
Serverless Computation with OpenLambda

Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkataramani†,

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin, Madison † Unaffiliated

Abstract

We present OpenLambda, a new, open-source platform

for building next-generation web services and applica-

tions in the burgeoning model of serverless computation.

We describe the key aspects of serverless computation,

and present numerous research challenges that must be

addressed in the design and implementation of such sys-

tems. We also include a brief study of current web appli-

cations, so as to better motivate some aspects of server-

less application construction.

1 Introduction
The rapid pace of innovation in datacenters [18] and the

software platforms within them is once again set to trans-

form how we build, deploy, and manage online applica-

tions and services. In early settings, every application ran

on its own physical machine [17, 25]. The high costs of

buying and maintaining large numbers of machines, and

the fact that each was often underutilized, led to a great

leap forward: virtualization [20]. Virtualization enables

tremendous consolidation of services onto servers, thus

greatly reducing costs and improving manageability.

However, hardware-based virtualization is not a

panacea, and soon new lighter-weight technologies arose

to address its fundamental issues. One leading solution

in this space is containers, a server-oriented repackaging

of Unix-style processes with additional namespace virtu-

alization [37, 38]. Combined with distribution tools such

as Docker [37], containers enable developers to readily

spin up new services without the heavyweight provision-

ing and runtime overheads of classic virtual machines.

Common to both hardware-based and container-based

virtualization is the central notion of a server. Servers

have long been used to back online applications, but

new cloud-computing platforms foreshadow the end of

the traditional server. Servers are notoriously difficult

to configure and manage [28, 45, 46], and server startup

time severely limits an application’s ability to quickly

scale up and down.

As a result, a new model, called serverless computa-

tion, is poised to transform the construction of modern

scalable applications. Instead of thinking of applications

as collections of servers, developers instead define appli-

cations with a set of functions with access to a common

data store. An excellent example of this microservice-

H/W

VM VM

OS OS

runtime runtime

app app

OS

runtime

app

H/W H/W

OS

runtime runtime

app app

H/W

OS

runtime

app app

(2) virtual machines (3) containers (4) lambdas(1) no sharing

Figure 1: Evolution of Sharing. Gray layers are shared.

based platform is found in Amazon’s Lambda [4]; we

thus generically refer to this style of service construction

as the Lambda model.

The Lambda model has many benefits as compared

to more traditional, server-based approaches. Lambda

handlers from different customers share common pools

of servers managed by the cloud provider, so develop-

ers need not worry about server management. Handlers

are typically written in languages such as JavaScript or

Python; by sharing the runtime environment across func-

tions, the code specific to a particular application will

typically be small, and hence it is inexpensive to send the

handler code to any worker in a cluster. Finally, appli-

cations can scale up rapidly without needing to start new

servers. In this manner, the Lambda model represents the

logical conclusion of the evolution of sharing between

applications, from hardware to operating systems to (fi-

nally) the runtime environments themselves (Figure 1).

In this paper, we present the Lambda model and dis-

cuss pertinent research challenges. A Lambda execu-

tion engine must safely and efficiently isolate handlers

(§4.1). Handlers are inherently stateless, so there are

many opportunities for integration between Lambda and

database services (§4.5). Lambda load balancers must

make low-latency decisions while considering session,

code, and data locality (§4.7). We further explore new

challenges for just-in-time compilation (§4.2), package

management (§4.3), web sessions (§4.4), data aggrega-

tion, (§4.6), monetary cost (§4.8), and portability (§4.9).

Unfortunately, most existing implementations [4, 8,

10] (except OpenWhisk [9]), are closed and propri-

etary. In order to facilitate research on Lambda archi-

tectures (including our own, and hopefully others), we

are currently building OpenLambda, a base upon which

researchers can evaluate new approaches to serverless

computing (§5). This paper is a first step towards real-

izing the OpenLambda platform.

1



1s 2s 5s 10
s

20
s

50
s

0.
5s

0%
20%
40%
60%
80%

100% Elastic BSAWS Lambda

100*200ms

P
er

ce
nt

 o
f R

eq
s

Latency

Figure 2: Response Time. This CDF shows measured

response times from a simulated load burst to an Elastic BS

application and to an AWS Lambda application.

