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Abstract

We present a study of six batch-pipelined scientific
workloads that are candidates for execution on computa-
tional grids. Whereas other studies focus on the behavior
of single applications, this study characterizes workloads
composed of pipelines of sequential processes that use file
storage for communication and also share significant data
across a batch. This study includes measurements of the
memory, CPU, and I/O requirements of individual compo-
nents as well as analyses of I/O sharing within complete
batches. We conclude with a discussion of the ramifications
of these workloads for end-to-end scalability and overall
system design.

1. Introduction

For many years, researchers have understood the impor-
tance of studying workload characteristics in order to eval-
uate their impact on current and future systems architec-
ture [5, 15, 17]. Most of these previous application stud-
ies have focused on the detailed behavior of single appli-
cations, whether sequential or parallel. For example, the
caching behavior of the SPEC workloads has long been a
topic of intense scrutiny [6] , and the communication char-
acteristics of parallel applications has similarly been well
documented [8, 33, 32].

However, applications are not used in isolation in pro-
duction settings. Particularly in computational science, the
desired end-result is often the product of a group of appli-
cations, each of which may be run hundreds or thousands of
times with varied inputs. Such applications are executed in
a high throughput computing system such as Condor [16]
and may be managed by high-level workflow software such
as Chimera [10].

We refer to such workloads as batch-pipelined, as il-
lustrated within Figure 1. A batch-pipelined workload is
composed of several independent pipelines; each pipeline
contains sequential processes that communicate with the
preceding and succeeding processes via private data files.
Shared input files are used by all of the pipelines in various
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Figure 1. A Batch-Pipelined Workload

stages. As the figure suggests, a workload is generally sub-
mitted in large batches with all of the pipelines incidentally
synchronized at the beginning. However, each pipeline is
logically distinct and may correctly execute faster or slower
than its siblings.

The key difference between studying the behavior of a
single application and that of a batch-pipelined workload is
that the sharing behavior of the batch-pipelined workload
must be understood. For example, when many instances
of the same application are run, the same executable and
potentially many of the same input files are used. Thus,
to realistically capture the full diversity of these produc-
tion workloads, one must study the behavior of the entire
pipeline and account for the effects of sharing.

In this paper, we present a study of six production sci-
entific workloads. We collected these application pipelines
from diverse fields of computational science, including as-
tronomy, biology, geology, and physics; we believe the ap-
plications are representative of a broad class of important
workloads. We first present a basic characterization of the
computational, memory, and I/O demands of these work-
loads. We find that although individually a single pipeline
does not place a tremendous load on system resources, in
combination the loads can be overwhelming. We focus par-
ticularly upon the I/O behavior of the workloads because
it is the primary source of sharing. We then character-
ize the sharing that occurs in the workloads by breaking
I/O activity into three categories: endpoint, which repre-



sents the input and final output, pipeline-shared, which is
shared in a write-then-read fashion within a single pipeline,
and batch-shared, which is comprised of input I/O shared
across pipelines. Through this characterization, we show
that shared I/O is the dominant component of all I/O traf-
fic.

Most importantly, we study the implications for systems
design. We find that wide-area network bandwidth is a se-
rious scalability problem for these applications, unless at-
tempts are made to eliminate shared I/O. Successful sys-
tems for these workloads must segregate the three types
of I/O traffic in order to be able to scale successfully. We
submit that pipeline-shared data is at least as significant a
problem as batch-shared data, and elucidate why traditional
file systems are not appropriate for these workloads.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the general characteristics of batch-
pipelined workloads as well as our specific application
pipelines. In Section 3, we describe our experimental
method, and in Sections 4 and 5, we analyze the data and
discuss the implications. We discuss related work in Sec-
tion 6, and conclude in Section 7.

2. Applications

The applications that we characterize were chosen from
a range of scientific disciplines. Our selection criteria
were that the applications are attacking a major scientific
objective, are composed of sequential applications, and
require a scalable computing environment to accomplish
high throughput. We focus mostly on six applications but
in some measurements we include SETI@home [26] as a
point of reference. With guidance from users, we chose
workloads and input parameters to correspond to produc-
tion use. Descriptions of the applications are found in Fig-
ure 2.

Some of the applications have a variable granularity.
Both CMS and AMANDA process a variable number of
small, independently generated events. For these applica-
tions, we chose pipeline sizes of 250 events (CMS) and
100,000 showers (AMANDA), corresponding to typical
production use. In both cases, the CPU and I/O resources
consumed by a pipeline scale linearly with the number of
events. IBIS has multiple datasets of differing resolutions
in which the granularity of the resolution reflects the size of
the dataset. In these experiments, we used a medium sized
dataset. IBIS and Nautilus perform single simulations of
variable length, while SETI, BLAST, and HF operate on a
work unit of fixed size.

