (§2.3.2), so the ability to schedulefsync is essen-
tial. Furthermore, writes followed byfsync are more
costly than writes by themselves, so schedulers should
be able to treat the two patterns differently. Thus, the
split framework also exposesfsync scheduling.

4 Split Scheduling in Linux
Split-style scheduling could be implemented in a variety
of storage stacks. In this work, we implement it in Linux,
integrating with the ext4 and XFS file systems.

4.1 Cross-Layer Tagging
In Linux, I/O work is described by different function
calls and data structures at different layers. For exam-
ple, a write request may be represented by (a) the ar-
guments tovfs write at the system-call level, (b) a
buffer head structure in memory, and (c) abio struc-
ture at the block level. Schedulers in our framework see
the same requests in different forms, so it is useful to
have a uniform way to describe I/O across layers. We add
a causes tagging structure that follows writes through
the stack and identifies the original processes that caused
an I/O operation. Split schedulers can thereby correctly
map requests back to the application from any layer.

Writeback and journal tasks are marked as I/O prox-
ies, as described earlier (§3.1). In ext4, writeback calls
theext4 da writepages function (“da” stands for “de-
layed allocation”), which writes back a range of pages of
a given file. We modify this function so that as it does al-
location for the pages, it sets the writeback thread’s proxy

6
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Table 2:Split Hooks. The “Origin” column shows which
hooks are new and which are borrowed from other frameworks.

state as appropriate. For the journal proxy, we modify
jbd2 (ext4’s journal) to keep track of all tasks responsi-
ble for adding changes to the current transaction.

4.2 Scheduling Hooks
We now describe the hooks we expose, which are split
across the system-call, memory, and block levels. Ta-
ble2 lists a representative sample of the split hooks.

System Call: These hooks allow schedulers to inter-
cept entry and return points for various I/O system calls.
A scheduler can delay the execution of a system call
by simply sleeping in the entry hook. Like SCS, we
intercept writes, so schedulers can separate writes be-
fore the file system entangles them. Unlike SCS, we do
not intercept reads (no file-system mechanism entangles
reads, so scheduling reads below the cache is preferable).
Two metadata-write calls,creat and mkdir, and the
Linux synchronization call,fsync, are also exposed to
the scheduler. It would be useful (and straightforward) to
support other metadata calls in the future (e.g.,unlink).

Note that in our implementation, the caller is blocked
until the system call is scheduled. Other implementations
are possible, such as buffering the system calls and re-
turning immediately, or simply returning EAGAIN to tell
the caller to issue the system call later. We choose this
particular implementation because of its simplicity and
POSIX compliance. Linux itself blockswrites (when
there are too many dirty pages) andfsyncs, and most
applications already deal with this behavior using sepa-
rate threads; what we do is no different.

Memory: These hooks expose page-cache internals
to schedulers. In Linux, a writeback thread (pdflush)
decides when to pass I/O to the block-level scheduler,
which then decides when to pass that I/O to disk. Both
components are performing scheduling tasks, and sep-
arating them is inefficient (e.g., writeback could flush
more aggressively if it knew when the disk was idle).
We add two hooks to inform the scheduler when buffers
are dirtied or deleted. Thebuffer-dirty hook notifies
the scheduler when a process dirties a buffer or when a
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Figure 9:Time Overhead. The split framework scales well
with the number of concurrent threads doing I/O to an SSD.

dirty buffer is modified. In the latter case, the framework
tells the scheduler which processes previously dirtied the
buffer; depending on policy, the scheduler could revise
accounting statistics, shifting some (or all) of the respon-
sibility for the I/O to the last writer. Thebuffer-free
hooks tell the scheduler if a buffer is deleted before write-
back. Schedulers can either rely on Linux to perform
writeback and throttlewrite system calls to control how
much dirty data accumulates before writeback, or they
can take complete control of the writeback. We evaluate
the trade-off of these two approaches later (§7.1.2).

Block: These hooks are identical to those in Linux’s
original scheduling framework; schedulers are notified
when requests are added to the block level or completed
by the disk. Although we did not modify the function
interfaces at this level, schedulers implementing these
hooks in our framework are more informed, given tags
within the request structures that identify the responsible
processes. The Linux scheduling framework has over a
dozen other block-level hooks for initialization, request
merging, and convenience. We support all these as well
for compatibility, but do not discuss them here.