2 Lambda Background
To focus our attention on one specific implementation of

a Lambda environment, we consider the AWS Lambda

programming model. We describe the AWS Lambda pro-

gramming model (§2.1) and demonstrate some of its ad-

vantages over server-based models (§2.2).

2.1 Programming Model

The Lambda model allows developers to specify func-

tions that run in response to various events. We focus

on the case where the event is an RPC call from a web

application and the uploaded function is an RPC han-

dler. A developer selects a runtime environment (e.g.,

Python27), uploads the relevant code, and specifies the

name of the function that should handle events. The de-

veloper can then associate the Lambda with a URL using

the separate AWS gateway service [5]. Client-side code

can then issue RPC calls by issuing requests to the URL

(e.g., JavaScript may POST to the URL via AJAX).

Handlers can execute on any worker; in AWS, start-

up time for a new worker is approximately 1-2 seconds.

Upon a load burst, a load balancer can start a Lambda

handler on a new worker to service a queued RPC call

without incurring excessive latencies. However, calls

to a particular Lambda are typically sent to the same

worker(s) to avoid sandbox reinitialization costs [44].

Lambda functions are essentially stateless; if the same

handler is invoked on the same worker, common state

may be visible between invocations, but no guarantees

are provided. Thus, Lambda applications are often used

alongside a cloud database.

The developer can bound the resources that can uti-

lized by a handler (e.g., by setting memory and time

caps). In AWS, the cost of an invocation is proportional

to the memory cap (not the actual memory consumed)

multiplied by the actual execution time, as rounded up to

the nearest 100ms.

2.2 Lambda Advantages

A primary advantage of the Lambda model is its ability

to quickly and automatically scale the number of workers

when load suddenly increases. To demonstrate this, we

231s

0 5 10 15 20

P
O

S
T

G
E

T

Time (seconds)

Figure 3: Google Gmail. Black bars represent RPC

messages; gray bars represent other messages. The bar ends

represent request and response times. The bars are grouped as

POSTs and GETs; vertical positioning is otherwise arbitrary.

compare AWS Lambda to a container-based server plat-

form, AWS Elastic Beanstalk [6] (hereafter Elastic BS).

On both platforms we run the same benchmark for one

minute: the workload maintains 100 outstanding RPC

requests and each RPC handler spins for 200ms.

Figure 2 shows the result: an RPC using AWS Lambda

has a median response time of only 1.6s, whereas an RPC

in Elastic BS often takes 20s. Investigating the cause for

this difference, we found that while AWS Lambda was

able to start 100 unique worker instances within 1.6s to

serve the requests, all Elastic BS requests were served by

the same instance; as a result, each request in Elastic BS

had to wait behind 99 other 200-ms requests.

AWS Lambda also has the advantage of requiring con-

figuration for scaling. In contrast, Elastic BS configura-

tion is complex, involving 20 different settings for scal-

ing alone. Even though we tuned Elastic BS to scale

as fast as possible (disregarding monetary cost), it still

failed to spin up new workers for several minutes.

3 Lambda Workloads
Unfortunately, we do not yet have access to Lambda

workloads, as major web services (such as Gmail or

Facebook) were built before the serverless paradigm

arose. However, we can understand how future work-

loads may stress Lambda environments by analyzing

these existing services. Specifically, we analyze the

client-to-server patterns in an existing RPC-based appli-

cation: Google Gmail. Gmail uses RPCs from client-side

JavaScript to fetch dynamic content. JavaScript RPC li-

braries (e.g., AJAX) are based on the XHR interface [15]

which sends a POST or GET request over HTTP to a

backend server; arguments and return values are encoded

in URLs or message bodies (e.g., with JSON). We trace

these RPC calls using a Chrome extension that injects

wrappers; we correlate our RPC traces with Chrome’s

network trace. Our workload consists of refreshing the

inbox page (browser caches should be warm).

