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Abstract

We describe ROOT, a new method for incorporating the

nondeterministic I/O behavior of multithreaded appli-

cations into trace replay. ROOT is the application of

Resource-Oriented Ordering to Trace replay: actions

involving a common resource are replayed in an order

similar to that of the original trace. ROOT is based on

the idea that how a program manages resources, as seen

in a trace, provides hints about an application’s internal

dependencies. Inferring these dependencies allows us to

partially constrain trace replay in a way that reflects the

constraints of the original program. We make three con-

tributions: (1) we describe the ROOT approach, (2) we

release ARTC, a new ROOT-based tool for replaying I/O

traces, and (3) we create Magritte, a file-system bench-

mark suite generated by applying ARTC to 34 Apple

desktop application traces. When collecting traces on

one platform and replaying on another, ARTC achieves

an average timing inaccuracy of 10.6% on our bench-

mark workloads, halving the 21.3% achieved by the

next-best replay method we evaluate.

1 Introduction

Quantitatively evaluating storage is a key part of devel-

oping new systems, exploring research ideas, and mak-

ing informed purchasing decisions. Because running ac-

tual applications on a variety of storage stacks can be

a painful process, it is common to collect statistics or

traces on a single system in order to understand an ap-
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plication [4, 5, 8, 13, 18, 19, 20, 24, 25]. Trace replay is

a useful technique for evaluating the performance of dif-

ferent systems [3, 10, 11, 14, 15, 17, 22]. An application

trace may be collected on one system (the source) and

replayed on another (the target) in order to predict how

the application would perform on the target. Replaying

traces at the system-call level is an appealing approach

for this use case, since its high level of abstraction allows

the user to evaluate changes in a wide variety of system

components. In contrast, replaying a lower-level trace

restricts the set of system changes that can be effectively

evaluated to those at or below the level of the trace it-

self. For example, replaying a block-I/O trace is of little

use if the user wishes to evaluate the performance of an

alternate file system.

At first it might seem that trace replay would offer

easy insight to an application’s performance on an al-

ternate storage stack, since the actions replayed are pre-

cisely the actions the real application performed. How-

ever, replay must take into account feedback loops be-

tween the workload and the storage stack [6, 16]; for

example, faster storage could cause a program to issue

requests in a different order. Complicating trace replay

further is the increasing complexity of many modern ap-

plications [7, 23]. Such applications often have many

threads, and it is common for one thread to open a file, a

second thread to write to it, and a third to close it.

There are two criteria by which we judge the qual-

ity of trace replay for performance prediction: seman-

tic correctness and performance accuracy. The for-

mer measures how well the semantics of the operations

recorded in the trace are reproduced by the replay; the

latter measures how close the replay’s performance on

the target system predicts that of the original program.

In some trace replay scenarios, semantic correctness

is nearly trivial; for example, there is little difficulty in

replicating the semantics of a single sequential stream of

block-I/O requests. With system-call replay, however,

semantic correctness is less simple: files of the appro-

priate size must be set up at the appropriate paths, pos-

sibly with extended attributes and other metadata cor-



rectly initialized. Considering multithreaded traces with

the possibility of system-call reordering introduces fur-

ther complexity: if an open and a read in two differ-

ent threads are reordered with respect to each other, the

read may fail with EBADF, deviating from the seman-

tics of the original application.

Trace-replay tools should reflect the characteristics

of applications, including the ordering dependencies of

their execution. There are two artifacts that provide in-

formation about dependencies: the original program and

traces. Unfortunately, a program’s source code is often

unavailable, and deducing full, application-level seman-

tic dependencies from one trace collected on one storage

device is generally not possible. However, the ways pro-

grams manage resources, as shown in a trace, can pro-

vide hints about program dependencies. In this paper

we propose a new technique for extracting these hints

from a trace: Resource-Oriented Ordering for Trace re-

play (ROOT). The ROOT approach is to observe the or-

dering of actions touching each resource in a trace and

apply a similar ordering to those actions during replay.

We build a new tool, ARTC (an “approximate-replay

trace compiler”), that applies the ROOT approach to

UNIX system-call traces. ARTC constrains replay based

on resource-management hints extracted from a trace. In

order to extract meaningful hints, ARTC uses a detailed

UNIX file-system model and knowledge of over 80 sys-

tem calls to infer the complex relationships between ac-

tions and resources. For example, symlink awareness

allows ARTC to track all the pathnames that point to a

single file resource; similarly, a directory-tree model al-

lows ARTC to determine the entire set of resources that

are affected by directory renames.

We use ARTC to automatically generate a new cross-

platform benchmark suite, Magritte, from 34 traces of

Apple desktop applications [7]. Because many of these

traces contain OS X-specific system calls, we employ

novel emulation techniques for 19 different calls, allow-

ing replay of the traces on other systems.

We compare ARTC against three simpler replay

strategies: a single-threaded approach, a multithreaded

replay that disallows reordering, and an unconstrained

multithreaded replay with no inter-thread synchroniza-

tion. We use the complex Magritte workloads to eval-

uate semantic correctness, finding that ARTC achieves

error rates nearly identical to those of the more heavily

constrained replays. For timing accuracy, we demon-

strate the weaknesses of the simple replay methods with

microbenchmarks designed to illustrate feedback effects

involving workload parallelism, disk parallelism, cache

size, and I/O scheduling. We also replay traces of an em-

bedded database, and find that ARTC reduces average

timing error from 21.3% (for the most accurate alterna-

tive) to 10.6%.

The rest of this paper is organized as follows. We ex-

plore different approaches to inferring program behavior

from traces (§2) and define the ROOT approach to this

problem (§3). We then describe our ROOT-based trace

compiler, ARTC (§4), evaluate it in comparison to a set

of simpler replay methods (§5), and provide a case study

with Magritte (§6). Finally, we discuss related work (§7)

and conclude (§8).

2 Trace Mining

We now consider what types of information can be

mined from traces for the purpose of replay. A single

trace presents a set and ordering of actions that the pro-

gram may generate when run on a specific system with

a certain set of inputs.

Ideally, however, we would like to infer the entire I/O

space of the program for a given input. In different envi-

ronments, a program may generate different sets of I/O

actions for different runs, and for each of these I/O sets,

different orderings may or may not be possible. We de-

fine an I/O space as the set of all feasible I/O sets and

the associated valid orderings. For example, a simple

I/O space consisting of two I/O sets and four orderings

could be described with the following set notation:

{{1,2} => {[1,2], [2,1]},

{1,2,3} => {[1,2,3], [2,1,3]}}

Depending on the type and quantity of the available

trace data, different techniques may be used to infer

the I/O space, and different degrees of accuracy will be

achievable. We now define various types of trace data

that may be available (§2.1) and describe three inference

techniques, including our new technique, ROOT (§2.2).

2.1 Trace Inputs

There are three primary attributes of parallel trace data:

the number of traces, active vs. passive collection, and

inclusion of synchronization information.

First, some inference techniques require many traces.

