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Abstract formation required to perform such scheduling is hid-

In this paper we describe research that has been on-goih'g1wifjen 8belh6|n(; éhe:% g |s3k3|ntte) rfaCﬁ).hManyhother exgmple.s EX'
our group for the past four years eamantically-smartdisksys-'St[ 16, 23, 32, 33, but all have the same flavor: the

tems A semantically-smart system goes beyond typical bIc)(:E__eswed functionality requires information from both the

based storage systems by extracting higher-level infoomat igher-level systeme(g, the file systemandthe lower-

from the stream of traffic to disk; doing so enables new and itg_vel system¢.g, th? disk). ) o

teresting pieces of functionality to be implemented witliw-  ON€ Natural solution to this problemis simply to change

level storage systems. We first describe the developmentrof §1€ interface to storage [1, 11]. However, such change is

efforts over the past four years, highlighting the key tesbgies raughtwith peril, requiring broad industry consensus and

needed to build semantically-smart systems as well as tire m&@Ssive upheaval in existing infrastructure.

weaknesses of our approach. We then discuss future dinectio Hence, we embarked on an alternate course: what

in the design and implementation of smarter storage systemswould be required to build the storage systems of tomor-
) row despite the limitations of today’s interfaces? Many re-

1 Introduction searchers (including ourselves) have taken the “high road”

For the past four years our group has been working igyvards this end, _building file systems that have more
new ways to increase the functionality, performance, refvareness of the disk system underr:eath [5, 6 7,8,22,23,
ability, and security of storage systems. Our approach f4s 31]; here, we instead chose the “low road” of enhanc-

been consistent throughout: how can we build the stord§8 Iow:IeveI storage systems with knowledge of the file
systems of tomorrow, while living within the constraintSyStem’s above them. One motivating reason for choosing

of the real world? This notion of “design within con-t_he storage system as the target of innovation was a prac-

straint” is one of the major research thrusts of our grodffFal one: the multi-billion dollar storage industry large
too often, in the real world, one must deal with how thing&!ilds and ships block-level storage systems.
are rather than how we want them to be. In this paper, we thus describe our work on
In the world of storage, one of the main constraints ofgmantically-smart disk systemAs compared to a typ-
encounters is that presented by the interface to stord§a! “dumb” storage device, a semantically-smart system
Typically, a disk or RAID presents a linear array of blockdas knowledge of file system data structures and opera-
to clients; each block can be read or written (SCSI istighs, and can use this knowledge to build new and in-
good example [21]). This interface has many advantagtesting storage systems. Our work has focused on im-
primarily in that it is a simple and portable way for fil?roving the performance [3, 30], reliability [29], and secu
systems and other direct clients of storage to access difk[27] of storage systems, by applying novel techniques
drives. Virtually all of the complexity in head positioningnot possible in typical devices.
error handling, and other details of drive access are hiddeVe present the development of our work over the past
from the client. four years, discussing key pieces of technology and re-
However, such a high-level abstraction has its dowfiecting on how each step led us down new paths. We
sides as well. As Lampson famously said, “Don't hidéen discuss how such technology may filter into the in-
power” [15]; unfortunately, the array-based interface @ustrial world, and the likely utility of semantically-sma
storage does just that, preventing a large number teghniques over time. The most surprising aspect of our
interesting and useful pieces of functionality from bevork was the need for sound theoretical underpinnings;
ing implemented. For example, research suggests thath theory and practice are required to build correctly
rotationally-aware disk schedulers would greatly improfignctioning semantically-smart disks.
performance [14, 25]; unfortunately, the low-level in- The rest of the paper is organized as follows. In Sec-



tion 2, we provide background, describing our work ithem. It soon became clear that the very simple inter-
gray-boxtechnigues. We then present the first and secdiade to storage, while having many benefits [33], is also
generation of semantically-smart disk prototypes, in Segquite limited [8, 11]. Many interesting optimizations and
tions 3 and 4, respectively. We discuss the importancessthancements to functionality require information from
a theoretical framework in Section 5, present future direeeththe file system and the storage system; however, such

tions in Section 6, and conclude in Section 7. information is difficult to come by, as neither layer in this
“storage stack” has information about the other layer.
2 BaCkground One possible solution to this “information gap” is to