Figure 3 shows Gmail’s network I/O over time, di-

vided between GETs and POSTs. Gmail mostly uses

2



5m
s

10
m

s

20
m

s

50
m

s

10
0m

s

20
0m

s

0%
20%
40%
60%
80%

100% Elastic BS AWS Lambda
P

er
ce

nt
 o

f R
eq

s

Latency

Figure 4: Containers vs. Lambdas: Latency. The

lines represent a latency CDF for AWS Lambdas, and contain-

ers running in Elastic BS, with both services under low load.

50
0u

s

1m
s

2m
s

5m
s

10
m

s

20
m

s

50
m

s

10
0m

s

20
0m

s

50
0m

s

0%
20%
40%
60%
80%

100%

unpause
fresh start
restart

P
er

ce
nt

 o
f O

pe
ra

tio
ns

Delay (ms)

Figure 5: Readiness Latency. The lines represent three

readiness latency CDFs for three startup techniques.

POSTs for RPC calls and GETs for other requests; the

RPC calls represent 32% of all requests and tend to take

longer (92ms median) than other requests (18ms me-

dian). We see that there are two categories of RPC re-

quests: very short and very long requests.

The average time for short RPCs (those under 100ms)

is only 27ms. Since we only trace latency on the client

side, we cannot know how long the requests were queued

at various stages; thus, our measurements represent an

upper bound on the actual time for the RPC handler.

In our measurements, we also see a very long request

that takes 231 seconds, corresponding to 93% of the cu-

mulative time for all requests. Web applications often is-

sue such long-lived RPC calls as a part of a long polling

technique; when the server wishes to send a message to

the client, it simply returns from the long RPC [1].

Design Implications: Many RPCs are shorter than

the 100ms. On AWS Lambda, charges are increments

of 100ms, so these requests will cost at least 3.7× more

than if charges were more fine-grained. One solution

would be to design applications to do fewer, longer RPC

calls [42]; alternatively, reducing Lambda initialization

costs may enable enable fine-grained accounting. Appli-

cations also use long-lived RPCs to support server-side

pushes; these calls are presumably blocked, waiting for

updates. Unless Lambda environments provide special

support for these Lambdas, they will easily dominate the

cost of an application.

0 2 4 6 8 10 12 14 16
0

256

512

768

1024

mem
mem

mem

mem

bridge

paused
running

M
ax

 C
on

ta
in

er
s

Memory (GB)

Figure 6: Container Density. The maximum number

of containers a machine can run is shown vs. the amount of

memory available. Labels identify bottlenecks.

4 Research Agenda
We now explore many of the research problems in the

serverless-computing space.

4.1 Execution Engine

A sandbox for executing handlers is at the heart of the

Lambda architecture. AWS Lambda uses containers to

sandbox handlers [44], but avoids the overheads of Elas-

tic BS and other container-based services by sharing

servers and runtimes between different instances.

To amortize container startup costs, AWS Lambda

reuses the same container to execute multiple handlers

when possible. Unfortunately, even with this optimiza-

tion, Lambdas are significantly slower than containers

at low request volumes. Figure 4 shows results for the

same setup as in (§2.2), except for a steady light load in-

stead of a heavy burst. When load is light, latencies with

AWS Lambda are ten times worse than with Elastic BS.

If Lambdas are to compete with VM and container plat-

forms, base execution time must be improved.

In this section, we explore some of the basic tradeoffs

that arise when running Lambdas in containers. In par-

ticular, a container must be in a running state to handle

requests. When there are no requests, a container is ei-

ther paused or stopped.

Figure 5 compares the latencies of unpausing (switch-

ing from paused to running) and restarting (switching

from stopped to running) with the latency of a fresh

start. Restarting and fresh starting both takes hundreds

of milliseconds. In contrast, unpausing takes about 1ms.

Unfortunately, keeping containers paused entails a

high memory cost. Figure 6 shows how the number

of running or paused containers we can pack on a

machine corresponds to available memory. Each data

point shows the resource that prevents us from start-

ing new nodes. Memory is main bottleneck (we be-

lieve the network bridge bottleneck could easily be elim-

inated), and paused containers impose the same over-

head as running containers. Thus, there is a difficult

tradeoff between putting non-running containers in the

paused or stopped states. Reducing the memory costs

in paused and reducing the restart costs from stopped

are interesting research challenges.