Each trace represents one point in the I/O space of the

application; observing many points makes it easier to

guess the shape of the whole space. Unfortunately, col-

lecting many traces on the same system will tend to ex-

plore only certain areas of the whole I/O space.

Second, traces may be collected passively or actively.

Passive tracing simply records an application’s I/O re-

quests, doing nothing to interfere. In contrast, active

tracing may perturb I/O; certain operations may be ar-

tificially slowed so as to see which other operations are

delayed. This allows direct deduction of dependencies

and methodical exploration of the I/O space.
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(a) deductive inference

(b) statistical inference

(c) hint-based inference (ROOT)
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Figure 1: Techniques for I/O-space inference.

Third, traces may consist of only calls that occur at the

boundary of an external storage API; alternately, they

may also include internal synchronization operations.

Details about internal synchronization may reveal cer-

tain dependencies; for example, if two I/O requests at

different times were both issued while a given lock was

held, we can infer that an ordering where the two I/O

requests are concurrent is not part of the program’s I/O

space. Internal program logic also affects ordering, how-

ever, so tracing locks is not a complete solution.

2.2 Inference

We now describe three I/O-space inference techniques,

including ROOT, based on three different types of trace

information. These are summarized in Figure 1.

Figure 1(a) illustrates a deductive inference approach

based on active tracing. Active traces allow methodi-

cal exploration of the I/O space via controlled experi-

mentation. //TRACE is an example of an active-tracing

tool [16]. An I/O space can be determined by collecting

numerous traces, artificially slowing different requests

each time, and observing which other requests are de-

layed as a result. While this is an elegant approach, it is

inconvenient and time consuming to collect many traces,

especially at the slowed speed. In production, slowing

I/O may be unacceptable, and collecting traces multiple

times with the same input may not be possible.

Figure 1(b) illustrates a statistical inference approach

based on passive tracing. Some debugging tools use this

approach to infer the causal relations between RPC calls,

but not for replay [2]. Although this approach has the ad-

vantage that traces are much easier to collect, it is likely

that much of the I/O space will not be explored unless

traces are collected in many different environments.

Figure 1(c) shows the goal of the ROOT approach:

to infer as much as possible about an I/O space given

a single passively-collected trace, with no details about

application internals (e.g., locking). Inferring anything

about an I/O space given a single data point might seem

impossible; however, the resource usage patterns of a

trace provide useful hints about the program’s I/O space.

For example, if a program performs two reads from

the same file, the reads may use the same file descriptor

for both requests, or different file descriptors. The use

of different file descriptors may indicate that the reads

are unrelated, and hence could be replayed concurrently.

Likewise, they may be issued from the same thread or

two different threads.

While a human reading through a trace would likely

be able to infer more application-level logic than an au-

tomated tool, creating benchmarks via manual trace in-

spection would be an unpleasant task. Thus we pro-

pose a new approach called ROOT: resource-oriented

ordering for trace replay. ROOT defines a trace model,

making it easier to create tools that reason about traces.

ROOT also defines a notation for expressing the “hints”

a human reading a trace might use to make a reasonable

guess about the target program’s dependency properties.

We describe ROOT in §3.

Of course, the ROOT approach can sometimes make

incorrect inferences because hints can be misinterpreted.

We do not attempt to make more accurate inferences

than the deductive or statistical methods; those tech-

niques have the advantage of being based on a great deal

more data. The ROOT approach is useful when a bench-

mark is desired, but knowledge about the original ap-

plication is limited. This will typically be the case when

studying traces of production systems, where inputs may

be uncontrollable and the overheads of active tracing are

unacceptable. Furthermore, it is relatively uncommon

for companies to collect and share traces; motivating

them to collect active traces or enough traces to apply

statistical inference may be infeasible.

One weakness of ROOT is that it assumes the I/O

space will consist of a single I/O set. Given a series of

actions in a trace, it is reasonable to infer how they might

be reordered; however, it is essentially impossible to cor-

rectly guess that a program sometimes generates a cer-

tain request if that request never appears in the trace. We

do not view this as a severe limitation; inference based

on methodical exploration could hypothetically deduce

I/O spaces consisting of multiple I/O sets, but existing

tools based on this approach (e.g., //TRACE) also only

work for I/O spaces consisting of a single I/O set.



3 ROOT: Ordering Heuristics

By enforcing an approximately-correct partial ordering

on replay actions, replay tools can generate realistic I/O

that resembles the original program’s behavior. In this

section, we define ROOT’s hint-based ordering rules for

replay. Our constraints are oriented around resources,

such as files, paths, and threads. The key idea is that the

set of actions involving a given resource should be re-

played in a similar order as in the original trace. If all

actions in a trace interact with the same resource, then

replay will be highly constrained, but if there is little

overlap between the resources touched by different ac-

tions, there will be little constraint on the replay order.

Although resource-oriented ordering is simple in the-

ory, real storage systems have complex, many-to-many

relationships between actions and resources; some types

of actions (e.g., directory renames) can impact an arbi-

trarily large set of resources (e.g., paths). The relation-

ship between an action and the resources it touches can-

not be inferred by looking at the trace record for the ac-

tion by itself. Rather, inferring the relationships requires

a trace model that considers each action in the context of

the entire trace and an initial snapshot of system state.

In §3.1, we describe a general trace model applicable

to traces from a variety of storage systems (e.g., key-

value stores or file systems). In §3.2 we define and in-

tuitively justify several rules that can be applied to a

trace to obtain a partial ordering of actions with which to

guide replay. In §4 we describe ARTC’s use of our trace

model and ordering rules to replay system-call traces.

3.1 Trace Model

A trace contains a totally-ordered series of actions.

The types of actions are system specific; a key-value

store might have put, get, and delete actions,

whereas a file system might have opens, reads, and

writes. Each action interacts with one or more re-

sources; threads, keys, values, paths, and files are ex-

amples of resources.

A simple file rename across directories might involve

five resources: the thread performing the rename, source

and destination paths, and the directories containing

these paths. Conceptually, an action series is associated

with each resource, consisting of all the actions related

to the resource in the order they occurred in the original

execution. All our rules are based on action series; it is,

however, unnecessary to ever materialize such lists.

Some resources point to other resources. For example,

a path might point to a directory, which in turn might

point to other paths. Some actions that touch a resource

also touch all other resources it transitively points to.

Some resources have names that appear in the trace. A

1 [T1] mkdir("/a/b")            = 0

   Resources:

   T1,dirA,dirB,path(/a/b)

2 [T1] open("/a/b/c",CREATE)    = 3

   T1,dirB,file1,path(/a/b/c),fd3

3 [T1] write(3, ...)            = 8

   T1,file1,fd3

4 [T1] close(3)                 = 0

   T1,file1,fd3

5 [T1] rename("/a/b", "/a/old") = 0

   T1,dirA,dirB,file1,four paths...

