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Abstract

We present Quarantine, a system that enables data-
driven selective isolation within concurrent server ap-
plications. Instead of constructing arbitrary isolation
boundaries between components, Quarantine collects
data to learn where such boundaries should be placed,
and then instantiates said barriers to improve reliability.
We present the case for data-driven selective isolation,
and discuss the challenges in realizing such a system.

1 Introduction

Commodity CPUs are now parallel processors. Paral-
lelism has become a tenet in most processor designs,
with some researchers suggesting that the era of many-
core systems consisting of thousands of cores is fast ap-
proaching. As this trend continues, new software sys-
tems are being written for exploiting this parallelism,
while operating systems are being redesigned to both ac-
commodate parallel applications and take advantage of
the underlying architecture [2,3].

While this advent of parallel systems is likely to be
pervasive, it will have an especially large impact on
server hardware. Cloud computing datacenters, another
ubiquitous entity in today’s virtual world, rely heavily
on parallel hardware [1]. Single-installation server ma-
chines follow suit, with a typical x86-based server con-
taining at least eight CPUs [1]. On the other hand, most
server software, such as Apache, PostgreSQL, and send-
mail, follow a thread-per-request architecture; the indus-
try is continually trying to improve hardware to support
these applications [20].

Though concurrency is both a natural part of servers
and an important factor in improving their performance,
writing production-level concurrent software is gener-
ally harder than writing sequential programs. Debugging
multithreaded software is hard [17]; atomicity violations,
data races, and other forms of concurrency bugs can be

both hard to find during testing, and can be tough to re-
produce. This inherent difficulty in writing concurrent
programs has inspired a spur of research on detecting
concurrency bugs, either dynamically [5,6,13,17], or by
using static methods [9,21].

The construction of reliable, concurrent servers, how-
ever, remains a critical challenge. The problem is that de-
tection of concurrency bugs alone does not guarantee re-
liable software; it is also necessary to recover from faults
caused by unexpected bugs. In other words, concurrent
server software needs to be fault tolerant.

Conventionally, whenever fault tolerance is a concern,
fault-isolatingboundariesare provided between isolated
components in the system, and failing components are
automatically recovered. This pattern can be seen in the
design of single-machine operating systems, which pro-
vide hardware-based memory isolation boundaries be-
tween non-trusting processes. In a more general sense,
distributed systems are designed such that each node can
be recovered individually, while research ideas such as
Rx [14] modify this concept slightly so that time, instead
of components, is divided. Specialized methodologies
are used to draw more fine-grained boundaries; for ex-
ample, Nooks [18] draws boundaries between the main
kernel and drivers in an OS.

If boundaries can be used to achieve robustness, why
aren’t they sufficient enough for concurrent server soft-
ware systems? Unfortunately, most systems createstatic
boundaries between subsystems based on developerintu-
ition; this has been the norm in approaches to date. Thus,
boundaries are likely to be misplaced; isolation between
components has traditionally been expensive [22], and
concurrent software systems benefit only if the isolation
is sufficiently fine-grained to find and recover from con-
currency bugs.

In this paper, we introduceQuarantine, a framework
for building robust concurrent server-based applications
with data-driven selective isolation, i.e., isolation that is
only instantiated when it is needed between the com-
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Figure 1:Kernel Architectures. The figure represents the
different kernel protection architectures that have evolved over
time. In the prehistoric kernel, there is no isolation between
components of the system (i.e., the OS is just a library); in the
classic kernel (e.g., a typical modern system), there is a fence
between the kernel and each process; microkernels place high-
level pieces of the kernel (e.g., VM pagers, file systems) into
their own ; finally, Nooks organizes device drivers in their own
protection domains.

ponents. There are two key pieces in Quarantine. The
first is the Quarantine Programming Model (QPM), a
programming model that supports flexible isolation be-
tween the modules. This framework enables developers
to write server-class concurrent applications in a familiar
but somewhat stylized form; a Quarantine compiler then
converts said code into its final form with barriers be-
tween isolated components as specified. The second is a
long-term data-analysis engine, the Quarantine Isolation
System (QIS), which collects and analyzes data from de-
ployed servers in order to determine which modules of a
server are faulty and in need of isolation. The analysis
engine tries different combinations in the field, as well
as studies crash dumps, to determine where best to place
boundaries. These two pieces combine to enable Quar-
antine determine where boundaries should be built, and
erect them in deployed systems, while incurring isolation
overhead only for necessary boundaries.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss how boundaries have been used in
the past. We then present the Quarantine system in Sec-
tion 3, discuss some ideas in Section 5 and conclude in
Section 6.