3



4.2 Interpreted Languages

Most Lambdas are written in interpreted languages. For

performance, the runtimes corresponding to these lan-

guages typically have just-in-time compilers. JIT com-

pilers have been built for Java [14], JavaScript [26], and

Python [19] that optimize compiled code based on pro-

filing or tracing of the code as it executes statically.

Of course, the aggressiveness of these optimizations

presents a tradeoff. Expensive profiling may not be

worth the cost if the code only runs a short time, so the

HotSpot JVM [14] can be tuned to assume short-running

or long-running programs. Applying these techniques

with Lambdas is challenging because a single handler

may run many times over a long period in a Lambda

cluster, but it may not run enough on any one machine to

provide sufficient profiling feedback. Making dynamic

optimization effective for Lambdas may require sharing

profiling data between different Lambda workers.

4.3 Package Support

Lambdas can rapidly spin up because customers are en-

couraged to use one of a few runtime environments; run-

time binaries will already be resident in memory before a

handler starts. Of course, this benefit disappears if users

bundle large third-party libraries inside their handlers, as

the libraries need to be copied over the network upon

a handler invocation on a new Lambda worker. Such

bundling can increase startup latency by an order of mag-

nitude [3]. Lazily copying packages could partially ame-

liorate this problem [43].

Alternatively, the Lambda platform could be package

aware and provide special support for certain popular

package repositories, such as npm for node.js [11] or pip

for Python [12]. Of course, it would not be feasible to

keep such large (and growing) repositories in memory

on a single Lambda worker, so package awareness would

entail new code locality challenges (§4.7).

4.4 Cookies and Sessions

Lambdas are inherently short-lived and stateless, but

users typically expect to have many different but related

interactions with a web application. Thus, a Lambda

platform should provide a shared view of cookie state

across calls originating from a common user [35].

Furthermore, during a single session, there is often a

two-way exchange of data between clients and servers;

this exchange is typically facilitated by long polls, as

with Gmail (§3), or by WebSockets [24]. These proto-

cols are challenging for Lambdas because they are based

on long-lived TCP connections. If the TCP connections

are maintained within a Lambda handler, and a handler

is idle between communication, charges to the customer

should reflect the fact that handler incurs a memory over-

head, but consumes no CPU. Alternatively, if the plat-

form provides management of TCP connections outside

of the handlers, care must be taken to provide a new

Lambda invocation with the connections it needs that

were initiated by past invocations.

4.5 Databases

There are many opportunities for integrating Lambdas

with databases. Most databases support user-defined

functions (UDFs) for providing a custom view of the

data. Lambdas that transform data from a cloud database

could be viewed as UDF that is used by client-side code.

Current integration with S3 and DynamoDB also allow

Lambdas to act as trigger handlers upon inserts.

A new change feed abstraction is now supported by

RethinkDB [13] and CouchDB [16]; when an iterator

reaches the end of a feed, it blocks until there is more

data rather than returning. Supporting change feeds with

Lambdas entails many of the same challenges that arise

with long-lived sessions (§4.4); a handler that is blocked

waiting for a database update should probably not be

charged the same as an active handler. Change feed

batching should also be integrated with Lambda state

transitions; it makes sense to batch changes for longer

when a Lambda is paused than when it is running.

Relaxed consistency models should also be re-

evaluated in the context of RPC handlers. The Lambda

compute model introduces new potential consistency

boundaries, based not on what data is accessed, but on

which actor accesses the data. For example, an applica-

tion may require that all RPC calls from the same client

have a read-after-write guarantee, but weaker guarantees

may be acceptable between different clients, even when

those clients read from the same entity group.

4.6 Data Aggregators

Many applications (search, news feeds, and analytics) in-

volve search queries over large datasets. Parallelism over

different data shards is key to efficiently supporting these

applications. For example, with search, one may want to

scan many inverted indexes in parallel and then gather

and aggregate the results [27].