6 [T2] open("/x/y/z")           = 3

   T2,dirY,file2,path(/x/y/z),fd3

7 [T2] open("/a/b")             = 4

   T2,dirA,file3,path(/a/b),fd4

thread(T1)

thread(T2)

dirA

dirB

dirY

�le1

�le2

�le3

path(/a/b)@1

path(/a/b)@2

path(/a/b/c)@1

path(/a/old)@1

path(/a/old/c)@1

path(/x/y/z)@1

fd3@1

fd3@2

fd4@1

1,2,3,4,5

6,7

1,5,7

1,2,5

6

2,3,4

6

7

1,5

7

2,5

5

5

6

2,3,4

6

7

Resource

...

(a) Example Trace (b) Action Series

Actions

Figure 2: Example action series. A snippet from a sim-

ple system-call trace for two threads is shown in (a). Beneath

each event, a comment lists the resource touched by each sys-

tem call. (b) shows the action series corresponding to each

resource that appears in the trace.

file resource does not itself have a name, but it might be

pointed to by a path, which does. The same name might

apply to different resources at different points in a trace;

for example, “3” could be a name designating different

file descriptors at different times. Our model differen-

tiates uses of the same name with generation numbers,

increasing integers associated with each such use, which

together with a name uniquely identify a resource.

Figure 2 provides an example showing how action se-

ries are derived from a system-call trace. The series for

thread T1 is simply the set of actions executed by the

thread (1, 2, 3, 4, 5), in the order they were executed.

The series for dirA (1, 5, 7) is the set of actions that

accessed dirA, in the order they occurred. Note that

action series do not distinguish between subjects (e.g.,

threads) and objects (e.g., directories). The figure also

shows different action series for fd3@1 and fd3@2.

This “name@generation” notation is used to distinguish

between resources when the same name is used for dif-

ferent resources at different times. Here, 3 is a shared

name for the file descriptors created in actions 2 and 6.

3.2 Ordering Rules

We suggested in §2.2 that how a program manages re-

sources, as shown in a trace, provides hints about its I/O

space. Given a trace model, we can now discuss these

hints more formally and define replay rules.

The rules we define determine an I/O space for a re-

play benchmark. Ideally, the I/O space for the bench-

mark will be similar to that of the original application.

However, there are two ways we might deviate from this

goal. First, a rule might be too restrictive, resulting in

overconstraint. In this case, the original I/O space may

contain an ordering for an I/O set that the replay I/O

space does not contain. Second, a rule might be insuf-



Rule Definition

Stage acts[create] < acts[i] < acts[delete]

Sequential acts[i] < acts[i+1]

Name N@G.acts[last] < N@(G+1).acts[first]

Table 1: Ordering Rules. a1 < a2 means action a1 must

be replayed before action a2. acts[create] and acts[delete]
represent acts[ f irst] and acts[last] respectively when the first

action in a series is a create or when the last action is a delete.

When this is not the case, the constraint does not apply.

ficiently restrictive, resulting in underconstraint. In this

case, the replay I/O space may contain an ordering for

an I/O set that the original I/O space does not contain.

We say that a stronger rule A subsumes a weaker rule

B if the orderings allowed by rule A are a strict sub-

set of those allowed by rule B. In this case, if B causes

overconstraint, A will as well. Likewise, if A allows un-

derconstraint, B will as well.

We have identified three rules based on action series

that are useful for replay; these are summarized in Ta-

ble 1. The first rule, stage ordering, simply says that

an action that creates a resource must be played before

any uses of the resource, and also that any uses of the

resource must be played before a deletion. The intuition

behind stage ordering is that when we observe a success-

ful event in a trace, we assume the program took some

action to ensure success, so replay should do likewise.

The second rule, sequential ordering, forces all ac-

tions involving a resource to replay in the same order as

in the original trace. Sequential ordering is a stronger

constraint, subsuming stage ordering, but may lead to

overconstraint. For example, if multiple reads from the

same file all touch the same resource, it is very possi-

bly correct to allow these reads to be reordered during

replay, but sequential ordering would disallow this. In

contrast, stage ordering might be too weak: reordering

two reads from the same file could be incorrect if the

first retrieves indexing information and the second relies

on the result of the first to determine where in the file

to read from. The intuition behind sequential ordering

is that data dependencies may be more likely when ac-

tions access the same resources rather than disjoint sets

of resources; constraints should be tighter in such cases.

The third rule, name ordering, requires that the action

series of different generations of the same name are nei-

ther overlapped nor reordered during replay. Sequential-

and name-ordering each allow some orderings not al-

lowed by the other. The intuition behind name order-

ing is that when a programmer reuses the same name for

different resources, the resources are likely related.

Figure 3(a) shows an example trace of actions on two

resources, A and B, that use the same name at differ-

ent times. Figure 3(b) gives an example replay ordering,

and Figure 3(c) describes how the replay would violate

1A1 3A32A2 4A4 1B1 2B2 3B3 4B4

(a) Original trace order

1A1 3A3 2A2 4A41B1 2B2 3B34B4

(b) Replay order

Generation A 

Generation B

Stage

none

B4<B3

Sequential

A3<A2

B4<B3

Name

B1<A4

(c) Violations

Figure 3: Examples of valid and invalid orderings.
Each square represents an action. White and grey squares be-

long to two consecutive generations of the same name. Thick

borders indicate creation and deletion events.

different ROOT rules. The replay of generation A is

allowed by stage ordering because the sequence begins

and ends with create and delete actions, respectively, but

violates sequential ordering because the two middle ac-

tions (A2 and A3) are reordered. The replay of genera-

tion B violates stage ordering because the deletion action

is not last, and thus also violates sequential ordering. Fi-

nally, actions belonging to generation B start replaying

before A is finished, which violates name ordering since

A and B are different generations of the same name.

Because rules vary in strength, one must decide

which rules to apply to which resources when employ-

ing ROOT. In §4.2, we describe ARTC’s default use of

the rules for UNIX file-system resources and the rea-

soning for each. More broadly, however, we suggest

three guidelines for applying the rules in a new context.

First, domain knowledge should be used. For example,

if it is known that a programmer generally intention-

ally chooses names for a certain resource (e.g., a path

name), name ordering should apply, but if the names are

chosen arbitrarily, name ordering might cause overcon-

straint. Second, the costs of different types of mistakes

should be taken into account; overconstraining a replay

might skew the timings of certain actions, but undercon-

straining might cause the actions to fail, and thus finish

instantly. Third, if many actions fail during replay, un-

derconstraint is a likely cause.

4 ARTC: System-Call Replay

We now describe ARTC, a benchmarking tool that ap-

plies the ROOT approach to system-call trace replay on

UNIX file systems. We now discuss goals for the tool

(§4.1), demonstrate how the three ROOT rules abstractly

defined in the previous section concretely apply to UNIX

file systems (§4.2), and detail our implementation (§4.3).



Resource Stage Sequential Name

program •

thread req•req

file ◦ •

path joint• joint ◦ joint• joint

fd • •

aiocb • ◦ ◦

Table 2: Replay modes. Circles represent reasonable

ways to apply rules to resources; filled circles are modes cur-

rently supported by ARTC. thread seq is always required.

path stage and path name must be applied jointly.