Across these applications, we have observed the follow-
ing characteristic behaviors:

A diamond-shaped storage profile. Small initial in-
puts are generally created by humans or initialization tools

and expanded by early stages into large intermediate re-
sults. These intermediates are often reduced by later stages
to small results to be interpreted by humans or incorporated
into a database. Intermediate data, which often serves as
checkpoint or cached values, may be ephemeral in nature.

Multi-level working sets. Users can easily identify
large logical collections of data needed by an application,
such as calibration tables and physical constants. However,
in a given execution, applications tend to select a small
working set of which users are not aware; this has signif-
icant consequences for data replication and caching tech-
niques.

Significant data sharing. Although each application
has a large configuration space, users submit large num-
bers of very similar jobs that access similar working sets.
For example, analysis of Condor logs shows that the usual
batch size is over a thousand for AMANDA, CMS and
BLAST. This property can be exploited for efficient wide-
area distribution over modest communication links.

3. Method

For each application, we capture its CPU, memory and
I/O behavior. The CPU and memory behavior is tracked
with available hardware counters and statistics. To instru-
ment I/O behavior, we make use of a shared-library in-
terposition agent [29] that replaces the I/O routines in the
standard library. For each explicit I/O event requested by
the application, the library records an event marking the
start and end of the operation, the instruction count, and
other details about the I/O request. This technique can be
applied to any application that is dynamically linked. Care
is taken so as to avoid additional overheads due to tracing.

Access to memory-mapped files is traced with a user-
level paging technique using the POSIX mprotect feature.
Access to memory-mapped regions generates a user-level
page fault (SIGSEGV) that may be handled and traced by
the shared library. Only one application (BLAST) uses
memory-mapped I/O. In the analysis that follows, page
faults are considered equivalent to explicit read operations
of one page size and non-sequential access to memory-
mapped pages is recorded as an explicit seek operation.

4. Workload Analysis

An overview of the resources consumed by each appli-
cation is given in Figure 3. These applications have a wide
variance in run times on current hardware, ranging from
a little more than a minute (BLAST) to a little more than
a day (IBIS). Considered individually, these applications
spend the majority of time consuming CPU rather than I/O.
Memory requirements and program sizes are all quite mod-
est in comparison to total I/O volume.
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Figure 2. Application Schematics. These schematics summarize the structure of each application pipeline. Cir-
cles indicate individual processes, labeled with the name and instruction counts. Rounded boxes indicate data private
to a pipeline. Double boxes indicate data shared between pipelines in a batch. Arrows indicate data flow.

� BLAST [2] searches genomic databases for matching proteins and nucleotides. Both queries and archived data
may include errors or gaps, and acceptable match similarity is parameterized. Exhaustive search is often necessary.
A single executable, blastp, reads a query sequence, searches through a shared database, and outputs matches.

� IBIS [9] is a global-scale simulation of Earth systems. IBIS simulates effects of human activity on the global envi-
ronment, i.e., global warming. ibis performs the simulation and emits a series of snapshots of the global state.

� CMS [12] is a high-energy physics experiment to begin operation in 2006. CMS testing software is a two-stage
pipeline; the first stage, cmkin, given a random seed, generates and models the behavior of particles accelerated by
the ring. The output is a set of events that are fed to cmsim, which simulates the response of the detector. The final
output represents events that exceed the triggering threshold of the detector.

� Messkit Hartree-Fock (HF) [7] is a simulation of the non-relativistic interactions between atomic nuclei and elec-
trons, allowing the computation of properties such as bond strengths and reaction energies. Three distinct executables
comprise the calculation: setup initializes data files from input parameters, argos computes and writes integrals
corresponding to the atomic configuration, and scf iteratively solves the self-consistent field equations.

� Nautilus [27] is a simulation of molecular dynamics. An input configuration describes molecules within a three-
dimensional space. Newton’s equation is solved for each particle. Incremental snapshots are taken to periodically
capture particle coordinates. The final snapshot is often passed back to the program as an initial configuration for
another simulation. Eventually, all snapshots are converted into a standard format using bin2coord and consoli-
dated into images using rasmol.

� AMANDA [13] is an astrophysics experiment designed to observe cosmic events such as gamma-ray bursts by col-
lecting the resulting neutrinos through their interaction with the Earth’s mass. The first stage of the calibration soft-
ware, corsika, simulates the production of neutrinos and the primary interaction which creates showers of muons.
corama translates the output into a standard high-energy physics format. mmc propagates the muons through the
earth and ice while introducing noise from atmospheric sources. Finally, amasim2 simulates the response of the
detector to incident muons.