Building these search applications will likely require

special Lambda support. In particular, in order to support

the scatter/gather pattern, multiple Lambdas will need to

coordinate in a tree structure. Each leaf Lambda will

filter and process data locally, and a frontend Lambda

will combine the results.

When Lambda leaves are filtering and transforming

large shards, it will be important to colocate the Lamb-

das with the data. One solution would be to build cus-

tom data stores that coordinate with Lambdas. However,

the diversity of aggregator applications may drive devel-

opers to use variety of platforms for preprocessing the

data (e.g., MapReduce [22], Dryad [32], or Pregel [36]).

Thus, defining general locality APIs for coordination

with a variety of backends may be necessary.

4



4.7 Load Balancers

Previous low-latency cluster schedulers (e.g., Spar-

row [39]) target tasks in the 100ms range. Lambda

schedulers need to schedule work that is an order of mag-

nitude shorter, while taking several types of locality into

account. First, schedulers must consider session locality:

if a Lambda invocation is part of a long-running session

with open TCP connections, it will be beneficial to run

the handler on the machine where the TCP connections

are maintained so that traffic will not need to be diverted

through a proxy (§4.4).

Second, code locality [40] becomes more difficult. A

scheduler that is aware that two different handlers rely

heavily on the same packages (§4.3) can make better

placement decisions. Furthermore, a scheduler may wish

to direct requests based on the varying degrees of dy-

namic optimization achieved on various workers (§4.2).

Third, data locality will be important for running

Lambdas alongside either databases (§4.5) or large

datasets and indexes (§4.6). The scheduler will need

to anticipate what queries a particular Lambda invoca-

tion will issue, or what data it will read. Even once the

scheduler knows what data a Lambda will access and

where the replicas of the data reside, further commu-

nication with the database may be beneficial for choos-

ing the best replica. Many new databases (e.g., Cassan-

dra [33] and MongoDB [31, 21]) store replicas as LSM

trees. Read amplifications for range reads can range from

1× to 50× [34] on different replicas; an integrated sched-

uler could potentially coordinate with database shards to

track these varying costs.

4.8 Cost Debugging

Prior platforms cannot provide a cost-per-request for any

service. For example, applications that use virtual ma-

chine instances are often billed on an hourly basis, and it

is not obvious how to divide that cost across the individ-

ual requests over an hour. In contrast, it is possible to tell

exactly how much each individual RPC call to a Lambda

handler costs the cloud customer. This knowledge will

enable new types of debugging.

Currently, browser-based developer tools enable per-

formance debugging: tools measure page latency and

identify problems by breaking down time by resource.

New Lambda-integrated tools could similarly help de-

velopers debug monetary cost: the exact cost of visiting

a page could be reported, and breakdowns could be pro-

vided detailing the cost of each RPC issued by the page

as well as the cost of each database operation performed

by each Lambda handler.

4.9 Legacy Decomposition

Breaking systems and applications into small, manage-

able sub-components is a common approach to building

robust, parallel software. Decomposition has been ap-

plied to operating systems, web browsers, web servers,

and other applications [2, 23, 41]. In order to save devel-

oper effort, there have been many attempts to automate

some or all of the modularization process [30, 41].

Decomposing monolithic web applications into

Lambda-based microservices presents similar chal-

lenges and opportunities. There are, however, new

opportunities for framework-aware tools to automate

the modularization process. Many web-application

frameworks (e.g., Flask [29] and Django [7]) use

language annotations to associate URLs with handler

functions. Such hints would provide an excellent hint to

automatic splitting tools that port legacy applications to

the Lambda model.

5 Towards OpenLambda
We have seen that the Lambda architecture is far more

elastic and scalable than previous platforms, including

container-based services that autoscale. We have also

seen that Lambda architectures present new challenges

for execution engines, databases, scheduling, and de-

voloper tools. In order to facilitate research in these ar-

eas, we plan to build OpenLambda, an open-source im-

plementation of the Lambda infrastructure.

OpenLambda will consist of a number of subsys-

tems that will coordinate to run Lambda handlers: a

Lambda store to host and distribute handler code, a local-

execution engine that sandboxes handlers, a load bal-

ancer to spread requests across workers, and a Lambda-

aware distributed database. We further plan to build

LambdaBench, a new benchmark suite based on ports of

various applications to the Lambda programming model.