Our work in semantically-smart disk systems finds ifange the interface to storage; indeed, many people have
roots in our earlier research gray-boxtechniques [2, 4, been advocating such a change for years [1, 11]. How-
7, 17]. The basic idea behind the gray-box approach&¥er. such change is problematic, for the following rea-
quite simple: when you are building a component with#PNS- First, the broad industry consensus required to in-
a system, you often have a great deal of knowledge%ﬁntiate such a change is enormous; not only would disks
how the other components of that system are desiglﬂfdj RAIDs have to add new capabilities, but the clients of
and implemented. By taking advantage of the knowledgech systems would also have to migrate to use them be-
within the component you are building, you are exploitingre the benefits were obvious (a “chicken-and-egg” prob-
the fact that these other components arehtatk boxes lem). Second, changing to a successful new interface re-
rather, their inner-workings are known and hence can @iires one to anticipate many possible usage scenarios;
exploited. However, the knowledge that you have of oth@@wever good the design team, it is unlikely that all rele-
components is not perfedtd., they are nothite boxes vant situations would be taken into account. Finally, such
Hence, dealing with this imperfect knowledge is often @ange is expensive; huge investments are likely required
critical challenge in leveraging gray-box techniques. ~ t0 enable them and make them pervasive.

As an example, consider an application that is goingGiven the problem presented by the limited interface
to scan through a set of files. If the application knovwétween file systems and storage, and given that an ex-
whether the underlying operating system has some Riicit interface change was unattractive for a variety of
these files in its cache, and the application has the fle§§asons, we soon found ourselves wondering: how far
bility to choose the order of access, it should likely accegguld we get if we didn't change the interface? What
cached files first. Doing so improves latency (the files ih instéad, we built “smarter” storage systems, that ei-
cache are accessed more quickly) as well as bandwitht@r learned or inferred information about the file systems
(if other files were accessed first, they may displace tAOVe them? In essence, could we obtain many of the ben-
files in cache and thus the operating system would havef#is of a new interfacaithoutrequiring a change to the
fetch them from disk again). storage interface?

The problem that arises in our example is that a giv ; ;
operating system may not reveal this information. Thu? First-Generation SyStemS
the challenge becomes: how can we take advantage of lbwas with this mindset that we began work on our first ef-
gray-box knowledge of operating systeme.( that they fort about semantically-smart storage systems, published
have caches, and that their cache replacement policiesiafeAST '03 [30]. This work had three major thrusts: a
relatively well-known) to determine what the likely contool (EOF) that could be used to automatically infer data
tents of the cache are? structures of a client file system, a set of run-time tech-

Many different approaches are possible. For exampques that a disk requires to determine relevant pieces
some of our earlier work demonstrated the utility of prolof file system information, and a collection of case stud-
ing the cache [2]; by accessing a few blocks of a givées to demonstrate the utility of semantic-awareness in
file, and timing how long it takes to access them, an agtorage. An additional case study was later published in
plication can determine whether the file is present withiBCA'04 [3]. We now discuss these pieces in turn, de-
the cache (with high probability). Subsequent work togicribing the challenges of each as well as what we learned.
a different route: by first learning the behavior of th . .
cache-replacement algorithra.g, whether it is recency- %_1 Offllne.Techmques: ) )
or frequency-based and whether it uses history to make EXtracting Static Information with EOF
replacement decisions), an application can then simul@er first challenge was a simple one: how would a disk
the replacement algorithm and build a reasonably accuratdR AID system gain knowledge of file system data struc-
model of the contents of the cache [4]. tures? One approach is to simply embed static file system

After this initial line of work targeting the application-information within the disk or RAID itself; such a sys-
OS boundary, we began to consider the interface betwéem comes built-in with knowledge of the file system data
file systems and the block-level storage systems benesttiactures and their locations on disk. Although this is



the approach we take in later work, we initially felt sucknooping Indirect blocks can be similarly identified.
an approach was too limiting and wondered if we could A second technique we calilock association This
automate the process. technique is used to connect related blocks in a simple
EOF (for “Extraction Of File systems”) is a tool thatand efficient manner. For example, when a data block is
does just that. The basic operation is simple. First, a userad or written, it may be useful to know to which inode
level process on the host issues a series of disk requélsésblock belongs. A table that maps these associations
to the disk. Then, an in-disk agent monitors the resultaddlivers exactly this information.
traffic. By carefully controlling the exact file operations A final technique is what we termperation inferenc-
that are issued to the file system, EOF can infer a gréaj. With this method, a semantically-smart disk can in-
deal of knowledge about on-disk structures. fer when higher-level “operations” are invoked by the file
The technique that EOF usesdslationcombined with system above. For example, it may be useful to infer file
known patternsFor example, if two blocks get written tocreations or deletions. In aNux file system, these oper-
disk during a given test, and we know that one is a daitions can be detected by monitoring changes in file sys-
block and the other is an inode, we can identify each &sn state. For example, by observing a change in an inode
follows. First, we can fill the data block with a knowrbitmap, one can infer the creation or deletion of a file (a
pattern; by monitoring the contents of all written blocksit that was 0 set to 1 indicates a creation, and a bit at 1
the storage system can detect such data blocks. Then dgzoming 0 indicates deletion).
cause the disk knows that for the given workload, only
an inode and data block are written to disk, it can sud-3 Case Studies