Implementing the split-level framework in Linux in-
volves∼300 lines of code, plus some file-system inte-
gration effort, which we discuss later (§6). While repre-
senting a small change in the Linux code base, it enables
powerful scheduling capabilities, as we will show.

4.3 Overhead
In this section, we evaluate the time and space overhead
of the split framework. In order to isolate framework
overhead from individual scheduler overhead, we com-
pare no-op schedulers implemented in both our frame-
work and the block framework (a no-op scheduler issues
all I/O immediately, without any reordering). Figure9
shows our framework imposes no noticeable time over-
head, even with 100 threads.

The split framework introduces some memory over-
head for tagging writes withcauses structures (§4.1).
Memory overheads roughly correspond to the number of
dirty write buffers. To measure this overhead, we instru-
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Figure 10: Space Overhead. Memory overhead is
shown for an HDFS worker with 8 GB of RAM under a
write-heavy workload. Maximum and average overhead is
measured as a function of the Linuxdirty ratio setting.
dirty background ratio is set to half ofdirty ratio.

mentkmalloc andkfree to track the number of bytes
allocated for tags over time. For our evaluation, we run
HDFS with a write-heavy workload, measuring alloca-
tions on a single worker machine. Figure10 shows the
results: with the default Linux settings, average over-
head is 14.5 MB (0.2% of total RAM); the maximum
is 23.3 MB. Most tagging is on the write buffers; thus,
a system tuned for more buffering should have higher
tagging overheads. With a 50%dirty ratio [5], max-
imum usage is still only 52.2 MB (0.6% of total RAM).

5 Scheduler Case Studies
In this section, we evaluate the split framework’s abil-
ity to support a variety of scheduling goals. We imple-
ment AFQ (§5.1), Split-Deadline (§5.2), and Split-Token
(§5.3), and compare these schedulers to similar sched-
ulers in other frameworks. Unless otherwise noted, all
experiments run on top of ext4 with the Linux 3.2.51 ker-
nel (most XFS results are similar but usually not shown).
Our test machine has an eight-core, 1.4 GHz CPU and
16 GB of RAM. We use 500 GB Western Digital hard
drives (AAKX) and an 80 GB Intel SSD (X25-M).

5.1 AFQ: Actually Fair Queuing
As shown earlier (§2.1), CFQ’s inability to correctly map
requests to processes causes unfairness, due to the lack of
information Linux’s elevator framework provides. More-
over, file-system ordering requirements limit CFQ’s re-
ordering options, causing priority inversions. In order
to overcome these two drawbacks, we introduce AFQ
(Actually Fair Queuing scheduler) to allocate I/O fairly
among processes according to their priorities.

Design: AFQ employs a two-level scheduling strat-
egy. Reads are handled at the block level and writes
(and calls that cause writes, such asfsync) are handled
at the system-call level. This design allows reads to hit
the cache while protecting writes from journal entangle-
ment. Beneath the journal, low-priority blocks may be
prerequisites for high-priorityfsync calls, so writes at
the block level are dispatched immediately.
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Figure 11:AFQ Priority. The plots show the percentage of
throughput that threads of each priority receive. The linesshow
the goal distributions; the labels indicate total throughput.

AFQ chooses I/O requests to dequeue at the block and
system-call levels using the stride algorithm [51]. When-
ever a block request is dispatched to disk, AFQ charges
the responsible processes for the disk I/O. The I/O cost
is based on a simple seek model.

Evaluation: We compare AFQ to CFQ with four
workloads, shown in Figure11. Figure11(a) shows read
performance on AFQ and CFQ for eight threads, with
priorities ranging from 0 (high) to 7 (low), each reading
from its own file sequentially. We see that AFQ’s perfor-
mance is similar to CFQ, and both respect priorities.

Figure 11(b) shows asynchronous sequential-write
performance, again with eight threads. This time, CFQ
fails to respect priorities because of write delegation, but
AFQ correctly maps I/O requests via split tags, and thus
respects priorities. On average, CFQ deviates from the
ideal by 82%, AFQ only by 16% (a 5× improvement).