Our hope is that providing a complete set of all the com-

ponents making up the Lambda infrastructure will enable

researchers to evaluate novel designs and implementa-

tions of various subsystems within the serverless compu-

tation platform. Our project is online at http://www.

open-lambda.org.

6 Acknowledgements
Feedback from the anonymous reviewers have signifi-

cantly improved this work. We also thank the members

of the ADSL research group for their helpful suggestions

and comments on this work at various stages.

This material was supported by funding from NSF

grants CNS-1421033, CNS-1319405, CNS-1218405,

CNS-1419199 as well as generous donations from EMC,

Facebook, Google, Huawei, Microsoft, NetApp, Sea-

gate, Samsung, Veritas, and VMware. Tyler Harter is

supported an NSF Fellowship. Any opinions, findings,

and conclusions or recommendations expressed in this

material are those of the authors and may not reflect the

views of NSF or other institutions.

5

http://www.open-lambda.org
http://www.open-lambda.org


7 References
[1] Comet: Low Latency Data for the Browser. https://

infrequently.org/2006/03/comet-low-latency-data-

for-the-browser/, March 2006.

[2] Atlantis: Robust, Extensible Execution Environments for Web Ap-

plications. ACM, October 2011.

[3] AWS Developer Forums: Java lambda inappropriate for quick

calls. https://forums.aws.amazon.com/thread.jspa?

messageID=679050, July 2015.

[4] AWS Lambda. https://aws.amazon.com/lambda/, May

2016.

[5] Class AmazonApiGatewayClient. http://docs.aws.amazon.

com/AWSJavaSDK/latest/javadoc/com/amazonaws/

services/apigateway/AmazonApiGatewayClient.html,

March 2016.

[6] Deploying Elastic Beanstalk Applications from Docker Contain-

ers. http://docs.aws.amazon.com/elasticbeanstalk/

latest/dg/create_deploy_docker.html, May 2016.

[7] Django. https://www.djangoproject.com/, March 2016.

[8] Google Cloud Functions. https://cloud.google.com/

functions/docs/, May 2016.

[9] IBM OpenWhisk. https://developer.ibm.com/

openwhisk/, May 2016.

[10] Microsoft Azure Functions. https://azure.microsoft.

com/en-us/services/functions/, May 2016.

[11] Nuclear Powered Macros. https://www.npmjs.com/, May

2016.

[12] Pip Installs Packages. https://pip.pypa.io/en/stable/,

May 2016.

[13] ReQL command: changes. https://www.rethinkdb.com/

api/javascript/changes/, March 2016.

[14] The Java HotSpot Performance Engine Architecture. http://

www.oracle.com/technetwork/java/whitepaper-

135217.html, May 2016.

[15] XMLHttpRequest. https://xhr.spec.whatwg.org/, Jan-

uary 2016.

[16] J. Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB:

The Definitive Guide. http://guide.couchdb.org/draft/

notifications.html, May 2016.

[17] Thomas E. Anderson, David E. Culler, David A. Patterson, and

the NOW Team. A Case for NOW (Networks of Workstations).

IEEE Micro, 15(1):54–64, February 1995.

[18] Luiz Barroso and Urs Holzle. The Datacenter as the Computer.

Morgan and Claypool Synthesis Lectures on Computer Architec-

ture, 6, 2009.

[19] Carl Friedrich Bolz. Applying a Tracing JIT to an Interpreter.

http://morepypy.blogspot.com/2009/03/applying-

tracing-jit-to-interpreter.html, March 2009.

[20] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco:

Running Commodity Operating Systems on Scalable Multipro-

cessors. In Proceedings of the 16th ACM Symposium on Operat-

ing Systems Principles (SOSP ’97), pages 143–156, Saint-Malo,

France, October 1997.

[21] Charity Majors. MongoDB + RocksDB at Parse. http://blog.

parse.com/announcements/mongodb-rocksdb-parse/,

April 2015.