4.1 Goals

The aim of ARTC is to be a broadly applicable storage

benchmarking tool, offering a flexible set of parameters

while remaining easy to use.

Portability: ARTC attempts to support realistic

cross-platform replay. Because traces from one system

often include system calls that are not supported on oth-

ers, ARTC emulates these calls, issuing the most similar

call (or combination of calls) on the target system.

Ease of use: ARTC benchmarks make it simple for

end users to apply them to a file system. All that is re-

quired for basic use is the compiled benchmark and a

directory in which to run the benchmark (perhaps the

mountpoint of a file system to be evaluated). There is no

need to describe a benchmark using a specialized config-

uration language or determine the values of non-default

parameters to measure the performance of a file system.

Also, ARTC makes it easy to create new benchmarks

by supporting standard tracing tools that are often pre-

installed in UNIX environments (e.g., strace).

Flexibility: ARTC provides a variety of optional tun-

ing parameters, controlling how initialization is done,

the speed at which actions are replayed, the ability to

disable specific ordering constraints, and how certain ac-

tions are emulated during cross-platform replay.

Correctness: ARTC attempts to generate bench-

marks with nondeterministic behaviors resembling the

nondeterminism of the original applications as closely

as possible given the information available in the traces.

Despite this nondeterminism, ARTC’s ordering con-

straints enforce that the replay’s semantics should match

those of the original trace as closely as possible.

4.2 ROOT with System-Call Traces

We now discuss the application of ROOT to system-call

traces. We consider six types of resources: programs,

threads, files, paths, file descriptors (FDs), and asyn-

chronous I/O control blocks (AIOCBs). We focus on

single-process replay, so all the actions in a trace are as-

sociated with a single program resource, as well as one

of the many thread resources. Many actions will access

file resources via paths and file-descriptor resources. Fi-

nally, AIOCBs are used to manage asynchronous I/O on

file descriptors; AIOCBs point to file descriptors.

Table 2 shows which rules could reasonably be ap-

plied to which resources and which are supported by

ARTC’s replay modes. Though all supported constraints

except program seq are enforced by default, ARTC al-

lows any combination of ordering modes to be selected

for replay, with two restrictions. First, sequential order-

ing is always applied to threads; second, for paths, stage

and name ordering may only be applied jointly. A dis-

cussion of the replay modes follows:

Programs: All actions in a trace involve a sin-

gle program resource. Applying sequential ordering

to the program represents the program seq replay

mode. program seq is ARTC’s strongest replay mode,

subsuming all other modes; however, program seq

forces a total ordering on replay, typically resulting

in severe overconstraint (the performance impact of

program seq is demonstrated in §5). Stage ordering

does not make sense for the program resource because

no action in the trace can be said to “create” the pro-

gram; name ordering is irrelevant as there are not multi-

ple generations of program resources in a single trace.

Threads: Each action in a trace is performed by

exactly one thread resource. ARTC always enforces

thread seq mode, as it has no simple way to reorder

actions within a thread during replay. In general, the or-

der of actions performed by a single thread provides a

good hint about program structure. Some patterns, how-

ever, such as thread pools, are clear exceptions; ARTC

cannot infer these types of program structures. How-

ever, we are not aware of any other replay tools that can

do so without additional details about program internals.

Stage and name ordering do not apply to threads for the

same reasons they do not apply to programs.

Files: We define a file as the data associated with a

specific piece of metadata, such as an inode number.

Inode numbers, however, do not appear in our traces,

so the existence of files is only implicit. An accurate

file-system model that considers symbolic links, hard

links, and the behavior of various system calls allows

us to determine when different paths (or file descrip-

tors) refer to the same file, as well as when the same

path name refers to different files at different times. Be-

cause files do not appear explicitly in traces, name or-

dering is irrelevant. Stage and sequential ordering ap-

ply, though; ARTC supports the latter with file seq,

a fairly strongly-constrained replay mode. When other

resources refer to files, as they often do, file seq

subsumes stage or sequential ordering when applied to

those resources. However, the rules for the following

resources do prevent some orderings file seq allows,

such as when name ordering is relevant or when the re-

sources refer to directories rather than regular files.



Paths: Path resources point to file resources and have

names that appear in traces. All our ordering rules could

be applied to paths; ARTC supports the joint application

of stage and name ordering with path stage+ mode.

We do not support stage ordering without name order-

ing because doing so would require the use of substi-

tute names during replay. For example, if a trace shows

that a path "/a/b" referred to different files at different

times, replay would have to either prevent concurrent ac-

cess to those files during replay (i.e., use name ordering),

or use substitute names (e.g., "/a/b1" and "/a/b2").

Applying stage ordering to paths assumes that when a

trace action makes a successful access to a path, the pro-

gram must have taken some measure to ensure its suc-

cess. We believe this is a good hint in general, but it may

sometimes cause overconstraint. For example, programs

may use the stat call (which fails when a path does not

exist) to determine whether a path exists. If a stat call

succeeds during the original execution, it may be a co-

incidence; during replay, if certain actions finish sooner

than they did during trace collection, it may be correct

to replay a stat call sooner, even if the call would fail.

Similarly, applying name ordering assumes that dif-

ferent files are related if they use the same path name at

different times. Because programmers or users choose

most path names, we believe this to be a meaningful

hint. While this is usually the case, one common ex-

ception is when path names are chosen arbitrarily (e.g.,

names for temporary files). In this case, path stage+

may lead to overconstraint, but we suspect this situation

is rare in practice since random file names are not gen-

erally chosen from a small set of possibilities and hence

are unlikely to collide with each other.

File descriptors: Successfully opening a path pro-

duces a file descriptor (FD), which acts as another

type of pointer to a file. ARTC supports stage order-

ing (fd stage mode) and sequential ordering (fd seq

mode) for FDs. Although FDs have integer names that

appear in a trace, these names are usually chosen by the

operating system, so they provide no hints about the I/O

space; thus, name ordering is of no real use for FDs. Ad-

ditionally, since FD names are small integers, they can

be easily remapped using a simple array, allowing de-

scriptors that used the same name in the original trace to

coexist simultaneously during replay.

Asynchronous I/O control blocks: Asynchronous

I/O may be performed by wrapping a file descriptor in

an asynchronous I/O control block (AIOCB) structure

and submitting it in a request to the file system. Be-

cause file descriptors point directly to files, AIOCBs

point indirectly to files. ARTC supports stage order-

ing for AIOCBs with aio stage mode. Applying se-

quential ordering could also be potentially useful, even

though ARTC does not currently support it.
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Figure 4: ARTC Components.

4.3 Implementation

Figure 4 show an overview of the main components of

ARTC. Given a system-call trace and an initial file-tree

snapshot collected on a source system, the ARTC com-

piler automatically generates a benchmark (§4.3.1). The

ARTC replayer initializes an equivalent file-system tree

on the target machine to match the snapshot (§4.3.2), in

which the actions in the trace are replayed (§4.3.3). File-

system APIs vary slightly across systems, so ARTC em-

ulates recorded actions via the closest equivalent on the

target machine when necessary (§4.3.4), supporting re-

play on Linux, Mac OS X, FreeBSD, and Illumos.