cessfully isolate the inode block (it is the block that is n@tjith our basic infrastructure and techniques in place, we
filled with a known pattern). In this manner, EOF can agonstructed a set of prototype semantically-smart disks
quire a remarkable amount of detailed information aboit demonstrate their utility. Most of our prototypes were
the on-disk structures of the file system. built as software pseudo-device drivers and mounted be-
. . . neath real file systems. In a few cases (mentioned below),
3.2 On-llng Te.chnlques. . we utilized simulation to explore the given idea.
CIaSS|f!cat|on, ASS(?C|at|on' and The first case study we discuss is an in-disk implemen-
Operation Inferencing tation of track-aligned extents [23, 30]. The basic idea
Beyond EOF, we realized that an important compondrgre is to allocate files such that they fit within a track
within any semantically-smart disk system vaasline in-  if possible; by avoiding costly track-switches during file
ference Specifically, despite static knowledge, the diskccess, performance can be improved. Our disk-level im-
system needs to monitor current traffic to make inferenggementation used its semantic knowledge of file system
about the state of the file system. structures to influence file system placement to become
For example, the disk system may wish to knotvack-aligned; specifically, by marking blocks that are on
whether a given block is live or dead. To make such &m@ck boundaries as allocated, the disk can coerce the file
inference, simply knowing the static location of bitmapsystem into allocating files in the proper manner. The re-
is not enough; rather, one must examine the contentssoiting performance improvement was noticeable (40%).
the bitmap (it is actually more complicated that this, as Our second case study focuses on caching. This sys-
we will see in Section 4). tem, known as X-RAY [3], tries to infer the contents of
Hence, we developed a set of basic on-line techniqubs OS cache by monitoring the stream of traffic the disk
that semantically-smart disk systems could use to gargenerates. The key insight in X-RAY is that every time a
this type of knowledge. The first and most basic is calléile is read, its inode is updated with a new access time and
direct classification With this technique, the disk systeneventually flushed to disk. By watching for inode access-
examines the block address of a read or write request &inte updates, X-RAY can build a coarse model of what is
uses it to determine the type of the block. For examplejifthe OS cache. Once X-RAY knows what is in the cache
a read or write is directed to the inode region of the disibove, it can do a better job of managing its own cache,
simply checking the address is sufficient to determine that aiming at exclusivity [34]. Simulations show that per-
the given block contains inodes. formance can be dramatically improved with the smarter
A slightly more sophisticated form of classification isecond-level caching strategy X-RAY employs.
known asindirect classification With this technique, one The final case study we focus on here is the im-
examines the contents of other blocks to determine thiementation of journaling beneath a non-journaling file
type of a given block. For example, to determine thatsystem [30]. This turned out to be the most difficult
block holds directory contents (in a typicaNwx file sys- case study to implement. At block level, what the
tem), one must examine the inode that points to this blodemantically-smart disk tries to infer is when a file sys-
we call the process of monitoring inode contemmsde tem “transaction” is taking places.g, when a group of



related updates are occurring. What makes this challedg- Second-Generation Systems

ing is file system behavior; becausg file systems funq3ar second generation of semantically-smart proto-

mentally .delay, relorder, and_ slomeymes fllter. out ope pes took semantically-smart technology to new heights,

tions to disk, the disk has a difficult time decoding exact reatly increasing our own understanding of how such

wh_at has happenled. Our solu_tlon to this problem at t stems could work. We also began to see the limitations
point was 5|mp_le. mount the file system synchronogs f the approach, which we believe was only possible be-

thus guaranteem_g that all updates are reflected tq d'SIE(LﬂJse of the extremes to which we pushed the technology.
a complete and timely manner. The result was a disk t e primary contribution of this work is understanding

implemented journaling with all its associated b.enefits URaw to operate under file systems with asynchronous op-
der a non-journaling file system (in this case, Linux ethérations when correctness is required