2 Background

We now present background relevant to Quarantine. We
first explain how process boundaries have been used tra-
ditionally to achieve fault tolerance towards concurrency
bugs and then examine process boundaries in detail. Fi-
nally, we discuss why process boundaries are not cur-
rently sufficient for tolerating concurrency bugs.

2.1 Fault Tolerance for Concurrency Bugs:
The Current State

While there has been ample research into unique
fault tolerance methodologies for various systems,

application-level crash and restart is the practically pre-
ferred method for faults from concurrency bugs in single-
node systems. One reason for this is that concurrency
bugs are mostly non-deterministic [8, 12, 23] and hence
cause transient faults; rebooting or restarting is a well
known method for recovering from such faults [4, 11].
Another reason is that most of the existing studies on
concurrency bug identification techniques [5, 6, 13, 17]
are optimized towards helpingprogrammersidentify
bugs rather than for fault tolerance: they produce false
positives and concentrate on only specific subclasses of
bugs. As a result, process-level isolation techniques are
currently the most used paradigm for concurrency bug
fault tolerance in server software.

2.2 Process Boundaries

Process-level isolation is usually provided by the oper-
ating system, and is based on hardware-based protec-
tion of address space boundaries. In general, failures
can manifest themselves in different ways [11]; address
space boundaries work on the idea that faults might ulti-
mately cause a violation of the boundary before any real
damage is done. There is a higher chance of the vio-
lation happening if the boundaries are fine-grained, and
hence, finer-grained boundaries have been introduced as
systems have evolved. One example of this trend is found
within the operating system: Figure 1 shows the evo-
lution over time, from prehistoric systems with no pro-
tection domains, to classic systems that separate the OS
from user applications, to more modern approaches such
as microkernels [7,15,16,24] and Nooks [18].

As is obvious from the diagram, these systems all
place boundaries between components in an entirely
static manner. For example, Chorus [16] and Mach [15]
are designed to push certain pieces of the kernel into user
space, with the goal of enabling users or developers to
tailor said components for specific workloads. Thus, the
presence of user-level pagers or file systems defines the
new protection boundaries in the system. Nooks makes
similar decisions about protection boundaries, focusing
instead on device drivers [18].

2.3 Why Extremely Fine-Grained
Protection Doesn’t Work

Clearly time has shown that isolation boundaries are use-
ful; though debate exists as to how many boundaries are
needed, there is little doubt that isolation is of great util-
ity. Even limited embedded environments now regularly
include hardware-based protection mechanisms. Thus, if
isolation is useful, why not then push the idea further,
isolating components as small as possible so that most
concurrency faults can be detected?
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There is one primary answer to this question: per-
formance. As a simple demonstration of the costs of
hardware-based protection, we measured the cost of
making a function call within the same protection do-
main and compared it to the cost of making a “remote”
procedure call into a different process on the same ma-
chine. As expected, while the procedure call only takes a
few cycles, the cost of the inter-process communication
is proportional to the cost of two context switches (about
4 to 6 microseconds on a modern machine), or roughly
three orders of magnitude worse.

It is thus clear that isolation boundaries should only be
constructed where absolutely necessary. Needless pro-
tection crossings can greatly harm performance with lit-
tle added benefit.

2.4 Other Protection Mechanisms

We have previously explained how address space iso-
lation has been useful, and why it has been found to
be more useful than specialized bug-detection mecha-
nisms [5, 6, 13, 17]. However, what about alternative
approaches? For example, languages with strong type
systems have lower overhead and higher fault detection
abilities.

One reason language-based protection does not suf-
fice is that these mechanisms usually apply to higher-
level languages. However, many important concurrent
server systems, such as Apache, PostgreSQL, and send-
mail, are still developed in low-level languages like C or
C++. Further, a recent study of open-source projects re-
vealed that C accounts for roughly 40% of open-source
project code [10]. Because of the efficiency, control, and
large installed-bases low-level languages provide, they
are likely to be an important part of infrastructure for
years to come.