Real Millions of Instructions Memory (MB) I/O Traffic
Application Time (s) Integer Float Burst Text Data Share MB Ops MB/s
seti seti 41587.1 1953084.8 1523932.2 4.6 0.1 15.7 1.1 75.8 417260 0.00

blast blastp 264.2 12223.5 0.2 0.1 2.9 323.8 2.0 330.1 88671 1.25
ibis ibis 88024.3 7215213.8 4389746.8 104.7 0.7 24.0 1.4 336.1 110802 0.00
cms cmkin 55.4 5260.4 743.8 6.1 19.4 5.0 2.6 7.5 988 0.14

cmsim 15595.0 492995.8 225679.6 0.4 8.7 70.4 4.3 3798.7 1915559 0.24
total 15650.4 498256.1 226423.4 0.4 19.4 70.4 4.3 3806.2 1916546 0.24

hf setup 0.2 76.6 0.4 0.0 0.5 4.0 1.3 9.1 2953 56.43
argos 597.6 179766.5 26760.7 0.8 0.9 2.5 1.4 663.8 254713 1.11
scf 19.8 132670.1 5327.6 0.2 0.5 10.3 1.3 3983.4 765562 201.06
total 617.6 312513.2 32088.6 0.3 0.9 10.3 1.4 4656.3 1023228 7.54

nautilus nautilus 14047.6 767099.3 451195.0 18.6 0.3 146.6 1.2 270.6 65523 0.02
bin2coord 395.9 263954.4 280837.2 4.2 0.0 2.2 1.4 403.3 129727 1.02
rasmol 158.6 69612.8 3380.0 1.9 0.4 4.9 1.7 128.7 38431 0.81
total 14602.2 1100666.5 735412.2 7.9 0.4 146.6 1.7 802.7 233681 0.05

amanda corsika 2187.5 160066.5 4203.6 26.4 2.4 6.8 1.4 24.0 6225 0.01
corama 41.9 3758.4 37.9 0.3 0.5 3.2 1.1 49.4 12693 1.18
mmc 954.8 330189.1 7706.5 0.3 0.4 22.0 4.9 154.4 1141633 0.16
amasim2 3601.7 84783.8 20382.7 143.7 22.0 256.6 1.6 550.3 733 0.15
total 6785.9 578797.8 32330.7 0.5 22.0 256.6 4.9 778.0 1161275 0.11

Figure 3. Resources Consumed. Shown here are the total amounts of resources consumed. In this and in
subsequent tables, shading is used to differentiate between different application pipelines. Real time refers to the total
wall-clock time of each of the applications when run without instrumentation overhead. Burst is the average number
of instructions executed between I/O operations. Instruction counts were obtained using the performance monitoring
counters (PMCs) available on x86-class processors. Notice that, with the exception of HF, all of the application
pipelines have very modest bandwidth requirements.

Total I/O Reads Writes
Application Files Traffic Unique Static Files Traffic Unique Static Files Traffic Unique Static
seti seti 14 75.77 3.02 3.02 12 71.62 0.72 1.04 11 4.15 2.36 2.68

blast blastp 11 330.11 323.59 586.21 10 329.99 323.46 586.09 1 0.12 0.12 0.12
ibis ibis 136 336.08 73.64 73.64 132 140.08 73.48 73.48 118 196.00 66.66 66.66
cms cmkin 4 7.49 3.88 3.88 2 0.00 0.00 0.00 2 7.49 3.88 3.88

cmsim 16 3798.74 116.00 126.18 11 3735.24 52.86 63.05 5 63.50 63.13 63.13
total 17 3806.22 119.88 130.06 11 3735.24 52.86 63.05 6 70.98 67.01 67.01

hf setup 5 9.13 0.40 0.40 3 5.44 0.26 0.26 3 3.69 0.39 0.40
argos 5 663.76 663.75 663.97 2 0.04 0.03 0.26 4 663.73 663.74 663.97
scf 11 3983.40 664.61 664.61 9 3979.33 663.79 664.60 8 4.07 2.50 2.69
total 11 4656.30 666.54 666.54 9 3984.81 663.80 664.60 9 671.49 666.53 666.53