This second generation of semantically-smart systems
3.4 Lessons Learmned is comprised o?two in-depth case studi{zs: D-GI}?/AID,
Our first year of working on the project thus yielded manyhich is a RAID array that degrades gracefully [29], and
interesting results. We saw that we could infer marF;ADED’ a Secure_de'eting disk that Operates under asyn-
on-disk structures automatically, through the techniqug$ronous file systems [27] (hence removing the major
we developed for EOF. We also developed numerous Gifitation in our earlier attempt at secure delete [30]).

tem and infer which operations it was invoking. Finallyearned through these two works.

through our case studies, we observed the great potential
semantically-smart disk systems had, enabling new ahd. D-GRAID: Degrading Gracefully
interesting storage functionality, all without changefte t D-GRAID [29] exploits semantic intelligence within a
file system above. disk array to place file system structures across disks in
Our initial work also demonstrated numerous difficul fault-contained manner. Thus, when an unexpected fail-
ties with our approach. We had originally thought there of second disk occurs [12], D-GRAID continues to op-
on-line techniques would be challenging to develop; vegate, serving those files that can still be accessed. There
soon understood that the asynchronous nature of magke two key techniques D-GRAID uses to provide this
ern file systems would greatly complicate any on-line itnigher level of availability.
ference we wished to perform. Clearly there was moreThe first technique is teeplicate naming and meta-
to be understood here. We also came to see that efata structuresf the file system to a high degree while
bedding static information about data structures in a digking standard redundancy techniques for data. Thus,
was probably reasonable; on-disk data structures tendpith a small amount of overhead, excess disk failures do
evolve slowly and there are not too many file systems ot render the entire array unavailable. Instead, theeentir
the world. Hence, we did not work to improve EOF or theirectory hierarchy can still be traversed, and only some
automatic data structure inference tools, instead asguaction of files will be missing, proportional to the num-
any semantically-smart would ship with built-in knowlber of missing disks.
edge of important file system structures. The second technique fault-isolated data placement
We also were surprised to learn of the difficulties dofo ensure that meaningful units of data are available un-
working underneath the Linux ext2 file system. We chosler failure, D-GRAID places semantically-related blocks
ext2 because we thought it would be the simplest to ofe-g, the blocks of a file) within the storage array’s unit
erate underneath; instead, it soon proved to be the mofstault-containment €.g, a disk). By observing the
challenging. The primary reason for this hardship wastural failure boundaries found within an array, fail-
the laissez fairemanner in which ext2 writes blocks toures make semantically-related groups of blocks unavail-
disk: unlike most Wix-based file systems, ext2 imposeable, leaving the rest of the file system intact. Unfortu-
no ordering of any kind on disk writes, making semantitately, fault-isolated data placement improves availabil
inference quite challenging (as we discuss furthégin ity at a cost; related blocks are no longer striped across
Our broadest conclusion from this work came from otine drives, reducing the parallelism found within most
experience with case studies. It was clear that with eadRAID techniques [10]. To remedy this, D-GRAID imple-
case study, we had learned a lot about the technologgntsaccess-driven diffusioto improve throughput to
needed to build semantically-smart systems. Hence,ftequently-accessed files, by copying the blocks of “hot”
develop the technology further, we would need to find ifiles across the drives of the system.
teresting pieces of storage functionality to develop in theUnderneath Linux ext2, determining which blocks are
semantically-smart way. We found ourselves ruminatisgmantically-related is challenging because blocks are dy
about the possibilities. We were looking for one such biamically typed €.g, a block can be a user-data block, an
of functionality, but we were lucky: we found two. indirect-pointer block, or a directory-data block) and be-