ARTC’s implementation consists of approximately

12,000 lines of C and 4,000 lines of bison and flex

grammars (as measured by wc -l), and is capable of

replaying over 80 different system calls. A significant

portion of the code is shared between the ARTC com-

piler and the ARTC replayer, but the two components

comprise roughly equal fractions of the code size.

4.3.1 Compilation

ARTC currently supports strace output and a special

dtrace-generated format used by the iBench traces

(see §5.1), but trace parsing is cleanly separated from

the core processing functionality, so ARTC can be read-

ily extended to support new input formats. However,

the core functionality assumes the following information

will be available for each system call in the trace:

• Entry/return timestamps

• Numeric ID of issuing thread

• Type of call (e.g., open, read, etc.)

• Parameters passed

• Return value



Some system-call parameters are not actually re-

quired; for example, ARTC ignores the buffer pointers

passed to read. While our trace model could theoreti-

cally treat buffer pointers as another type of resource, we

suspect buffer reuse would make it impossible to derive

meaningful hints from the additional information.

In addition to a trace of actions, ARTC requires an

initial snapshot of the parts of the file-system tree that

the program accesses. It is unnecessary to record actual

file contents in the snapshot; however, it is important

to record the contents of directories, the sizes of files,

and references made by symbolic links. Having an accu-

rate model for symbolic links is crucial to enforcing the

file seq rule. Even when the same file is accessed via

different paths, file seq must constrain the accesses to

be replayed in the same order as in the trace.

Given a trace and an initial snapshot, ARTC automat-

ically generates C code, which is then compiled into a

shared library. The shared library is later loaded by a

general tool for replay (§4.3.3). The generated code con-

sists of tables of static data (arrays of structs) describ-

ing the resources and actions in the trace. We chose to

generate C code as a simple way to serialize the replay

information; generating input files that the replay pro-

gram parses would work as well, though using pre-built

data structures saves the runtime overhead of parsing a

more generic input format.

4.3.2 Initialization

Before replay, it is necessary to restore the initial state

snapshot in the directory where the benchmark will ex-

ecute. During this stage, ARTC creates the necessary

directories, populating them with files of the appro-

priate size containing arbitrary data, and creates any

necessary symbolic links. Some special files (such as

/dev/random) are created as symlinks to the corre-

sponding special files in the target’s root file system.

Because initialization may take much longer than the

actual replay of some traces, ARTC can perform a delta

init that is useful when most of the init files are already

in place (e.g., the file tree was previously initialized, and

a prior replay only slightly modified the tree). Delta init

only creates, deletes, or changes of the sizes of existing

files as necessary to restore the initial state.

Initialization is not a major focus of our work, but

ARTC could be extended to use initial snapshots with

richer information about invisible file-system state. For

example, for a log-based file system, replay speed will

depend greatly on the order in which the initial files are

created. A more sophisticated initialization could ac-

count for this, and even reproduce the fragmentation that

occurs due to aging in real-world deployments [1, 21].

ARTC also includes options that make it easy to

initialize overlaid file-system trees based on the snap-

shots for multiple traces, so that multiple traces can

be replayed concurrently. For example, one could use

Magritte (§6), our benchmark suite of Apple desktop ap-

plications, to run a workload similar to a user browsing

photos in iPhoto while listening to music in iTunes.

4.3.3 Replay

ARTC’s replayer is the component that actually per-

forms system-call replay, enforcing the enabled order-

ing modes while doing so. Although our discussion

of ordering modes has been in terms of action series,

ARTC, like the programs that generate the traces to be-

gin with, does not need to explicitly materialize such

lists. Rather, ARTC enforces rules using standard syn-

chronization primitives and the dependency information

determined by the compiler. Each system call (action)

includes a condition variable that other threads can wait

on if an action they are about to replay is dependent on

that action. For example, before a given thread replays

an action that uses a certain file descriptor, it checks if

the open call that created that file descriptor has already

been replayed, and if not, waits on the open action’s

condition variable. When the replay of an action com-

pletes, the thread that replayed it performs a broadcast

operation on the action’s condition variable in order to

wake any threads that may be waiting on it.

Stage ordering: except for a resource’s create action,

all other actions will wait on the create action before re-

playing, enforcing that it is the first of that resource’s

associated actions to replay. Delete actions have a de-

pendency on each other use of the resource, though

for space-efficiency reasons our current implementation

uses a separate structure for the resource with a count of

remaining uses and a condition variable of its own.

Sequential ordering: Each action belongs to the ac-

tion series of one or more events. For each such series,

the action in question has a dependency on the previ-

ous action in the series, and correspondingly waits for

its completion before proceeding with its own replay.

Name ordering: When an action is the first of a new

generation of a resource on which name ordering is ap-

plied, it has a dependency on the last event of the pre-

ceding generation, and waits for it to complete.

We use this resource and action bookkeeping to

enforce all ordering rules except thread seq and

program seq. Because sequential ordering is always

enabled for threads, we simply use a replay thread for

every thread that appeared in the original trace. Each of

these threads loops over its own actions from the original

trace, playing each one in order once all its dependencies

are satisfied. When program seq is used, all trace ac-

tions are instead replayed from a single replay thread in

the order in which they appeared in the original trace.



Besides enforcing ordering rules during replay, ARTC

is also capable of considering timings from the original

trace. For example, the original trace might show that

even after all the inferred dependencies for an action are

satisfied, the action is executed after some time interval,

which we call predelay. Predelay may be due to compu-

tation. It is not our goal to have a sophisticated model

of computation, but ARTC provides some basic options

for incorporating predelay during replay. ARTC may ig-

nore predelay (AFAP, or as-fast-as-possible mode), sleep

for the predelay time (natural-speed mode), or use some

multiple of predelay, perhaps based on CPU utilization

information (if available). Given our very simplistic

model of computation, we do not expect ARTC to pro-

duce accurate timings for compute-bound workloads.

After finishing replay of the entire trace, the replayer

outputs basic timing information, such as the elapsed

wall-clock time, as well as detailed data about why a re-

play performed the way it did, such as per-thread timing

reports and latencies for each call. Additionally, details

about the similarity of system-call return values during

replay to return values during trace collection are gener-

ated (i.e., the semantic accuracy of the replay), providing

indications of possible underconstraint.

4.3.4 Emulation

Supporting cross-platform replay is challenging, as ev-

ery UNIX-like platform has its own slightly distinctive

API for accessing the file system. For such system calls,

there are usually near equivalents on other platforms, but

occasionally a call provides a unique primitive. In order

to support such calls, ARTC converts them to pseudo-

calls. During replay, ARTC emulates pseudo-calls by

using the most similar system calls available, sometime

executing multiple calls on the target system to emulate

a single call on the source system.

ARTC performs emulation for 19 different calls. 11

of these cases are for special metadata-access APIs (e.g.,

extended attributes); not only do the names of the calls

differ in these cases, but some systems support parame-

ters and options not supported by others. When emulat-

ing these calls, we simply ignore such parameters.