Figure11(c) shows synchronous random-write perfor-
mance: we set up 5 threads per priority level, and each
keeps randomly writing and flushing (withfsync) 4 KB
blocks. The average throughput of threads at each pri-
ority level is shown. CFQ again fails to respect priority;
usingfsync to force data to disk invokes ext4’s jour-
naling mechanism and keeps CFQ from reordering to fa-
vor high-priority I/O. AFQ, however, blocks low-priority
fsyncs when needed, improving throughput for high-
priority threads. As shown, AFQ is able to respect prior-
ity, deviating from the ideal value only by 3% on average
while CFQ deviates by 86% (a 28× improvement).

Finally, Figure11(d) shows throughput for a memory-
intense workload that just overwrites dirty blocks in the
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A B
Block Write Fsync Block Write Fsync

HDD 10 ms 100 ms 100 ms 6000 ms
SSD 1 ms 3 ms 10 ms 100 ms

Table 3: Deadline Settings. For Block-Deadline, we
set deadlines for block-level writes; for Split-Deadline,we set
deadlines forfsyncs.

write buffer. One thread at each priority level keeps over-
writing 4 MB of data in its own file. Both CFQ and AFQ
get very high performance as expected, though AFQ is
slightly slower (AFQ needs to do significant bookkeep-
ing for each write system call). The plot has no fairness
goal line as there is no contention for disk resources.

In general, AFQ and CFQ have similar performance;
however, AFQ always respects priorities, while CFQ
only respects priorities for the read workloads.

5.2 Deadline
As shown earlier (Figure5 in §2.3.2), Block-Deadline
does poorly when trying to limit tail latencies, due to its
inability to reorder block I/Os in the presence of file-
system ordering requirements. Split-level scheduling,
with system-call scheduling capabilities and memory-
state knowledge, is better suited to this task.

Design: We implement the Split-Deadline sched-
uler by modifying the Linux deadline scheduler (Block-
Deadline). Block-Deadline maintains two deadline
queues and two location queues (for both read and write
requests) [3]. In Split-Deadline, anfsync-deadline
queue is used instead of a block-write deadline queue.
During operation, if no read request orfsync is going
to expire, block-level read and write requests are issued
from the location queues to maximize performance. If
some read requests orfsync calls are expiring, they are
issued before their deadlines.

Split-Deadline monitors how much data is dirtied for
one file using thebuffer-dirty hook and thereby esti-
mates the cost of anfsync. If there is anfsync pending
that may affect other processes by causing too much I/O,
it will not be issued directly. Instead, the scheduler asks
the kernel to launch asynchronous writeback of the file’s
dirty data and waits until the amount of dirty data drops
to a point such that other deadlines would not be affected
by issuing thefsync. Asynchronous writeback does not
generate a file-system synchronization point and has no
deadline, so other operations are not forced to wait.

Evaluation: We compare Split-Deadline to Block-
Deadline for a database-like workload on both hard disk
drive (HDD) and solid state drive (SSD). We set up two
threadsA (small) andB (big); threadA appends to a small
file one block (4 KB) at a time and callsfsync (this
mimics database log appends) while threadBwrites 1024
blocks randomly to a large file and then callsfsync (this
mimics database checkpointing).
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Figure 12:Fsync Latency Isolation. Dashed and solid
lines present the goal latencies ofA and B respectively. Dots
represent the actual latency ofB’s calls, and pluses represent
the actual latency ofA’s calls. The shaded area represents the
time whenB’s fsyncs are being issued.

The deadline settings are shown in Table3. We choose
shorter block-write deadlines thanfsync deadlines be-
cause eachfsync causes multiple block writes; however,
our results do not appear sensitive to the exact values
chosen. Linux’s Block-Deadline scheduler does not sup-
port setting different deadlines for different processes,so
we add this feature to enable a fair comparison.

Figure12 shows the experiment results on both HDD
and SSD. We can see that when no I/O fromB is inter-
fering, both schedulers giveA low-latencyfsyncs. Af-
terB starts issuing bigfsyncs, however, Block-Deadline
starts to fail:A’s fsync latencies increase by an order of
magnitude; this happens becauseB generates too much
bursty I/O when callingfsync, and the scheduler has
no knowledge of or control over when they are coming.
Worse,A’s operations become dependent on these I/Os.