cause the order of writes from the file system to disk carays: FADED may see that the corresponding bit in the
be arbitrary. As a result, the storage system cannot alwajtsnap is cleared (indicating the block has been freed), the
accurately classify the type of each block. For exampleganeration count in an inode is incremented (indicating
block B filled with indirect pointers can only be identifiedhe inode has been freed and reallocated), or the block is
as such by observing the corresponding indge,How- pointed to by a different inode (indicating the block has
ever, due to the reordering behavior of the file systembiten freed and then reallocated to a different file).
is possible that in the time between the disk writes of theThe challenge we address is that, again given reorder-
inode and the indirect block, blodk was freed from the ing and reuse in the file system, when a block is pointed
original inode and was reallocated to another file as a @5y a different inode, FADED cannot definitively know
mal data block. The disk cannot know this since the o@hether the current contents of the block are those for the
erations took place in memory and were not reflecteddgw or the old file. FADED deal with such uncertainty by
disk. Thus, the inference made by the semantic disk g&&ing conservative and converting an apparent correctness
be wrong due to the inherent staleness of the informati@aomem into a performance problerioe(, FADED may
D-GRAID deals with this uncertainty by allowing theperform more shredding operations than required). The
fault-isolated placement of a file to be compromised formaechanism we introduce is that ofcanservative over-
limited amount of time. However, this time is boundedyrite, which erases past layers of data on the block, but
because once the inode of a file is written, D-GRAID wileaves the current contents of the block intact. Using con-
detect the correct classification and move the block agrvative overwrites means that valid data can never be
cordingly. D-GRAID contains further optimizations tdnadvertently shredded, but it also has an associated over-
reduce the number of misclassifications by checking th@gad: certain suspicious blocks need to be tracked and
the contents of possible indirect blocks appear val@, ( shredded multiple times.
they contain some number of valid unique pointers or nulln our prototype implementation, we found that two
pointers, and only the first so many slots are non-null). minor changes were needed in ext2 to operate correctly
We implemented D-GRAID under both ext2 and VFATgn top of FADED: the first ensures that file truncates
and overall, D-GRAID behaves as desired. Our analygige treated as deletes; the second ensures that our inabil-
shows that D-GRAID allows users to access files wh@f to definitively classify indirect blocks does not lead
additional disk failures occur within the RAID; with nam+g missed deletes. When using FADED under a typi-
ing and meta-data replication, the percentage of acceggir UNIX workload, we find that the implicit inferences
ble files matches the percentage of working disks. EVgAd conservative overwrites impose approximately a 10%

better, if we utilize “process availability” as the figure opyerhead compared to a disk with perfect information.
merit (.e., the number of processes that run unaffected un-

der disk failure), D-GRAID degrades much better than the
expected linear drop-off, because many processes accdeg's Lessons Learned
no user files and therefore run successfully even if mas§ implementing these two challenging case studies, we

storage is unavailable. learned a great deal about semantically-smart disk sys-
tems and the fundamental challenges they pose to system
4.2 FADED: Gone and Forgotten designers. The mostimportant lesson was that living with

Smarter storage systems need to understand whethgertainty is at the core of building such systems; due to
blocks are live or dead [32, 35]. We have investigatéde asynchronous nature of file systems, in the worst case
how block liveness can be inferred within semanticallyhe disk system receives incomplete information regard-
smart storage; specifically, we have explored the difficiig the state of the file system at a given time.
case of how to infegenerational livenesshat is, whether  We also learned that despite this imprecision, interest-
a block currently belongs to a given live file. In thisng prototypes can still be constructed. Through careful
context, we implemented FADED (A File-Aware Datadesign, both D-GRAID and FADED worked around the
Erasing Disk), which implementecure deleteensuring lack of complete information and achieved their goals.
that deleted data cannot be recovered from the disk [28bwever, in many cases subtle reasoning was required in
Secure delete functionality pushes on the disk’s ability ésder to build robust working prototypes that handled all
perform correct inferences: a false positive in detectingarner cases. Indeed, many times we were deep into an
delete leads to irrevocable deletion of valid data, whilei@plementation and only then realized a problem with our
false negative results in deleted data being recoverableapproach, requiring us to go back to the drawing board
When FADED detects a file is deleted, FADEhreds and rethink what we were doing. The more we did this,
all of the blocks belonging to that file by overwriting eacthe more we realized that we needed more than just “being
block multiple times with specific patterns. The fact thaareful”; what we needed was a theory of how file systems
a block should be shredded can be detected in differand disks interacted.