2.5 Summary

In short, we can learn the following from the current
techniques and previous explorations into fault tolerance
mechanisms for concurrency bugs:

• Isolation in general, and hardware-based address
space isolation in particular, are useful as fault-
detection techniques for fault tolerance.

• In current systems, fine-grained isolation is better
for reliability, but worse for performance.

Thus, we need something that allows us to build isola-
tion boundaries only at optimal places, to isolate poten-
tial bugs while minimizing the impact on performance.

Figure 2: Sensible-boundary identification mecha-
nisms. The figure illustrates some methodologies that can be
used to identify the optimal boundaries to enforce; the concur-
rent server is imagined to be composed of separable hexagons,
and the shaded hexagons represent faulting components. In the
optimistic approach, the system is allowed to fault once and
the culprit component is isolated in future; in the pessimistic
approach, all components are isolated at first and the trusted
components are later combined; finally, the cooperative ap-
proach collects information from multiple systems to decide on
what to isolate.

3 Quarantine

The goal of Quarantine is to achieve fault tolerance (for
concurrent server software) with both good reliability
and little performance overhead. In order to do this,
Quarantine isolates only parts that it believes are faulty
using address-space boundaries. There are two require-
ments for achieving this:
• Splitting a concurrent server into fine-grained com-

ponents, each of which may be individually fault-
isolated.

• Deciding which of these components should be iso-
lated during run-time in order to improve the overall
reliability of the system while maintaining reason-
able performance overhead.

We decompose Quarantine into two parts correspond-
ing to these two requirements. A straightforward way to
achieve the first requirement is to allow the programmer
to indicate separable components within the system; the
first part of Quarantine is thus a stylized C programming
model to enable the system to determine clean and sep-
arable boundaries within the server. The second part of
Quarantine is a set of techniques to identify an optimal
set of boundaries, balancing both performance and relia-
bility of the system.

3.1 Quarantine Programming Model

The purpose of the Quarantine Programming Model
(QPM), a set of language modifications for C, is to al-
low the programmer to divide the system into separable
components that can be isolated if necessary. This goal
can be achieved in two steps:
• Provide an easy, intuitive way of identifying fine-
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grained separable components.
• Associate a well-defined, non-overlapping, run-

time memory boundary with each component, as re-
quired for address-space isolation.

While designing the modifications, we should neither
reduce the flexibility of C, nor introduce any perfor-
mance overhead when no components are being isolated.
In addition, QPM should resemble the original C pro-
gramming model as much as possible.

For the first step, we can divide along arbitrary sec-
tions of code, functions, files or any combination of
these. It is best to align the separable component bound-
aries to function boundaries, since function boundaries
are both easy to understand for the programmer and are
sufficiently fine-grained in most systems.

The next step is to define run-time memory boundaries
for a separable function group. This step is challenging
because, in the presence of pointers, C does not define
any semantic to associate functions with memory areas
(that are accessed by code belonging to the considered
function during run-time).

To deal with pointers, we need to modify the C pro-
gramming model to define the memory boundary. We
devise a “inout copy” semantic for pointers; whenever a
pointer is one of the parameters of a function call, and
the function call is to a separate isolated component, the
“data referenced to” by the pointer is copied to the iso-
lated component, and copied back when the function re-
turns. The same semantic applies if a pointer is a part
of a parameter (in the case of a structure or union pa-
rameter). Thus, if components are isolated, pointer ref-
erences are also handled as if they are a part of the stack
frame. However, for function calls between non-isolated
components, the normal C pointers semantic is obeyed.
The “data referenced to” by a pointer is not semantically
defined in the low type-safety environment of C (con-
sidering unions, pointers and type casting); we purport
to introduce new annotations that can be used by the pro-
grammer to define this for the necessary pointers. Global
variables can be handled in a similar manner.

3.2 Quarantine Isolation Subsystem

To achieve both good performance and reliable fault tol-
erance, the Quarantine Isolation Subsystem (QIS) per-
forms data-driven isolation: it analyzes crash reports and
isolation overheads, using the data to instantiate bound-
aries at optimal places within the system. We first de-
scribe, in a broad sense, some approaches to determine
which places are optimal. The methods described here
are illustrated in Figure 2.