With Split-Deadline, however,A’s fsync latencies
mostly fluctuate around the deadline, even whenB is call-
ing fsync after large writes. SometimesA exceeds its
goal slightly because our estimate of thefsync cost is
not perfect, but latencies are always relatively near the
target. Such performance isolation is possible because
Split-Deadline can reorder to spread the cost of bursty
I/Os caused byfsync without forcing others to wait.

5.3 Token Bucket
Earlier, we saw that SCS-Token [18] fails to isolate per-
formance (Figure6 in §2.3.3). In particular, the through-
put of a processA was sensitive to the activities of an-
other processB. SCS underestimates the I/O cost of some
B workloads, and thus does not sufficiently throttleB. In
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Figure 13: Isolation: Split-Token with ext4. The
same as Figure6, but for our Split-Token implementation.A is
the unthrottled sequential reader, andB is the throttled process
performing I/O of different run sizes.

this section, we evaluate Split-Token, a reimplementation
of token bucket in our framework.

Design: As with SCS-Token, throttled processes are
given tokens at a set rate. I/O costs tokens, I/O is blocked
if there are no tokens, and the number of tokens that
may be held is capped. Split-Token throttles a process’s
system-call writes and block-level reads if and only if
the number of tokens is negative. System-call reads are
never throttled (to utilize the cache). Block writes are
never throttled (to avoid entanglement).

Our implementation uses memory-level and block-
level hooks for accounting. The scheduler promptly
charges tokens as soon as buffers are dirtied, and then
revises when the writes are later flushed to the block
level (§3.2), charging more tokens (or refunding them)
based on amplification and sequentiality. Tokens repre-
sent bytes, so accounting normalizes the cost of an I/O
pattern to the equivalent amount of sequential I/O (e.g.,
1 MB of random I/O may be counted as 10 MB).

Split-Token estimates I/O cost based on two models,
both of which assume an underlying hard disk (simpler
models could be used on SSD). When buffers are first
dirtied at the memory level, a preliminary model esti-
mates cost based on the randomness of request offsets
within the file. Later, when the file system allocates
space on disk for the requests and flushes them to the
block level, a disk model revises the cost estimate. The
second model is more accurate because it can consider
more factors than the first model, such as whether the
file system introduced any fragmentation, and whether
the file is located near other files being written.

Evaluation: We repeat our earlier SCS experiments
(Figure6) with Split-Token, as shown in Figure13. We
observe that whetherB does reads or writes has little ef-
fect onA (theA lines are near each other). WhetherB’s
pattern is sequential or random also has little impact (the
lines are flat). Across all workloads, the standard devi-
ation ofA’s performance is 7 MB, about a 6× improve-
ment over SCS (SCS-Token’s deviation was 41 MB).
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Figure 14: Split-Token vs. SCS-Token. Left: A’s
throughput slowdown is shown. Right:B’s performance is
shown. ProcessA achieves about 138 MB/s when running
alone, andB is throttled to 1 MB/s of normalized I/O, so there
should be a 0.7% slowdown forA (shown by a target line). The
x-axis indicatesB’s workload;A always reads sequentially.

We now directly compare SCS-Token with Split-
Token using a broader range of read and write workloads
for processB. I/O can be random (expensive), sequen-
tial, or served from memory (cheap).As before,A is an
unthrottled reader, andB is throttled to 1 MB/s of normal-
ized I/O. Figure14 (left) shows that Split-Token is near
the isolation target all six times, whereas SCS-Token sig-
nificantly deviates three times (twice by more than 50%),
again showing Split-Token provides better isolation.

After isolation, a secondary goal is the best perfor-
mance for throttled processes, which we measure in Fig-
ure 14 (right). SometimesB is faster with SCS-Token,
but only because SCS-Token is incorrectly sacrificing
isolation for A (e.g., B does faster random reads with
SCS-Token, butA’s performance drops over 80%). We
consider the cases where SCS-Token did provide isola-
tion. First, Split-Token is 2.3× faster for “read-mem”.
SCS-Token logic must run on every read system call,
whereas Split-Token does not. SCS-Token still achieves
nearly 2 GB/s, though, indicating cache hits are not throt-
tled. Although the goal of SCS-Token was to do system-
call scheduling, Craciunaset al. needed to modify the
file system to tell which reads are cache hits [19]. Sec-
ond, Split-Token is 837× faster for “write-mem”. SCS-
Token does write accounting at the system-call level, so it
does not differentiate buffer overwrites from new writes.
Thus, SCS-Token unnecessarily throttlesB. With Split-
Token,B’s throughput does not reach 1 MB/s for “read-
seq” because the intermingled I/Os fromA andB are no
longer sequential; we charge it to bothA andB.