nautilus nautilus 17 270.64 32.90 32.90 7 4.25 4.25 4.25 10 266.40 28.66 28.66
bin2coord 247 403.27 273.87 273.87 123 152.78 152.66 152.66 241 250.49 249.39 249.39
rasmol 242 128.75 128.76 128.76 124 115.87 115.88 115.88 120 12.88 12.88 12.88
total 501 802.66 435.48 435.48 252 272.90 272.74 272.74 369 529.76 290.94 290.94

amanda corsika 8 23.96 23.96 23.96 5 0.76 0.75 0.75 3 23.21 23.21 23.21
corama 6 49.37 49.37 49.37 3 23.17 23.17 23.17 3 26.20 26.20 26.20
mmc 11 154.36 154.36 154.36 9 28.92 28.92 28.92 2 125.43 125.43 125.43
amasim2 29 550.35 550.40 635.78 27 545.04 545.09 630.47 3 5.31 5.31 5.31
total 46 778.04 778.09 863.42 40 597.89 597.96 683.32 7 180.14 180.11 180.11

Figure 4. I/O Volume. Shown here are the total amounts of I/O performed. Traffic is the number of bytes that flow
into and out of the process. Unique I/O considers only unique byte ranges within this total traffic. Notice that HF
and CMS both perform large proportions of reread traffic indicating that caching is particularly important for them.
Static I/O refers to the total size of all of the files accessed and may be less than unique I/O if applications read only
portions of the files. Notice for example that BLAST reads less than 60% of the total data in the files that it accesses.
This suggests that systems which prestage data sets may sometimes be performing unnecessary work.



Appl. Open (%) Dup (%) Close (%) Read (%) Write (%) Seek (%) Stat (%) Other (%)
seti 64595 15.5 0 0.0 64596 15.5 64266 15.4 32872 7.9 63154 15.1 127742 30.6 15 0.0
blastp 18 0.0 11 0.0 18 0.0 84547 95.3 1556 1.8 2478 2.8 37 0.0 5 0.0
ibis 1044 0.9 0 0.0 1044 0.9 26866 24.2 28985 26.2 51527 46.5 1208 1.1 122 0.1
cmkin 2 0.2 0 0.0 2 0.2 2 0.2 492 49.8 479 48.5 8 0.8 2 0.2
cmsim 17 0.0 0 0.0 16 0.0 952859 49.7 18468 1.0 944125 49.3 47 0.0 24 0.0
total 19 0.0 0 0.0 18 0.0 952861 49.7 18960 1.0 944604 49.3 55 0.0 26 0.0
setup 6 0.2 0 0.0 6 0.2 1061 35.9 735 24.9 1118 37.9 19 0.6 6 0.2
argos 3 0.0 0 0.0 3 0.0 8 0.0 127569 50.1 127106 49.9 18 0.0 4 0.0
scf 34 0.0 0 0.0 34 0.0 509642 66.6 922 0.1 254781 33.3 121 0.0 18 0.0
total 43 0.0 0 0.0 43 0.0 510711 49.9 129226 12.6 383005 37.4 158 0.0 28 0.0
nautilus 497 0.8 0 0.0 488 0.7 1095 1.7 62573 95.5 188 0.3 678 1.0 1 0.0
bin2coord 1190 0.9 6977 5.4 12238 9.4 33623 25.9 65109 50.2 3 0.0 407 0.3 10141 7.8
rasmol 359 0.9 22 0.1 517 1.3 29956 77.9 3457 9.0 1 0.0 252 0.7 3850 10.0
total 2046 0.9 6999 3.0 13243 5.7 64674 27.7 131139 56.1 192 0.1 1337 0.6 13992 6.0
corsika 13 0.2 0 0.0 13 0.2 199 3.2 5943 95.5 8 0.1 36 0.6 10 0.2
corama 4 0.0 0 0.0 4 0.0 5936 46.8 6728 53.0 2 0.0 12 0.1 4 0.0
mmc 8 0.0 0 0.0 9 0.0 29906 2.6 1111686 97.4 0 0.0 7 0.0 7 0.0
amasim2 30 4.1 0 0.0 28 3.8 577 78.7 24 3.3 4 0.5 57 7.8 10 1.4
total 55 0.0 0 0.0 54 0.0 36618 3.2 1124381 96.8 14 0.0 112 0.0 31 0.0

Figure 5. I/O Instruction Mix. Shown here are the total number of the different type of I/O instructions exe-
cuted by each of the applications. The Seek column includes non-sequential access to memory-mapped pages and
ignores all lseek operations which do not actually change the file offset. The Other column sums a number of
generally uncommon operations such as ioctl and access. The high numbers in this column reflect the fact that
bin2coord and rasmol are driven by shell scripts which perform many readdir operations. Notice that many
of the applications have high degrees of random access as shown by the ratio of seeks to reads and writes.
This contradicts previous file system studies which indicate the dominance of sequential I/O [4].