Another three cases pertain to file-system hints; in

particular, prefetching, caching, and preallocation hints

are all treated slightly differently on each platform.

Linux, Mac OS X and Illumos generally offer equivalent

functionality, though sometimes via different APIs; em-

ulation for these is straightforward. On FreeBSD, how-

ever, we simply ignore some of these calls where analo-

gous APIs are not available. Three more emulations are

required for obscure, undocumented Mac OS X system

calls, that appear to be metadata related and are hence

emulated with small metadata accesses.

Another case addresses a difference in fsync se-

mantics on different systems. Linux file systems typ-

ically force data to persistent storage when fsync is

called, but on Mac OS X semantics are different, and

data is merely flushed to the device, which may cache

it in volatile memory; fcntl(F FULLFSYNC) is nec-

essary to achieve true durability. When replaying traces

collected from Linux on a Mac, a replay option deter-

mines which semantics are used to emulate fsync.

The final case is the exchangedata call, a unique

atomicity primitive provided by Mac OS X. Given two

files, exchangedata performs an atomic swap such

that each file’s inode points to the other file’s data, pre-

serving inode numbers and other metadata. Although

there is no truly atomic equivalent on other platforms,

we emulate this via a link and two renames.

5 Evaluation

We evaluate ARTC by establishing its preservation of

semantic correctness and comparing its performance ac-

curacy with a set of simpler strategies.

The simplest approach we compare against is single-

threaded replay, which issues all calls in the trace from

a single replay thread in the same order in which they

were issued in the trace. This approach precludes not

only reordering but also any concurrency between sys-

tem calls. Temporally-ordered replay also issues calls

during replay in the order they were issued during trac-

ing, but uses one replay thread per traced thread, so

calls that overlapped during tracing may be issued con-

currently during replay. While it permits some concur-

rency, this approach allows no real reordering to occur

during replay. Unconstrained replay falls at the oppo-

site end of the ordering spectrum, employing multiple

threads but enforcing no synchronization between them.

This allows maximal reordering (within the constraints

of thread seq, which is still implicitly enforced) but is

vulnerable to race conditions involving shared resources.

5.1 Semantic Correctness: Magritte

We evaluate the semantic correctness of ARTC’s re-

play by examining its behavior with 34 traces of Ap-

ple’s iLife and iWork desktop application suites [7]. The

complex inter-thread dependencies and frequent meta-

data accesses found in these traces make them an ex-

cellent correctness stress test. We also believe these

traces are useful beyond this evaluation, and so we re-

lease the compiled traces as a new benchmarking suite

called Magritte1. Before presenting the results, we de-

1Magritte is named for a Belgian artist who created a number of

paintings prominently featuring apples, most notably The Son of Man.



Trace UC ARTC Events Trace UC ARTC Events

iPhoto

start400 74 2 35K

import400 377K 7 827K

duplicate400 53K 2 210K

edit400 881K 2 1660K

delete400 298 2 472K

view400 76K 2 278K

iTunes

startsmall1 3 0 5.5K

importsmall1 1.5K 0 10K

importmovie1 56 0 5.3K

album1 549 0 9.7K

movie1 2.6K 0 9.5K

iMovie

start1 43 2 21K

import1 4.4K 7 35K

add1 51 3 24K

export1 4.5K 5 42K

Pages

start15 4 4 13K
create15 36 4 16K
createphoto15 401 4 56K
open15 4 4 15K
pdf15 4 4 15K
pdfphoto15 106 4 54K
doc15 4 4 15K
docphoto15 139 4 205K

Numbers

start5 0 0 10K
createcol5 59 0 15K
open5 0 0 12K
xls5 0 0 14K

Keynote

start20 0 0 17K
create20 269 0 36K
createphoto20 733 2 38K
play20 0 0 28K
playphoto20 208 0 30K
ppt20 4 0 51K
pptphoto20 4 0 126K

Table 3: Replay failure rates. The number of event-replay

failures in each trace is shown for a completely unconstrained

multithreaded replay (UC) and for ARTC, both in AFAP mode.

The Events column shows the total number of replayed actions

in the trace.

scribe some of the difficulties we encountered in the pro-

cess of replaying these traces:

Special files: Some of the traces include reads from

/dev/random, which resulted in very slow reads on

Linux (tens of seconds for less than a hundred bytes of

data). On Mac OS X, /dev/random is a non-blocking

source of random bytes, whereas on Linux, reads from

/dev/random block when the kernel judges that its

entropy pool is depleted. We solve this by creat-

ing /dev/random as a symlink to /dev/urandom,

which does not block, when replaying on Linux.

External bugs: We encountered some behaviors on

Mac OS X that appear to simply be kernel bugs. Calling

close on a file descriptor returned from shm open,

for example, consistently reports failure with EINVAL,

which is not listed in its documentation. Interestingly,

the call appears to succeed, since subsequent opens

then return file descriptors re-using the same value.

ARTC generally outputs warnings when replayed calls

do not conform to its expectations, but sometimes sup-

presses them in cases such as this.

Missing trace details: There are a handful of se-

quences in the traces for iTunes that show system calls

of the form open(path, O CREAT|O EXCL) exe-

cuting successfully, but at points where prior events in

the trace would indicate that path should already exist.

While we cannot be entirely sure of the cause of this, it

may be due to a mistake in the collection of the traces

from the original applications. ARTC handles these by

simply replaying them without the O EXCL flag.

After addressing these issues, we replayed the traces

with each of the four modes. In order to amplify concur-

rency and best exercise each mode’s enforcement of the

trace’s semantics, we performed these replays in AFAP

mode on an SSD-backed ext4 file system, and did not

clear the system page cache between each benchmark’s

initialization and execution. Table 3 shows the number

of errors in trace replay for unconstrained mode (UC)

and ARTC; with the exception of iphoto edit400,

the failure counts for single-threaded and temporally-

ordered modes (not shown) are identical to those of

ARTC on all traces. The reported error counts are the

maximum number of errors across five runs.

Although unconstrained replay is semanti-

cally correct when replaying some traces (e.g.,

keynote start20), many replays produce thou-

sands of errors; on iphoto edit400 over half the

trace’s events replay incorrectly. Not only are the failure

rates for ARTC and the other highly constrained modes

several orders of magnitude lower, further investigation

reveals that almost none of ARTC’s errors are due

to invalid reordering. Rather, except for four failures

in iphoto import400, all of ARTC’s failures

are due to a lack of extended attribute initialization

information in the iBench traces; replay initialization

thus does not create these attributes, and replayed calls

attempting to access them fail. The four failures caused

by reordering in iphoto import400 are due to an

edge case involving a directory rename un-breaking

a broken symlink, which ARTC’s file-system model

does not currently handle, causing it to miss some path

dependencies and thus allow some invalid reorderings.

Given the unconstrained mode’s extreme error rate,

we do not consider it a viable option, and thus do not

consider it in the remainder of our evaluation. We do

not use Magritte for the performance accuracy aspect

of our evaluation because the workloads are interactive

and thus not consistently I/O-bound, an operating mode

ARTC does not focus on modeling accurately.