We finally evaluate Split-Token for a large number of
threads; we repeat the six workloads of Figure14, this
time varying the number ofB threads performing the I/O
task (all threads ofB share the same I/O limit). Figure15
shows the results. For sequential read, the number of
B threads has no impact onA’s performance, as desired.
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Figure 15: Split-Token Scalability. A’s throughput is
shown as a function of the number ofB threads performing a
given activity. Goal performance is 101.7 MB (these numbers
were taken on a 32-core CloudLab node with a 1 TB drive).

We do not show random read, sequential write, or ran-
dom write, as these lines would appear the same as the
read-sequential line (varying at most by 1.7%). However,
whenB is reading or writing to memory,A’s performance
is only steady ifB has 128 threads or less. Since theB

threads do not incur any disk I/O, our I/O scheduler does
not throttle them, leaving theB threads free to dominate
the CPU, indirectly slowingA. To confirm this, we do an
experiment (also shown in Figure15) whereB threads
simply execute a spin loop, issuing no I/O;A’s perfor-
mance still suffers in this case. This reminds us of the
usefulness of CPU schedulers in addition to I/O sched-
ulers: if a process does not receive enough CPU time,
it may not be able to issue requests fast enough to fully
utilize the storage system.

5.4 Implementation Effort
Implementing different schedulers within the split frame-
work is not only possible, but relatively easy: Split-AFQ
takes∼950 lines of code to implement, Split-Deadline
takes∼750 lines of code, and Split-Token takes∼950
lines of code. As a comparison, Block-CFQ takes more
than 4000 lines of code, Block-Deadline takes∼500
lines of code, and SCS-Token takes∼2000 lines of code
(SCS-Token is large because there is not a clean separa-
tion between the scheduler and framework).

6 File System Integration
Thus far we have presented results with ext4; now, we
consider the effort necessary to integrate ext4 and other
file systems, in particular XFS, into the split framework.

Integrating a file system involves (a) tagging relevant
data structures the file system uses to represent I/O in
memory and (b) identifying the proxy mechanisms in the
file system and properly tagging the proxies.

In Linux, part (a) is mostly file-system independent
as many file systems use generic page buffer data struc-
tures to represent I/O. Both ext4 and XFS rely heavily on
thebuffer head structure, which we already tag prop-
erly. Thus we are able to integrate XFS buffers with split
tags by adding just two lines of code, and ext4 with less
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Figure 16:Isolation: Split-Token with XFS. This is the
same as Figure6 and Figure14, but for XFS running with our
Split implementation of token bucket.

1 2 4 8 16 32
0

20

40

60

80

100

std dev: 3.0 MB
(3.3% of mean)

std dev: 5.4 MB
(15.3% of mean)

ext4

xfs

A
s 

M
B

/s

Create Interval (ms)
1 2 4 8 16 32

0

10

20

30

40

50

ext4

xfsB
’s

 c
re

at
es

/s

Create Interval (ms)

Figure 17:Metadata: Split-Token with XFS and ext4.
ProcessA sequentially reads whileB creates and flushes new,
empty files.A’s throughput is shown as function of how long
B sleeps between operations (left).B’s create frequency is also
shown for the same experiments (right).

than 10 lines. In contrast, btrfs [33] uses its own buffer
structures, so integration would require more effort.

Part (b), on the other hand, is highly file-system spe-
cific, as different file systems use different proxy mech-
anisms. For ext4, the journal task acts as a proxy when
writing the physical journal, and the writeback task acts
as a proxy when doing delayed allocation. XFS uses
logical journaling, and has its own journal implementa-
tion. For a copy-on-write file system, garbage collection
would be another important proxy mechanism. Properly
tagging these proxies is a bit more involved. In ext4,
it takes 80 lines of code across 5 different files. For-
tunately, such proxy mechanisms typically only involve
metadata, so for data-dominated workloads, partial inte-
gration with only (a) should work relatively well.