Endpoint I/O (MB) Pipeline I/O (MB) Batch I/O (MB)
Appl. Files Traffic Unique Static Files Traffic Unique Static Files Traffic Unique Static

seti 2 0.34 0.34 0.34 12 75.43 2.68 2.68 0 0.00 0.00 0.00
blastp 2 0.12 0.12 0.12 0 0.00 0.00 0.00 9 329.99 323.46 586.09
ibis 20 179.92 53.97 53.97 99 148.27 12.69 12.69 17 7.89 6.98 6.98
cmkin 2 0.07 0.07 0.07 1 7.42 3.81 3.81 1 0.00 0.00 0.00
cmsim 6 63.50 63.13 63.13 1 5.56 3.81 3.81 9 3729.67 49.04 59.24
total 6 63.56 63.20 63.20 2 12.99 7.62 7.62 9 3729.67 49.04 59.24
setup 3 0.14 0.14 0.14 2 8.99 0.26 0.26 0 0.00 0.00 0.00
argos 3 1.81 1.81 1.81 2 661.95 661.93 662.17 0 0.00 0.00 0.00
scf 3 0.01 0.01 0.01 7 3983.39 664.59 664.59 1 0.00 0.00 0.00
total 3 1.96 1.94 1.94 7 4654.34 664.59 664.59 1 0.00 0.00 0.00
nautilus 6 1.18 1.10 1.10 9 266.32 28.66 28.66 2 3.14 3.14 3.14
bin2coord 1 0.00 0.00 0.00 241 403.25 273.85 273.85 5 0.02 0.01 0.01
rasmol 119 12.88 12.88 12.88 120 115.79 115.79 115.79 3 0.08 0.09 0.09
total 124 14.06 13.99 13.99 369 785.37 418.25 418.25 8 3.24 3.24 3.24
corsika 2 0.04 0.04 0.04 3 23.17 23.17 23.17 3 0.75 0.75 0.75
corama 3 0.00 0.00 0.00 3 49.37 49.37 49.37 0 0.00 0.00 0.00
mmc 0 0.00 0.00 0.00 6 151.63 151.63 151.63 5 2.73 2.73 2.73
amasim2 5 5.31 5.31 5.31 2 40.00 40.00 125.43 22 505.04 505.04 505.04
total 6 5.22 5.21 5.21 11 264.31 264.29 349.69 29 508.52 508.52 508.52

Figure 6. I/O Roles. Shown here are the total amounts of each type of I/O performed. Endpoint traffic consists
of the initial inputs and final outputs that are unique to each application. Pipeline traffic is intermediate data passed
between pipeline stages or even intermediate data passed between different phases of a single stage. Batch traffic is
input data that are shared across different instances of the pipeline. Traffic is the number of bytes that flow into and
out of the process. Unique I/O considers only unique byte ranges within this total traffic. Static I/O refers to the total
size of all of the files accessed and may be less than unique I/O if applications read only portions of the files. Notice
that all of the applications, with the exception of IBIS, have very little endpoint traffic relative to their total traffic.
This indicates that the scalability of systems that run these applications will depend on their ability to differentiate
between these different types of I/O.
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Figure 7. Batch Cache Simulation
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Figure 8. Pipeline Cache Simulation

Figure 4 details the I/O volume produced by each
pipeline stage. Although these applications are conceived
as a pipeline of multiple stages, they are not connected
by simple data streams. Rather, each makes complex
read/write use of the file system, as indicated by the num-
ber of files each accesses. SETI, CMS, HF, and to a lesser
degree, BLAST, all read input data multiples times. Over-
writing of output data is also found in all pipelines with
the exception of AMANDA. Output over-writing is usually
done to update application-level checkpoints in place. (We
are somewhat alarmed to observe that such checkpoints
are unsafely written directly over existing data, rather than
written to a new file and atomically replaced by renaming
it.) Several pipelines are distributed with large collections
of data that may be of use to many runs. However, any
typical run only accesses a small portion common to simi-
lar runs. For example, the static size of the BLAST dataset
exceeds the unique amount read by the application by 45%.

The distribution of I/O operations is given in Figure 5.
Notice that many of these applications have a high de-
gree of random access, as shown by the ratio of seeks
to reads and writes This results from the nature of the
data files accessed by the programs, generally with com-
plex, self-referencing, internal structure, and contradicts
many file system studies which indicate the dominance of
sequential I/O [4].