5.2 Performance Accuracy

Here we employ micro- and macro-benchmarks to eval-

uate ARTC’s performance accuracy, which we find

is substantially better than that of the simpler single-

threaded and temporally-ordered replay methods.

5.2.1 Microbenchmarks

In this section, we use microbenchmarks to explore in-

teraction effects between workloads and storage sys-

tems, showing how each naturally affects the other. In

one experiment, we adjust the degree of parallelism in

the workload and show how the storage system takes ad-

vantage of the additional flexibility offered by increased

queue depths. In three further experiments we construct

feedback loops, changing aspects of the storage system
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Figure 5: Microbenchmarks. Effect of feedback loops on accuracy. Labels on the solid black bars indicate timings for the

original program on the target system. Labels on other bars indicate a percentage error relative to the original.

in ways that should change the workload’s behavior. We

experiment with varying disk parallelism, cache size,

and I/O scheduler slice size. We show that in each of

these scenarios ARTC adapts in a natural way, but the

simpler single-threaded and temporally-ordered replay

methods do not.

Workload parallelism: For our first experiment, we

wrote a simple program the spawns a variable number

of threads, each of which reads 1000 randomly selected

4KB blocks from its own 1GB file. We ran and traced

the program with 1, 2, and 8 threads. We then performed

single-threaded, temporally-ordered, and ARTC replays

of each trace. The timing results for the three traces

are indicated by the three groups of bars in Figure 5(a).

Within each group, the first bar indicates the time it takes

the original program to run, and the next three bars indi-

cate how long each of the replay methods take. If replay

is accurate, the bars in each group will be similar in size

to the first bar of the group.

Figure 5(a) shows that going from 1 to 2 readers in-

creases execution time from 31.3s to 59.3s, slightly less

than double. Going from 1 reader to 8 performs 8× as

much I/O, but execution time increases only 6.2×, to

193.3s. The sub-linear slowdown is due to the increased

I/O queue depths of the more parallel workload giving

the I/O scheduler and disk more freedom to optimize ac-

cess patterns, increasing average throughput. These op-

timizations change the order in which I/O requests com-

plete, which in turn affects the subsequent pattern of re-

quests issued by the program. ARTC’s replay adapts to

these optimizations similarly, and thus achieves a mere

5% error in elapsed time on the 8-thread workload. The

simpler replay methods, however, are not so flexible, and

thus overestimate elapsed time by 57% and 33%.

Disk parallelism: Here we compare accuracy when

tracing on a single-disk source and replaying on a two-

disk RAID 0 target with a 512KB chunk size (and vice

versa). We use the same simple program as above, run-

ning with two threads. Figure 5(b) shows ARTC is ac-

curate moving in either direction (2-5% error), and tem-

poral ordering achieves accuracy similar to the 2-thread

case of Figure 5(a), but single-threaded replay does sig-

nificantly worse when replaying the single-disk trace on

the RAID, as its serial nature renders it incapable of ex-

ploiting the array’s increased I/O parallelism.

Cache size: The program for this experiment has two

threads and is similar to the previously used program

with one difference: thread 1 sequentially reads its en-

tire file before entering the random-read loop. For both

tracing and replay, we use a two-disk RAID 0 and 4GB

of memory. To limit the cache size during tracing and

replay, we run a utility that simply pins 2.5GB of its ad-

dress space in RAM, leaving only 1.5GB for the cache

and other OS needs. The results of tracing with a normal

cache and replaying with a small cache (and vice versa)

are shown in Figure 5(c). ARTC is accurate for both

source/target combinations, but the simpler methods are

accurate only for replay on the 4GB target, producing

timings that are 33% too long for the 1.5GB target.

In the trace collected on the 4GB system, thread 1’s

random reads are all cache hits, and thus all finish long

before the vast majority of thread 2’s reads are issued.

On a target with a 1.5GB cache, most of thread 1’s reads

become cache misses, but the simple replay methods

wait for thread 1 to finish before issuing most of thread

2’s requests; this prevents the system from taking ad-

vantage of the parallelism provided by the RAID. In the

other direction (1.5GB source to 4GB target), the sim-

ple replay methods are accurate. This accuracy asym-

metry arises because when replaying the 1.5GB source

system’s trace on the 4GB target, all of thread 1’s ran-

dom reads are cache hits, so playing them at the wrong

time does not degrade performance.

Scheduler slice size: Here we tune Linux’s Com-

pletely Fair Queuing (CFQ) I/O scheduler to explore

a tradeoff between efficiency and fairness. The CFQ

scheduler implements anticipation [9] by giving threads

slices of time during which requests are serviced. A

large slice means the scheduler will attempt to increase

throughput by servicing many requests from the same

thread before switching to a different thread, at the

cost of increasing the latencies seen by other threads.

The length of these slices can be adjusted by tuning

the scheduler’sslice sync parameter; we experiment

with values of 1ms and 100ms. In our microbench-

mark program, two threads compete for I/O through-

put, each performing sequential 4KB reads from sepa-

rate large files. Figure 5(d) shows that both simple re-

plays dramatically overestimate performance when de-

creasing slice sync from 100ms to 1ms, and even
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more drastically underestimate it when moving in the

opposite direction. ARTC, however, is extremely accu-

rate in both scenarios.

Figure 6 shows the inaccuracy of the simpler replays

in greater detail, comparing the original program’s per-

formance to each of the three replays on both 100ms and

1ms traces. While ARTC predicts the performance of

the target system flawlessly, the simple replay methods

tend to predict timings that reflect the performance of the

source system rather than that of the target. When a trace

is collected with a large slice sync, it will show long

periods of time servicing requests from a single thread.

During replay, even with a smaller slice, a simple re-

play method will only submit requests from the thread

that dominated that period; this effectively reproduces

the source system’s scheduling decisions at the applica-

tion level on the target.

5.2.2 Macrobenchmarks

In this section, we stress ARTC’s ability to make ac-

curate timing predictions by tracing and replaying the

file I/O of an embedded database, LevelDB, on 49 dif-

ferent source/target combinations. We explore vari-

ous file systems (ext4, ext3, JFS, and XFS) and hard-

ware configurations (HDD, 2-disk RAID 0, small cache,

and SSD). For each combination, we compare ARTC

against single-threaded and temporally-ordered replay,

as in §5.2.1. We run two benchmark workloads dis-

tributed with LevelDB, fillsync and readrandom,

each with 8 threads; fillsync threads insert records

into an empty database, and readrandom threads ran-

domly read keys from a pre-populated database.

Figure 7(a) shows performance accuracy results for

one source/target combination with fillsync (results

for other combinations are similar), and every combi-

nation with readrandom. For fillsync, all replay

modes on all source/target combinations are very ac-

curate. When multiple LevelDB threads want to issue
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Figure 7: LevelDB replay combinations. The first plot

of (a) shows an example of fillsync timings. The remaining

seven show the timings for every readrandom source/target

combination. On each plot, a baseline shows how long the

original program runs on the target platform. If replay is ac-

curate, the bars will be near this line. (b) shows a CDF of the

timing errors for the 98 replays for each mode.

writes, all writes are issued by one thread; the others

simply hand off their data to it. This essentially reduces

the I/O pattern to a simple single-threaded write work-

load, so simple replay methods are not at a disadvan-

tage. For readrandom, however, both simple methods

significantly overestimate execution time in every case.