In order to verify the above hypotheses, we have fully
integrated ext4 with the split framework, and only par-
tially integrated XFS with part (a). We evaluate the ef-
fectiveness of our partial XFS integration on both data-
intensive and metadata-intensive workloads.

Figure 16 repeats our earlier isolation experiment
(Figure13), but with XFS; these experiments are data-
intensive. Split-Token again provides significant isola-
tion, with A only having a deviation of 12.8 MB. In fact,
all the experiments we show earlier are data intensive,
and XFS has similar results (not shown) as ext4.
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Figure 18: SQLite Transaction Latencies. 99th and
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Figure 17 shows the performance of a metadata-
intense workload for both XFS and ext4. In this exper-
iment, A reads sequentially whileB repeatedly creates
empty files and flushes them to disk withfsync. B is
throttled,A is not. B sleeps between each create for a
time varied on the x-axis. As shown in the left plot,B’s
sleep time influencesA’s performance significantly with
XFS, but with ext4A is isolated. The right plot explains
why: with ext4,B’s creates are correctly throttled, re-
gardless of how longB sleeps. With XFS, however,B
is unthrottled because XFS does not give the scheduler
enough information to map the metadata writes (which
are performed by journal tasks) back toB.

We conclude that some file systems can be partially in-
tegrated with minimal effort, and data-intense workloads
will be well supported. Support for metadata workloads,
however, requires more effort.

7 Real Applications
In this section, we explore whether the split framework
is a useful foundation for databases (§7.1), virtual ma-
chines (§7.2), and distributed file systems (§7.3).

7.1 Databases
To show how real databases could benefit from Split-
Deadline’s low-latencyfsyncs, we measure transaction-
response time for SQLite3 [26] and PostgreSQL [10]
running with both Split-Deadline and Block-Deadline.

7.1.1 SQLite3
We run SQLite3 on a hard disk drive. For Split-Deadline,
we set short deadlines (100 ms) forfsyncs on the write-
ahead log file and reads from the database file and set
long deadlines (10 seconds) forfsyncs on the database
file. For Block-Deadline, the default settings (50 ms for
block reads and 500 ms for block writes) are used. We
make minor changes to SQLite to allow concurrent log
appends and checkpointing and to set appropriate dead-
lines. For our benchmark, we randomly update rows in a
large table, measure transaction latencies, and run check-
pointing in a separate thread whenever the number of
dirty buffers reaches a threshold.

Figure18(a) shows the transaction tail latencies (99th
and 99.9th percentiles) when we change the checkpoint-
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Figure 19: PostgreSQL Transaction Latencies. A
CDF of transaction latencies is shown for three systems. Split-
Pdflush is Split-Deadline, but with pdflush controlling write-
back separately.

ing threshold. When checkpoint thresholds are larger,
checkpointing is less frequent, fewer transactions are af-
fected, and thus the 99th line falls. Unfortunately, this
approach does not eliminate tail latencies; instead, it con-
centrates the cost on fewer transactions, so the 99.9th
line continues to rise. In contrast, Figure18(b) shows
that Split-Deadline provides much smaller tail latencies
(a 4× improvement for 1K buffers).

7.1.2 PostgreSQL
We run PostgreSQL [10] on top of an SSD and bench-
mark it using pgbench [4], a TPC-B like workload. We
change PostgreSQL to set I/O deadlines for each worker
thread. We want consistently low transaction latencies
(within 15 ms), so we set the foregroundfsync deadline
to 5 ms, and the background checkpointingfsync dead-
line to 200 ms for Split-Deadline. For Block-Deadline,
we set the block write deadline to 5 ms. For block reads,
a deadline of 5 ms is used for both Split-Deadline and
Block-Deadline. Checkpoints occur every 30 seconds.

Figure 19 shows the cumulative distribution of the
transaction latencies. We can see that when running on
top of Block-Deadline, 4% of transactions fail to meet
their latency target, and over 1% take longer than 500 ms.
After further inspection, we found that the latency spikes
happen at the end of each checkpoint period, when the
system begins to flush a large amount of dirty data to
disk usingfsync. Such data flushing interferes with
foreground I/Os, causes long transaction latency and low
system throughput. The database community has long
experienced this “fsync freeze” problem, and has no
great solution for it [2, 9, 10]. We show next that Split-
Deadline provides a simple solution to this problem.