To characterize the different types of sharing in batch-
pipelined workloads, we have divided the I/O traffic into
three roles. Endpoint traffic consists of the initial inputs
and final outputs that are unique to each pipeline. They

must be read from and written to the central site regard-
less of the system design. Pipeline traffic consists of in-
termediate data passed between pipeline stages or even in-
termediate data passed between different phases of a single
stage. Batch traffic is input data that are identical across
all pipelines. Through our understanding of each applica-
tion, we identified every file accessed as either endpoint,
pipeline, or batch, and computed the traffic performed in
each category, as shown in Figure 6. We immediately see
that comparatively little traffic is needed at the endpoints;
the bulk is either pipeline or batch, depending on the appli-
cation.

Examining both Figures 5 and 6, we note that a very
large number of opens are issued relative to the number
of files actually accessed. Typically designed on standalone
workstations, these applications are not optimized for the
realities of distributed computing, where opening a file for
access can be many times more expensive than issuing a
read or write.

Figures 7 and 8 show the working set sizes of batch-
shared and pipeline-shared data in each workload. These
values are computed from simulations performed on the
trace data with a batch width of 10 and a varying LRU
cache size with 4KB blocks. Executable files are implicitly
included as batch-shared data. In general, for both types of
sharing, the necessary cache sizes are small with respect to
both the I/O volume and the sizes of typical main memo-
ries today. There are some outliers. AMANDA has a large
amount of batch shared data (over half a GB) that is read
only once, and thus a cache is not effective until very large
sizes. However, AMANDA also has a very high pipeline
hit rate at small cache sizes due to a large number of single-
byte I/O requests. Due to its high degree of re-reading
and output overwriting, CMS needs only very small cache
sizes to effectively maximize its hit rates. BLAST has no
pipeline data. IBIS, though one stage, has pipeline data in
the form of checkpoints written and read multiple times.

Figure 9 shows how these applications relate to Am-
dahl’s long standing system balance ratios [3], recently
amended by Gray [11]. These workloads have CPU-IO
ratios (measured in MIPS/MBPS) far exceeding Amdahl’s
ideal value of eight, indicating reliance on computation
rather than I/O. The ratio of memory to CPU speed, known
as alpha, is near or below Amdahl’s value of one, and with
the exception of the last component of AMANDA, never
comes close to Gray’s value of four. This also indicates
reliance on computation rather than memory. Finally, the
ratio of CPU instructions to I/O instructions is several or-
ders of magnitude larger than 50,000. With respect to a
single instance of each pipeline, a commodity computing
node engineered to Amdahl’s metrics is considerably over-
provisioned with I/O bandwidth and memory capacity.



CPU/IO MEM/CPU CPU/IO
Appl. (MIPS/MBPS) (MB/MIPS) (instr/op)

seti 45888 0.15 8737 K
blastp 37 26.77 144 K

ibis 34530 0.20 109823 K
cmkin 801 0.26 6372 K
cmsim 189 1.86 393 K

total 190 2.09 396 K
setup 8 0.06 27 K
argos 311 0.02 850 K

scf 34 0.30 189 K
total 74 0.16 353 K

nautilus 4501 1.71 19496 K
bin2coord 1350 0.00 4403 K

rasmol 566 0.02 1991 K
total 2287 1.20 8238 K

corsika 6854 0.14 27670 K
corama 76 0.06 313 K

mmc 2189 0.10 310 K
amasim2 191 12.48 150443 K

total 785 3.77 551 K

Amdahl 8 1.00 50 K
Gray 8 1 - 4

�
50 K

Figure 9. Amdahl’s Ratios

5. System Implications

Each of these workloads are potentially infinite. In
these problem domains, the ability to harness more com-
puting power enables higher resolution, more parameters,
and lower statistical uncertainties. Current users of these
applications wish to scale up throughput by running hun-
dreds or thousands simultaneously. At this scale, applica-
tions normally considered CPU-bound become I/O bound
when considered in aggregate.

To give some idea of the growing envelope of current
scientific computing, consider that in the spring of 2002,
the CMS pipeline was used to simulate 5 million events di-
vided into 20,000 pipelined jobs, consuming 6 CPU-years
and producing a terabyte of output. This batch was only a
small fraction attempted as a test run before full production
begins in 2007. Successive yearly workloads are planned to
grow. All the necessary code and data are published in au-
thoritative form by the experiment’s central site. Likewise,
all simulation outputs must eventually be moved back for
archival storage.

In this section, we will explore the general properties of
computing and storage systems that may be built to satisfy
these workloads. We will not explore detailed algorithms
for data management, but instead consider the provisioning
of the necessary resources.