ARTC sometimes overestimates and sometimes under-

estimates, but its errors tend to be much smaller.

Figure 7(b) shows the distribution of timing errors

across all replays. ARTC does best at avoiding ex-

treme inaccuracy; among the least accurate 10% of each

method’s replays, ARTC averages 28.7% error, com-

pared to 52.9% for temporal ordering and 113.3% for

single-threaded replay. Across all replays, temporal or-

dering and single-threaded replays achieve mean tim-

ing errors of 21.3% and 43.5%, respectively, whereas

ARTC’s replays average within 10.6% of the original

program’s execution time.

Simple replay methods overestimate readrandom’s

execution time due to a lack of ordering flexibility, as
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Figure 9: Concurrency. System-call overlap achieved by

different replays of a 4-thread LevelDB readrandom trace.

shown in Figure 8, a dependency graph of a represen-

tative period of time in a trace of a 4-thread LevelDB

readrandomworkload. Note that there are many more

ARTC resource-dependency edges than are shown in

this subgraph; however, these edges tend to be between

nodes (system calls) that are separated by a long pe-

riod of time and thus do not fit in the window of time

shown here (only edges whose endpoints are both within

that span of time are included). Over the entire trace,

there are 9135 temporal-ordering edges and 6408 ARTC

edges. However, what gives ARTC’s replay its flexibil-

ity is not having slightly fewer dependency edges, but

much more importantly having far longer edges. Mea-

sured in time between calls in the original trace, the av-

erage temporal-ordering edge is 10ms, whereas ARTC’s

average edge length is 8.9 seconds.

Figure 9 shows how enforcing the edges in Figure 8

affects when requests are issued during replay. Repre-

sentative two-second samples are shown for the original

program, ARTC replay, and temporally-ordered replay

in parts (a), (b), and (c), respectively. For each subfig-

ure, each of the four threads is represented by a row, with

grey rectangles indicating spans of time spent in system

calls issued by those threads. We observe that in the

original program, each thread almost always has an out-
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Figure 10: Operation times: SSD vs. HDD.

standing request, giving the scheduler and disk plenty of

flexibility. The replays deviate from this in that some

gaps between system calls are visible where the replay

threads spent time waiting for ordering dependencies to

be satisfied. ARTC, however, shown in Figure 9(b), suf-

fers far fewer such stalls than the temporally-ordered re-

play shown in Figure 9(c), achieving 94% of the system-

call concurrency shown in Figure 9(a), in contrast to

temporal ordering’s 60%.

6 Case Study: Magritte

Here we demonstrate the use of the Magritte benchmark

suite to evaluate the relative performance characteristics

of two storage systems, using ARTC’s detailed output

to determine what types of operations dominate thread-

time during replay. Thread-time is a measure of time

used by individual threads, and will usually be greater

than wall-clock time since threads typically run concur-

rently (for example, two threads running concurrently

for two seconds yields four thread-seconds). Figure 10

shows a breakdown of how thread-time is spent when re-

playing on a disk and an SSD. Both times are normalized

to HDD thread-time.



The SSD plot indicates a thread-time speedup of

5×-20× for most applications. Many of the categories

with a significant presence for the HDD experiments

also have a significant presence on the SSD; however,

time spent waiting for fsyncs is much less significant.

The applications each show distinct patterns. When

run on disk, thread time in iPhoto and iTunes tends to

be dominated by fsync; Numbers and Keynote, on the

other hand, are dominated by reads and stat-family

calls (e.g., stat, lstat, etc.). iMovie and Pages are

divided across a greater number of categories.

7 Related Work

The use of a compiler to transform input traces prior to

replay is somewhat similar to previous work by Joukov

et al. [10]. ARTC, however, is more focused on trace

analysis and inferring event dependencies.

In other work on I/O trace replay, Anderson et al. ar-

gue for maximum accuracy, since even slight deviations

can produce significant behavioral changes [3]. Tarasov

et al., however, argue for merely approximate replay

based on general workload characteristics [22]. Our

work falls somewhere in between: we replay the exact

I/O set in the original trace, though we allow variations

in ordering, much like real multithreaded applications.

While ARTC may not necessarily produce exactly the

same behavior from one run to the next, it more realis-

tically emulates the behavior of real applications (which

are likewise not necessarily consistent across runs).

Different approaches have been suggested for mining

information from traces. Aguilera et al. perform sta-

tistical analysis on passively-collected RPC traces to in-

fer inter-call causality [2] for debugging purposes. Mes-

nier et al.’s //TRACE actively collects traces, perturbing

the I/O in order to deduce dependencies between opera-

tions [16], and incorporates this information into its re-

play. ROOT also attempts to infer dependency informa-

tion from traces, but we rely on hints to glean as much

information as possible from a single data point.

SCRIBE [12] is a replay tool that also partially or-

ders replay events based on resources. Unlike ARTC,

SCRIBE is oriented more toward debugging and diagnos-

tics than performance analysis, and thus aims for perfect

reproduction of applications’ in-memory state. This ne-

cessitates intricate platform-specific kernel instrumen-

tation for tracing and replay (which must be done on

the same platform), whereas ARTC operates purely with

system calls, allowing cross-platform replay and simple

trace collection with existing tools.

8 Conclusion

The problems faced by real systems should be a pri-

mary motivation for systems innovation. Detailed traces

can provide insight into these problems, yet high-quality

traces of production systems remain scarce. Further-

more, the improvements made possible by new system-

design ideas should be measured against real-world pro-

duction workloads, yet the nondeterminism of modern

programs makes accurate trace replay challenging. We

propose ROOT, a new approach to trace replay based on

the idea that even a single trace can provide hints about

the nondeterministic structure of a program. This strat-

egy helps to maximize the utility of scarce trace data.

We hope the ROOT approach will be applied to traces

for a variety of storage APIs. We have created a new

tool, ARTC, that applies ROOT to UNIX system-call

traces, automatically generating realistic benchmarks.

ARTC supports over 80 different system calls, using

novel emulation techniques where necessary to support

cross-platform replay. Its replay combines faithful re-

production of trace semantics with accurate performance

predictions. Furthermore, we apply ARTC to 34 traces

of Apple desktop applications to create Magritte, a new

benchmark suite.

While ARTC is sufficiently robust and featureful to

be generally useful, further developments remain for fu-

ture work. Other possible resource dependencies would

allow more fine-grained ordering constraints. For ex-

ample, analysis of dependencies on file size rather than

mere existence would allow a replay mode for file re-

sources somewhere between stage and sequential order-

ing in strength.

ARTC and Magritte are available for download at:

https://research.cs.wisc.edu/adsl/Software/artc
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