When running Split-Deadline, we have the ability to
schedulefsyncs and minimize their performance impact
to foreground transactions. However,pdflush (Linux’s
writeback task) may still submit many writeback I/Os
without scheduler involvement and interfere with fore-
ground I/Os. Split-Deadline maintains deadlines in this
case by limiting the amount of datapdflush may flush
at any given time by throttling write system calls. In Fig-
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Figure 20: QEMU Isolation. This is the same as Fig-
ure 14, but processesA and B run in different QEMU virtual
machines ext4 on the host.B is throttled to 5 MB/s. Reported
throughput is for the processes at the guest system-call level.

ure 19 we can see that this approach effectively elimi-
nates tail latency: 99.99% of the transactions are com-
pleted within 15 ms. Unfortunately, the median transac-
tion latency is much higher because write buffers are not
fully utilized.

When pdflush is disabled, though, Split-Deadline
has complete control of writeback, and can allow more
dirty data in the system without worrying about untimely
writeback I/Os. It then initiates writeback in a way that
both observes deadlines and optimizes performance, thus
eliminating tail latencies while maintaining low median
latencies, as shown in Figure19.

7.2 Virtual Machines (QEMU)
Isolation is especially important in cloud environments,
where customers expect to be isolated from other (po-
tentially malicious) customers. To evaluate our frame-
work’s usefulness in this environment, we repeat our
token-bucket experiment in Figure14, this time running
the unthrottled processA and throttled processB in sep-
arate QEMU instances. The guests run a vanilla kernel;
the host runs our modified kernel. Thus, throttling is on
the whole VM, not just the benchmark we run inside. We
use an 8 GB machine with a four-core 2.5 GHz CPU.

Figure20 shows the results for QEMU running over
both SCS and Split-Token on the host. The isolation re-
sults forA (left) are similar to the results when we ranA
andB directly on the host (Figure14): with Split-Token,
A is always well isolated, but with SCS,A experiences
major slowdowns whenB does random I/O.

The throughput results forB (right) are more interest-
ing: whereas before SCS greatly slowed memory-bound
workloads, now SCS and Split-Token provide equal per-
formance for these workloads. This is because when a
throttled process is memory bound, it is crucial for per-
formance that a caching/buffering layer exist above the
scheduling layer. The split and QEMU-over-SCS stacks
have this property (and memory workloads are fast), but
the raw-SCS stack does not.
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Figure 21:HDFS Isolation. Solid-black and gray bars rep-
resent the total throughput of throttled and unthrottled HDFS
writers, respectively. Dashed lines represent an upper bound
on throughput; solid lines represent Block-CFQ throughput.

7.3 Distributed File Systems (HDFS)
To show that local split scheduling is a useful founda-
tion to provide isolation in a distributed environment, we
integrate HDFS with Split-Token to provide isolation to
HDFS clients. We modify the client-to-worker protocol
so workers know which account should be billed for disk
I/O generated by the handling of a particular RPC call.
Account information is propagated down to Split-Token
and across to other workers (for pipelined writes).

We evaluate our modified HDFS on a 256-core Cloud-
Lab cluster (one NameNode and seven workers, each
with 32 cores). Each worker has 8 GB of RAM and a
1 TB disk. We run an unthrottled group of four threads
and a throttled group of four threads. Each thread se-
quentially writes to its own HDFS file.

Figure 21(a) shows the result for varying rate limits
on the x-axis. The summed throughput (i.e., that of both
throttled and unthrottled writers) is similar to through-
put when HDFS runs over CFQ without any priorities
set. With Split-Token, though, smaller rate caps on the
throttled threads provide the unthrottled threads with bet-
ter performance (e.g., the gray bars get more throughput
when the black bars are locally throttled to 16 MB/s).

Given there are seven datanodes, and data must be
triply written for replication, the expected upper bound
on total I/O is(ratecap/3) ∗ 7. The dashed lines show
these upper bounds in Figure21(a); the black bars fall
short. We found that many tokens go unused on some
workers due to load imbalance. The hashed black bars
represent the potential HDFS write I/O that was thus lost.