5 Beyond Systems: Some Theory For example, imagine a disk array that performed smarter

We thus began an effort to build a more formal logic (ﬂ:efetchiqg by paying attention to file boundaries. Al-
file system and disk interactions [26]. Although this logik’0ugh this too requires semantic knowledge, it does not
began as a means for reasoning about semanticalIy-sr|’"f?;1‘}“fjlre much, and if it is wrong, only (perhaps) perfor-
disks, we soon realized that the possibilities were mulHrNce will suffer.
broader; indeed, such a logic could be used by file sysAAnother question is whether semantic inference can be
tem developers as well, to better understand the compéplied to other clients of disk systems, such as database
interactions between file systems and disks. management systems. We have already performed some
The logic begins with a set of basic entitiesontain- initial work along these lines [28], and have met with
ers pointers andgenerations A file system is simply mixed success; while some techniques translate readily,
a collection of containers, linked via pointers. When the more complex and specific data structures of a typi-
container is reused.€., freed and then used again), it repesal DBMS do complicate matters occasionally. However,
resents a new generation. some DBMS structures are ripe for the kind of reverse en-
The logic is then formulated throudbeliefsand ac- gineering we advocate; in particular the transaction log
tions A belief is used to model the state of the file syss replete with information about what the DBMS is cur-
tem, either on-disk or in-memory, and an action changestly doing and hence a likely candidate for future se-
the state of the file system (and hence which beliefs am@ntic technology.
true at a given time). Fundamental to understanding theaong these lines, we have also noticed that the sea
impact of actions on beliefs is trezderingamong the ac- change in modem file systems towards journaling is likely
tions, and hence special care must be taken in construc{iighake semantic inference easier rather than more diffi-
the temporal relationship between actions. Proofs aredi;i  As with a DBMS, a file system journal takes the
nally constructed by starting with basic axioms and applynaotic update sequence possible with a simple file sys-
ing a series obvent sequence substitutionsr example, (em sych as ext2 and turns it into an orderly and hence
if (o happens beforg) implies~y, then wherever we ob- 16 ynderstandable affair. Linux ext2 was perfect as a
serve that ¢ happens beforg), we can simply replace jie system to study semantically-smart disks underneath,
this subsequence with _ as it pushed us to deal with its extreme asynchrony and ar-
Some of our initial results are as follows. First, Wgjirary ordering of writes; future systems, if they are able

prove the correctness of existing file system ConSiSte”?(Xinterpret log contents, will likely be simpler and more
maintenance techniques such as soft updates [9]. Furtgggny verified as correct.

we also show how the Linux ext3 file system is need- . .

lessly conservative in how it performs transaction commit, O"€ major change to the storage interface, towards
demonstrating how the logic can be used to enable aggr%@_ect-based disks, may also be on the horizon [1]; with
sive performance optimizations. We show how the Iogﬂ:’Ch change, will the need for semantic inference be ob-

can aid in the development of new functionality, by build/ated? After all, these drives generally have more infor-
ing and analyzing the correctness afansistent undeleteMation about how they are being used by clients than typ-

functionality in Linux. ical block-based disks; for example, with a straight one-
Overall, we found that even a simple logical framewo

fip-one file-to-object mapping, the drive can easily deter-

such as ours was critical in the development of semarfii?® Which blocks are currently free. However, even in

technology. Wherever reasoning about disk interactionjuS evolved interface, we believe there is much room for

required, we believe that a more formal approach is Jg_rther inference ar_1d semantic technqlogy. For example,
quired to build robust and correct systems. directory structure is not a part of the interface, and jour-

. . naling file systems and databases will still place logs on
6 Future Directions disk; these structures and many others still require seman-

Throughout the semantic disks project, we learned a grgco‘tmference to become valuable sources of information
deal about file systems, disk systems, and their inter{Q. Storage systems.
tions. We now harness that experience to look forwardFinally, we believe that there is a broader place for se-
and ruminate on the possible future of semantic disk techantic inference technology than simply building better
nology in block-level storage and beyond. storage systems. Some current work of ours explores us-
One primary question regarding semantic techniquesng low-level tracing and fault injection to better under-
their applicability in the “real world”. As some of our casestand file system performance [13, 18] and failure charac-
studies are quite complex, it seems unlikely that an iteristics [19, 20]. As systems grow increasingly complex,
dustry that must fundamentally be conservative will adofatols to deconstruct their behavior will likely become an
our approach. Therefore we think that successful industegral part of the design, implementation, and mainte-
try adoption will be aimed at less radical case studiesance of said systems.



v

Conclusions

[16]

We have presented a retrospective of our work on
semantically-smart disk systems. This work began with
a simple question (“how smart can we make block-leviér!
disks without changing the disk interface?”) and evolved
into the development of a series of increasingly challeng-

ory for understanding file system and disk interactions. In
our modern world, avoiding the constraints placed upQg,
us by layering and other system structuring artifacts is
nearly impossible; with semantic inference, however, we

believe we have provided a means to reclaim some of wiat

is lost to the nature of such designs.
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