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Abstract
We introduce protocol-aware recovery (PAR), a new ap-
proach that exploits protocol-specific knowledge to cor-
rectly recover from storage faults in distributed sys-
tems. We demonstrate the efficacy of PAR through
the design and implementation of corruption-tolerant
replication (CTRL), a PAR mechanism specific to repli-
cated state machine (RSM) systems. We experimentally
show that the CTRL versions of two systems, LogCabin
and ZooKeeper, safely recover from storage faults and
provide high availability, while the unmodified versions
can lose data or become unavailable. We also show that
the CTRL versions have little performance overhead.

1 Introduction
Failure recovery using redundancy is central to improved
reliability of distributed systems [14, 22, 31, 35, 61, 67].
Distributed systems recover from node crashes and net-
work failures using copies of data and functionality on
several nodes [6,47,55]. Similarly, bad or corrupted data
on one node should be recovered from redundant copies.

In a static setting where all nodes always remain
reachable and where clients do not actively update data,
recovering corrupted data from replicas is straightfor-
ward; in such a setting, a node could repair its state by
simply fetching the data from any other node.

In reality, however, a distributed system is a dynamic
environment, constantly in a state of flux. In such
settings, orchestrating recovery correctly is surprisingly
hard. As a simple example, consider a quorum-based
system, in which a piece of data is corrupted on one node.
When the node tries to recover its data, some nodes may
fail and be unreachable, some nodes may have recently
recovered from a failure and so lack the required data or
hold a stale version. If enough care is not exercised, the
node could “fix” its data from a stale node, overwriting
the new data, potentially leading to a data loss.

To correctly recover corrupted data from redundant
copies in a distributed system, we propose that a recovery
approach should be protocol-aware. A protocol-aware
recovery (PAR) approach is carefully designed based on
how the distributed system performs updates to its repli-
cated data, elects the leader, etc. For instance, in the pre-
vious example, a PAR mechanism would realize that a
faulty node has to query at least R (read quorum) other
nodes to safely and quickly recover its data.

In this paper, we apply PAR to replicated state ma-
chine (RSM) systems. We focus on RSM systems for
two reasons. First, correctly implementing recovery is
most challenging for RSM systems because of the strong
consistency and durability guarantees they provide [58];
a small misstep in recovery could violate the guaran-
tees. Second, the reliability of RSM systems is crucial:
many systems entrust RSM systems with their critical
data [45]. For example, Bigtable, GFS, and other sys-
tems [7,26] store their metadata on RSM systems such as
Chubby [16] or ZooKeeper [4]. Hence, protecting RSM
systems from storage faults such as data corruption will
improve the reliability of many dependent systems.

We first characterize the different approaches to han-
dling storage faults by developing the RSM recovery
taxonomy, through experimental and qualitative analy-
sis of practical systems and methods proposed by prior
research (§2). Our analyses show that most approaches
employed by currently deployed systems do not use any
protocol-level knowledge to perform recovery, leading to
disastrous outcomes such as data loss and unavailability.

Thus, to improve the resiliency of RSM systems to
storage faults, we design a new protocol-aware recov-
ery approach that we call corruption-tolerant replication
or CTRL (§3). CTRL constitutes two components: a lo-
cal storage layer and a distributed recovery protocol;
while the storage layer reliably detects faults, the dis-
tributed protocol recovers faulty data from redundant
copies. Both the components carefully exploit RSM-
specific knowledge to ensure safety (e.g., no data loss)
and high availability.

CTRL applies several novel techniques to achieve
safety and high availability. For example, a crash-
corruption disentanglement technique in the storage
layer distinguishes corruptions caused by crashes from
disk faults; without this technique, safety violations or
unavailability could result. Next, a global-commitment
determination protocol in the distributed recovery sepa-
rates committed items from uncommitted ones; this sep-
aration is critical: while recovering faulty committed
items is necessary for safety, discarding uncommitted
items quickly is crucial for availability. Finally, a novel
leader-initiated snapshotting mechanism enables identi-
cal snapshots across nodes to greatly simplify recovery.

We implement CTRL in two storage systems that are
based on different consensus algorithms: LogCabin [43]



(based on Raft [50]) and ZooKeeper [4] (based on
ZAB [39]) (§4). Through experiments, we show that
CTRL versions provide safety and high availability in the
presence of storage faults, while the original systems re-
main unsafe or unavailable in many cases; we also show
that CTRL induces minimal performance overhead (§5).

2 Background and Motivation
We first provide background on storage faults and RSM
systems. We then present the taxonomy of different ap-
proaches to handling storage faults in RSM systems.

2.1 Storage Faults in Distributed Systems
Disks and flash devices exhibit a subtle and complex fail-
ure model: a few blocks of data could become inaccessi-
ble or be silently corrupted [8, 9, 32, 59]. Although such
storage faults are rare compared to whole-machine fail-
ures, in large-scale distributed systems, even rare failures
become prevalent [60, 62]. Thus, it is critical to reliably
detect and recover from storage faults.

Storage faults occur due to several reasons: media er-
rors [10], program/read disturbance [60], and bugs in
firmware [9], device drivers [66], and file systems [27,
28]. Storage faults manifest in two ways: block errors
and corruption. Block errors (or latent sector errors)
arise when the device internally detects a problem with a
block and throws an error upon access. Studies of both
flash [33,60] and hard drives [10,59] show that block er-
rors are common. Corruption could occur due to lost and
misdirected writes that may not be detected by the de-
vice. Studies [9, 51] and anecdotal evidence [36, 37, 57]
show the prevalence of data corruption in the real world.