In Figure 21(b), we try to improve load balance by
decreasing the HDFS block size from 64 MB (the de-
fault) to 16 MB. With smaller blocks, fewer tokens go
unused, and the throttled writers achieve I/O rates nearer
the upper bound. We conclude that local scheduling
can be used to meet distributed isolation goals; however,
throttled applications may get worse-than-expected per-
formance if the system is not well balanced.
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8 Related Work
Multi-Layer Scheduling: A number of works argue
that efficient I/O scheduling requires coordination at
multiple layers in the storage stack [45, 50, 52, 56].
Riskaet al. [40] evaluated the effectiveness of optimiza-
tions at various layers of the I/O path, and found that
superior performance is yielded by combining optimiza-
tions at various layers. Redline [56] tries to avoid system
unresponsiveness duringfsync by scheduling at both the
buffer cache level and the block level. Argon [50] com-
bines mechanisms at different layers to achieve perfor-
mance insulation. However, compared to these ad-hoc
approaches, our framework provides a systematic way
for schedulers to plug in logic at different layers of the
storage stack while still maintaining modularity.

Cause Mapping and Tagging:The need for correctly
accounting resource consumption to the responsible en-
tities arises in different contexts. Bangaet al. [14] found
that kernel consumes resources on behalf of applications,
causing difficulty in scheduling. The hypervisor may
also do work on behalf of a virtual machine, making
it difficult to isolate performance [24]. We identify the
same problem in I/O scheduling, and propose tagging
as a general solution. Both Differentiated Storage Ser-
vices (DSS) [35] and IOFlow [48] also tag data across
layers. DSS tags the type of data, IOFlow tags the type
and cause, and split scheduling tags with a set of causes.

Software-Defined Storage Stack: In the spirit of
moving toward a more software-defined storage (SDS)
stack, the split-level framework exposes knowledge and
control at different layers to a centralized entity, the
scheduler. The IOFlow [48] stack is similar to split
scheduling in this regard; both tag I/O across layers and
have a central controller.

IOFlow, however, operates at the distributed level; the
lowest IOFlow level is an SMB server that resides above
a local file system. IOFlow does not address the core
file-system issues, such as write delegation or ordering
requirements, and thus likely has the same disadvantages
as system-call scheduling. We believe that the prob-
lems introduced by the local file systems, which we iden-
tify and solve in this paper, are inherent to any storage
stack. We argue any complete SDS solutions would need
to solve them and thus our approach is complementary.
Combining IOFlow with split scheduling, for example,
could be very useful: flows could be tracked through hy-
pervisor, network, and local-storage layers.

Shueet al. [46] provision I/O resources in a key-
value store (Libra) by co-designing the application and
I/O scheduler; however, they noted that “OS-level ef-
fects due to filesystem operations [ . . . ]are beyond Libra's
reach”; building such applications with the split frame-
work should provide more control.

Exposing File-System Mechanisms: Split-level
scheduling requires file systems to expose certain mecha-
nisms (journaling, delayed allocation, etc.) to the frame-
work by properly tagging them as proxies. Others have
also found that exposing file-system information is help-
ful [20, 37, 55]. For example, in Featherstitch [20], file-
system ordering requirements are exposed to the outside
as dependency rules so that the kernel can make informed
decisions about writeback.

Other I/O Scheduling Techniques: Different ap-
proaches have been proposed to improve different as-
pects of I/O scheduling: to better incorporate rotational-
awareness [28, 29, 44], to better support different stor-
age devices [30, 36], or to provide better QoS guaran-
tees [23, 32, 39]. All these techniques are complemen-
tary to our work and can be incorporated into our frame-
work as new schedulers.

9 Conclusion
In this work, we have shown that single-layer sched-
ulers operating at either the block level or system-
call level fail to support common goals due to a lack
of coordination with other layers. While our experi-
ments indicate that simple layering must be abandoned,
we need not sacrifice modularity. In our split frame-
work, the scheduler operates across all layers, but is
still abstracted behind a collection of handlers. This
approach is relatively clean, and enables pluggable
scheduling. Supporting a new scheduling goal sim-
ply involves writing a new scheduler plug-in, not re-
engineering the entire storage system. Our hope is that
split-level scheduling will inspire future vertical integra-
tion in storage stacks. Our source code is available at
http://research.cs.wisc.edu/adsl/Software/split.
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