5.1. Endpoint Scalability

Regardless of the capacity of individual computing
nodes, the ultimate scalability of these workloads is lim-
ited by competition for shared resources. We assume that

each workload relies on a central site for the authenticity
and archival of input and output data. However, we have
demonstrated that actual endpoint I/O traffic is a relatively
small fraction of the total for all of these applications. If we
are able to eliminate all non-endpoint traffic from the end-
point server through techniques such as caching and repli-
cation then we may see significant gains in scalability.

Of course, traffic elimination must be carried out care-
fully. Pipeline-shared traffic may only be eliminated if it
is truly of no use to the end user. Such intermediate data
might be necessary to return for debugging or even for
archival if the ability to reproduce it is questionable. Batch-
shared may only be eliminated within the constraints of
maintaining the consistency and authenticity of potentially
changing input data. Traffic elimination cannot be done
blindly without some consideration of how the data are ac-
tually used outside the computing system.

That said, we may consider the limits of a system for
executing such workloads based on its ability to eliminate
shared traffic. Figure 10 shows how each of the selected
applications would scale in four systems each eliminating
some category of traffic. We assume the presence of a
buffering structure sufficient to completely overlap all CPU
and I/O; figures assume a 2000 MIPS CPU and show MB
per second of CPU time. Two horizontal lines show mile-
stones in I/O bandwidth. The lower, at 15 MB/s, represents
a capable commodity hard disk. The upper, at 1500 MB/s,
represents a very aggressive storage server and network.

The leftmost graph shows the scalability of a system that
carries all traffic to the endpoint server. In this discipline,
a high end storage device is needed for systems of very
modest size, and is even overwhelmed by two applications
near n=100. Only IBIS and SETI would be able to scale
to n=100,000. If batch-shared traffic is eliminated, we will
make significant improvements in CMS and Nautilus, as
shown in the second graph. On the other hand, if pipeline-
shared traffic is eliminated, we observe significant gains for
SETI, HF, and Nautilus, as shown in the third. If only end-
point I/O is performed, then we reach the limit shown in the
rightmost graph. All of the applications shown could scale
over 1000 workers with modest storage, and over 100,000
with high-end storage. SETI alone could potentially scale
to 1 million CPUs, an indicator of its specialized design for
wide-area deployment.

It is valuable to consider the limits of workload scala-
bility as CPU and I/O hardware improve in performance
over time. The limits of space prevent us from doing so
here, but a detailed discussion may be found in a technical
report. [28]
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Figure 10. Scalability of I/O Roles. These graphs show how the scalability of these applications can be improved
by up to several orders of magnitude when batch-shared and pipeline-shared I/O are not performed at the endpoint
server. The two horizontal lines show milestones in I/O bandwidth. The upper, at 1500 MB/s, represents a high-end
storage center and the lower, at 15 MB/s, represents a current commodity disk.

5.2 Software Architecture

In order to scale to large sizes, software architectures for
these workloads must strive to eliminate batch-shared and
pipeline-shared data from endpoint interactions wherever
possible, within the constraints of security, persistence, and
performance. Traditional file systems do not serve these
applications because their naming and consistency require-
ments are targeted to interactive cooperating users. These
applications require a data management system that has
specialized requirements for workload analysis, failure re-
covery, and resource management.

By itself, the issue of batch input sharing has received
significant attention in the grid computing community. De-
ployed systems such as SRB [20] and GDMP [24] man-
age widely-distributed and well-known batch shared data.
Techniques for discovering [31] and replicating [21] batch-
shared data have been proposed.

Without diminishing the importance of batch sharing,
we submit that the issue of pipeline sharing is a very differ-
ent problem that has been relatively neglected. As Figure
10 shows, the localization of both types of I/O is neces-
sary to achieve high scalability. The treatment of pipeline-
shared data must necessarily be different than that of batch
shared data, because it will have one writer and few (or
one) reader before it is discarded. Pipeline-shared outputs
will require some facility for discovery by the reader of
the data, but need not be advertised to the same degree
as batch-shared data. The loss of a pipeline-shared out-
put may require the re-execution of a previous computation
stage.

Solutions to both pipeline and batch sharing problems
require that an application’s I/O be classified into each of
the three roles with some degree of accuracy. Custom ap-
plications such as SETI have succeeded in wide scalability
by virtue of manual I/O division: all endpoint I/O happens

via explicit network communication. Yet, we can hardly
expect that all valuable applications will be re-written for a
distributed environment. Ideally, such I/O roles would be
detected automatically. Such an approach is taken by the
TREC [30] system, which deduces program dependencies
from I/O behavior. We might also reasonably ask the user
to provide hints of I/O roles to the system without modify-
ing applications directly.