Pessimistic approach:The system is first run with all
components isolated from one another. The QIS ob-
serves the components for some period of time, or un-

til a specified number of function calls happen to it; the
isolation boundaries are removed gradually as QIS be-
gins to trust the components. One disadvantage of this
approach is that the system will run slowly during the
initial phase when none of the components are trusted.
However, assuming that the faulty components perform
address space violations during the initial phase, this
method results in high reliability.

Optimistic approach:The system is run without any
boundaries initially. When any crash occurs, a list of
components that might have caused the fault is deter-
mined (for example, by analyzing the stack trace), and
those components are isolated during the next run. The
isolated components can be combined afterwards if their
behavior seems to be trustworthy. Although this method
has zero run-time overhead (if there are no faulty compo-
nents), each faulty component would cause a whole sys-
tem failure at least once. In addition, reliability is notably
affected by the correctness of the faulty-component-
determination method used.

Cooperative approach:Cooperative Crug Isolation
(CCI) [8] is a project which automatically diagnoses de-
ployed software failures by collecting information from
multiple installations. A similar method can be used for
Quarantine; this method would be especially useful with
systems in broad deployment. Such a method, though
complex to implement, would isolate suspicious compo-
nents alone without faulting even once.

QIS uses a combination of these approaches: it records
the frequency of faults corresponding to each compo-
nent, the time to recover, and the overall performance im-
pact of the isolation boundaries in order to intelligently
determine which components to isolate. For example,
QIS might determine from its analysis that it is best to
decompose a 100-component system into 10 big isolated
parts initially; as time progresses, it might further decom-
pose one of those ten, while combining the other nine.
QIS thus ensures that the balance between performance
overhead and reliability is optimal.

4 Discussion

In this section, we list some thoughts about the purpose
and design of Quarantine.

Is Quarantine limited to concurrency bugs?Quaran-
tine has been designed with concurrent server systems in
mind. Concurrency bugs have two characteristics that are
inherent in the motivation of Quarantine and have been
exploited in its design: concurrency bugs are hard to de-
tect before deployment, and after deployment, most con-
currency failures can be solved by restarting. However,
the basic concept of data-driven, selective-isolation can
be applied to a wider variety of faults and systems.
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Does Quarantine require new systems to be built
from scratch? The QPM necessitates programmer
involvement in converting an existing system into a
Quarantinable-system; although the “inout copy” seman-
tic introduces only little programming nuisance for se-
quential programs, for a concurrent program, the seman-
tic introduces a notable difference in the programming
model; two concurrent function calls might actually be
working on two different copies even if the functions are
given pointers to the same data. However, QPM facili-
tates gradual conversion of an existing source code base.
One way to avoid this entirely would be to look into au-
tomatic component identification techniques.

Are address space fault-identification techniques suf-
ficient? Programmer defined asserts, specialized fault
identification techniques [5, 6, 13, 17], stronger type
safety mechanisms and other methodologies can enable
quicker identification of a wider spectrum of failures.
Address space isolation, as used in Quarantine, provides
a basic framework; since the QIS separates out suspected
components into separate address spaces, it should be
trivial to apply any additional fault detection technique
on the isolated component.

5 Current State

We have a prototype implementation of the Quarantine
framework, in which separated parts are automatically
restarted when a fault happens. During restart, any re-
quests which were not replied to by the module are re-
played, making the restart transparent to the other mod-
ules. Replay works by logging function calls (along with
the parameters) and returns to the main memory. One
major challenge was copying the data pointed to by a
pointer, which was solved with minimal programmer an-
notations. The prototype implementation works for tran-
sient faults which do not propogate beyond each isolated
component, if the isolated components are designed such
that they can be restarted. It remains to be seen whether
these conditions are suitable when building large soft-
ware systems, and how fault detection and restart can be
extended to be more effective.

6 Conclusions

Just as John Snow used data to determine the likely
source of a Cholera outbreak [19], so too should robust
systems. With Quarantine, such data is used to decide
where isolation boundaries should be placed. We hope
that Quarantine, with its modified programming envi-
ronment and data-analysis based fault tolerance, will en-
able a new generation of robust concurrent services to
be built. Further, we believe that the idea behind data-

driven isolation is a broad one, and thus encourage ex-
perimentation with similar empirical approaches to reli-
ability. Wherever a service is deployed widely, different
approaches can be employed, and data can be used to
gauge the effectiveness of alternatives. In doing so, per-
haps a new era in the construction of reliable systems will
be realized.
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