[22] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data

processing on large clusters. In Proceedings of the 6th Symposium

on Operating Systems Design and Implementation (OSDI ’04),

pages 137–150, San Francisco, California, December 2004.

[23] Dawson R. Engler, M. Frans Kaashoek, and James W. O’Toole.

Exokernel: An Operating System Architecture for Application-

Level Resource Management. In Proceedings of the 15th ACM

Symposium on Operating Systems Principles (SOSP ’95), pages

251–266, Copper Mountain Resort, Colorado, December 1995.

[24] Ian Fette and Alexey Melnikov. The websocket protocol. Tech-

nical Report 6455, Internet Engineering Task Force, December

2011.

[25] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A.

Brewer, and Paul Gauthier. Cluster-based scalable network ser-

vices. In Proceedings of the 16th ACM Symposium on Oper-

ating Systems Principles (SOSP ’97), pages 78–91, Saint-Malo,

France, October 1997.

[26] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson,

David Mandelin, Mohammad R Haghighat, Blake Kaplan, Gray-

don Hoare, Boris Zbarsky, Jason Orendorff, et al. Trace-based

Just-in-Time Type Specialization for Dynamic Languages. ACM

Sigplan Notices, 44(6):465–478, 2009.

[27] Clinton Gormley and Zachary Tong. Elasticsearch: The

Definitive Guide. https://www.elastic.co/guide/en/

elasticsearch/guide/current/inverted-index.html,

2015.

[28] Jim Gray. Why Do Computers Stop and What Can We Do About

It? In 6th International Conference on Reliability and Distributed

Databases, June 1987.

[29] Miguel Grinberg. Flask Web Development: Developing Web Ap-

plications with Python. O’Reilly Media, Inc., 1st edition, 2014.

[30] Galen Hunt and Michael Scott. The Coign Automatic Distributed

Partitioning System. In Proceedings of the 3rd Symposium on Op-

erating Systems Design and Implementation (OSDI ’99), pages

187–200, New Orleans, Louisiana, February 1999.

[31] Igor Canadi. Integrating RocksDB with MongoDB. http://

rocksdb.org/blog/1967/integrating-rocksdb-with-

mongodb-2/, April 2015.

[32] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Den-

nis Fetterly. Dryad: distributed data-parallel programs from se-

quential building blocks. In Proceedings of the EuroSys Confer-

ence (EuroSys ’07), Lisbon, Portugal, March 2007.

[33] Avinash Lakshman and Prashant Malik. Cassandra – A Decen-

tralized Structured Storage System. In The 3rd ACM SIGOPS

International Workshop on Large Scale Distributed Systems and

Middleware, Big Sky Resort, Montana, Oct 2009.

[34] Lanyue Lu and Thanumalayan Sankaranarayana Pillai and

Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau.

WiscKey: Separating Keys from Values in SSD-conscious Stor-

age. In 14th USENIX Conference on File and Storage Technolo-

gies (FAST 16), pages 133–148, Santa Clara, CA, February 2016.

USENIX Association.

[35] Bryan Liston. Simply Serverless: Using AWS Lambda to

Expose Custom Cookies with API Gateway. https://

aws.amazon.com/blogs/compute/simply-serverless-

using-aws-lambda-to-expose-custom-cookies-with-

api-gateway/, April 2016.

[36] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C

Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski.

Pregel: A System for Large-Scale Graph Processing. In Pro-

ceedings of the 2010 ACM SIGMOD International Conference

on Management of data, pages 135–146. ACM, 2010.

[37] Dirk Merkel. Docker: lightweight Linux containers for consistent

development and deployment. Linux Journal, 2014(239), 2014.

[38] Oracle Inc. Consolidating Applications with Oracle So-

laris Containers. www.oracle.com/technetwork/server-

storage/solaris/documentation/consolidating-apps-163572.pdf,

Jul 2011.