A number of file systems take account of the conven-
tional wisdom that quickly-deleted data is a significant
source of traffic in general-purpose workload. However,
this recognition has limited application due to the require-
ments of reliability and consistency in interactive systems.
For example, NFS permits a 30-60 second delay between
application writes and data movement to the server. Were
this delay made to be minutes or hours in order to ac-
commodate pipeline sharing, the reduction in unnecessary
writes would be accompanied by a much increased danger
of data loss during a crash and some very unusual consis-
tency semantics. The session semantics of AFS are even
worse: closing a file is a blocking operation that forces
the write-back of dirty data. Not only would all verti-
cally shared data be written back at each of the (numerous)
close operations, but the CPU would be held idle between
pipelines, offering no possibility of CPU-I/O overlap.

General-purpose file systems operate under the assump-
tion that most data must eventually flow back to the
archival site. These workloads require the opposite as-
sumption: most created data should remain where it is cre-
ated until an explicit operation by the writer, the system,
or perhaps the user forces it into archival storage. This im-
proves overlap and eliminates unnecessary writes, but in-
creases the danger that I/O operations waiting to be written
back may fail due to permissions, disconnection, or any of
the many other sources of error in a distributed file system.
This is acceptable in a batch system, as long as such a failed



I/O can be detected, matched with the process that issued
it, and force a re-execution of the job.

We suggest that this problem can be attacked by a cou-
pling with a workflow manager, such as Condor’s DAG-
Man or Globus’ Chimera [10], which tracks the dependen-
cies in general graphs of jobs. In both of these systems,
I/O activity is presumed to be a reliable (and centralized)
side effect of execution. However, if the creation and po-
sitioning of pipeline-shared data were integrated into the
workflow, such data could be efficiently shared while still
maintaining the possibility of error recovery.

6. Related Work

The CPU, memory, communication, and I/O character-
istics of applications have been studied for many years by
the research community. These can be roughly catego-
rized by the type of workloads that they consider: general-
purpose workloads containing many applications, sequen-
tial applications examined in isolation, or parallel applica-
tions in isolation. We summarize the work in each of these
categories, focusing on those that have examined file sys-
tem activity.

File system activity has been examined for a range of
general-purpose workloads. Many of the studies that have
greatly influenced file system design over the last 20 years
focused on academic and research workloads [25, 18, 4,
22]. These studies have found that most files have very
short lifetimes, access patterns exhibit a high degree of lo-
cality, and read-write sharing is rare. However, missing
from these broad studies of traffic is any linkage to the ap-
plications that generate the traffic.

More similar to our work are those studies that have fo-
cused on the behavior of individual applications in com-
mercial workloads [5, 15]. However, in this domain, the
interaction or pipeline behavior of sequential applications
has not been examined. While we believe it may also be
interesting to study the detailed memory-system behavior
of our applications, we do not believe the opportunities for
sharing are fundamentally different than in other studies.

Parallel applications are in many ways the most sim-
ilar to pipelined batch applications. The CPU, memory,
communication, and I/O behavior of parallel and vector
applications have been quantified in a number of studies
[8, 33, 32]; a few of which consider the impact of explicit
I/O [23, 7, 1]. Our study complements these works by
studying the sharing behavior of an important new class
of workload.

Many of these studies demonstrate the drastic differ-
ences in I/O behavior for parallel applications compared
to general-purpose workloads. For example, parallel scien-
tific workloads often have high, bursty I/O rates [17] and
relatively constant behavior across different runs and in-

put parameters [19]; further, parallel workloads tend to be
dominated by the storage and retrieval costs of large files,
particularly check-point files [17]; finally, quick deletion is
uncommon [14].

7. Conclusions

Applications are not run in isolation. In production set-
tings, scripting and workflow tools are used to glue together
series of applications into pipelines; a particular pipeline
may be run many thousands of times over varied inputs to
achieve the goals of the users. We term such workloads
batch-pipelined, as batches of pipelines are run at a given
instant.

In this paper, we characterize a collection of scien-
tific batch-pipelined workloads. Beyond typical charac-
terizations of processing, memory, and I/O demands, we
bring forth the sharing characteristics of the workloads,
and demonstrate their importance to scalability. The key to
managing these workloads is I/O classification; by segre-
gating I/O traffic by type, and aggressively exploiting shar-
ing characteristics, scalability can be improved by many
orders of magnitude.
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