6

https://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/
https://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/
https://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/
https://forums.aws.amazon.com/thread.jspa?messageID=679050
https://forums.aws.amazon.com/thread.jspa?messageID=679050
https://aws.amazon.com/lambda/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/apigateway/AmazonApiGatewayClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/apigateway/AmazonApiGatewayClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/apigateway/AmazonApiGatewayClient.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_docker.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_docker.html
https://www.djangoproject.com/
https://cloud.google.com/functions/docs/
https://cloud.google.com/functions/docs/
https://developer.ibm.com/openwhisk/
https://developer.ibm.com/openwhisk/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.npmjs.com/
https://pip.pypa.io/en/stable/
https://www.rethinkdb.com/api/javascript/changes/
https://www.rethinkdb.com/api/javascript/changes/
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://www.oracle.com/technetwork/java/whitepaper-135217.html
https://xhr.spec.whatwg.org/
http://guide.couchdb.org/draft/notifications.html
http://guide.couchdb.org/draft/notifications.html
http://morepypy.blogspot.com/2009/03/applying-tracing-jit-to-interpreter.html
http://morepypy.blogspot.com/2009/03/applying-tracing-jit-to-interpreter.html
http://blog.parse.com/announcements/mongodb-rocksdb-parse/
http://blog.parse.com/announcements/mongodb-rocksdb-parse/
https://www.elastic.co/guide/en/elasticsearch/guide/current/inverted-index.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/inverted-index.html
http://rocksdb.org/blog/1967/integrating-rocksdb-with-mongodb-2/
http://rocksdb.org/blog/1967/integrating-rocksdb-with-mongodb-2/
http://rocksdb.org/blog/1967/integrating-rocksdb-with-mongodb-2/
https://aws.amazon.com/blogs/compute/simply-serverless-using-aws-lambda-to-expose-custom-cookies-with-api-gateway/
https://aws.amazon.com/blogs/compute/simply-serverless-using-aws-lambda-to-expose-custom-cookies-with-api-gateway/
https://aws.amazon.com/blogs/compute/simply-serverless-using-aws-lambda-to-expose-custom-cookies-with-api-gateway/
https://aws.amazon.com/blogs/compute/simply-serverless-using-aws-lambda-to-expose-custom-cookies-with-api-gateway/


[39] Ousterhout, Kay and Wendell, Patrick and Zaharia, Matei and

Stoica, Ion. Sparrow: distributed, low latency scheduling. In

Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles, pages 69–84. ACM, 2013.

[40] Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael Svendsen, Pe-

ter Druschel, Willy Zwaenepoel, and Erich M. Nahum. Locality-

Aware Request Distribution in Cluster-based Network Servers.

In Proceedings of the 8th International Conference on Architec-

tural Support for Programming Languages and Operating Sys-

tems (ASPLOS VIII), pages 205–216, San Jose, California, Octo-

ber 1998.

[41] Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. Fractured Processes:

Adaptive, Fine-Grained Process Abstractions. In Proceedings

of the 2014 Conference on Timely Results in Operating Systems

(TRIOS ’14), Broomfield, CO, October 2014.

[42] Srinivasan, Raj. RPC: Remote procedure call protocol specifica-

tion version 2. 1995.

[43] Tyler Harter and Brandon Salmon and Rose Liu and Andrea C.

Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Slacker: Fast

Distribution with Lazy Docker Containers. In 14th USENIX Con-

ference on File and Storage Technologies (FAST 16), pages 181–

195, Santa Clara, CA, February 2016. USENIX Association.

[44] Tim Wagner. Understanding Container Reuse in AWS Lambda.

https://aws.amazon.com/blogs/compute/container-

reuse-in-lambda/, December 2014.

[45] Whitaker, Andrew and Cox, Richard S. and Gribble, Steven D.

Configuration Debugging As Search: Finding the Needle in the

Haystack. In Proceedings of the 6th Conference on Sympo-

sium on Opearting Systems Design & Implementation - Volume

6, OSDI’04, pages 6–6, Berkeley, CA, USA, 2004. USENIX As-

sociation.

[46] Xi, Bowei and Liu, Zhen and Raghavachari, Mukund and Xia,

Cathy H and Zhang, Li. A smart hill-climbing algorithm for ap-

plication server configuration. In Proceedings of the 13th inter-

national conference on World Wide Web, pages 287–296. ACM,

2004.

7

https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/