Many local file systems, on encountering a storage
fault, simply propagate the fault to applications [11, 54,
64]. For example, ext4 silently returns corrupted data
if the underlying device block is corrupted. In contrast,
a few file systems transform an underlying fault into a
different one; for example, btrfs returns an error to appli-
cations if the accessed block is corrupted on the device.
In either case, storage systems built atop local file sys-
tems should handle corrupted data and storage errors to
preserve end-to-end data integrity.

One way to tackle storage faults is to use RAID-like
storage to maintain multiple copies of data on each node.
However, many distributed deployments would like to
use inexpensive disks [22, 31]. Given that the data in
a distributed system is inherently replicated, it is waste-
ful to store multiple copies on each node. Hence, it is
important for distributed systems to use the inherent re-
dundancy to recover from storage faults.

2.2 RSM-based Storage Systems
Our goal is to harden RSM systems to storage faults.
In an RSM system, a set of nodes compute identical

states by executing commands on a state machine (an in-
memory data structure on each node) [58]. Typically,
clients interact with a single node (the leader) to exe-
cute operations on the state machine. Upon receiving
a command, the leader durably writes the command to
an on-disk log and replicates it to the followers. When
a majority of nodes have durably persisted the command
in their logs, the leader applies the command to its state
machine and returns the result to the client; at this point,
the command is committed. The commands in the log
have to be applied to the state machine in-order. Losing
or overwriting committed commands violates the safety
property of the state machine. The replicated log is kept
consistent across nodes by a consensus protocol such as
Paxos [41] or Raft [50].

Because the log can grow indefinitely and exhaust disk
space, periodically, a snapshot of the in-memory state
machine is written to disk and the log is garbage col-
lected. When a node restarts after a crash, it restores
the system state by reading the latest on-disk snapshot
and the log. The node also recovers its critical metadata
(e.g., log start index) from a structure called metainfo.
Thus, each node maintains three critical persistent data
structures: the log, the snapshots, and the metainfo.

These persistent data structures could be corrupted
due to storage faults. Practical systems try to safely
recover the data and remain available under such fail-
ures [15, 17]. However, as we will show, none of the
current approaches correctly recover from storage faults,
motivating the need for a new approach.

2.3 RSM Recovery Taxonomy
To understand the different possible ways to handling
storage faults in RSM systems, we analyze a broad range
of approaches. We perform this analysis by two means:
first, we analyze practical systems including ZooKeeper,
LogCabin, etcd [25], and a Paxos-based system [24] us-
ing a fault-injection framework we developed (§5); sec-
ond, we analyze techniques proposed by prior research
or used in proprietary systems [15, 17].

Through our analysis, we classify the approaches into
two categories: protocol-oblivious and protocol-aware.
The oblivious approaches do not use any protocol-level
knowledge to perform recovery. Upon detecting a
fault, these approaches take a recovery action locally
on the faulty node; such actions interact with the dis-
tributed protocols in unsafe ways, leading to data loss.
The protocol-aware approaches use some RSM-specific
knowledge to recover; however, they do not use this
knowledge correctly, leading to undesirable outcomes.
Our taxonomy is not complete in that there may be other
techniques; however, to the best of our knowledge, we
have not observed other approaches apart from those in
our taxonomy.
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Figure 1: Sample Scenarios. The figure shows sample scenarios in
which current approaches fail. Faulty entries are striped. Crashed and
lagging nodes are shown as gray and empty boxes, respectively.

To illustrate the problems, we use Figure 1. In all
cases, log entries† 1, 2, and 3 are committed; losing these
items will violate safety. Table 1 shows how each ap-
proach behaves in Figure 1’s scenarios. As shown in
the table, all current approaches lead to safety violation
(e.g., data loss), low availability, or both. A recovery
mechanism that effectively uses redundancy should be
safe and available in all cases. Table 1 also compares the
approaches along other axes such as performance, main-
tenance overhead (intervention and extra nodes), recov-
ery time, and complexity. Although Figure 1 shows only
faults in the log, the taxonomy applies to other structures
including the snapshots and the metainfo.
NoDetection. The simplest reaction to storage faults is
none at all: to trust every layer in the storage stack to
work reliably. For example, a few prototype Paxos-based
systems [24] do not use checksums for their on-disk data;
similarly, LogCabin does not protect its snapshots with
checksums. NoDetection trivially violates safety; cor-
rupted data can be obliviously served to clients. How-
ever, deployed systems do use checksums and other in-
tegrity strategies for most of their on-disk data.
Crash. A better strategy is to use checksums and han-
dle I/O errors, and crash the node on detecting a fault.
Crash may seem like a good strategy because it in-
tends to prevent any damage that the faulty node may
inflict on the system. Our experiments show that the
Crash approach is common: LogCabin, ZooKeeper, and
etcd crash sometimes when their logs are faulty. Also,
ZooKeeper crashes when its snapshots are corrupted.

Although Crash preserves safety, it suffers from se-
vere unavailability. Given that nodes could be unavail-
able due to other failures, even a single storage fault re-
sults in unavailability, as shown in Figure 1(i). Similarly,
a single fault even in different portions of data on a ma-
jority (e.g., Figure 1(v)) renders the system unavailable.
Note that simply restarting the node does not help; stor-
age faults, unlike other faults, could be persistent: the
node will encounter the same fault and crash again until
manual intervention, which is error-prone and may cause
a data loss. Thus, it is desirable to recover automatically.
Truncate. A more sophisticated action is to truncate

†A log entry contains a state-machine command and data.
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Table 1: Recovery Taxonomy. The table shows how different
approaches behave in Figure 1 scenarios. While all approaches are
unsafe or unavailable, CTRL ensures safety and high availability.

(possibly faulty) portions of data and continue operat-
ing. The intuition behind Truncate is that if the faulty
data is discarded, the node can continue to operate (un-
like Crash), improving availability.

However, we find that Truncate can cause a safety vi-
olation (data loss). Consider the scenario shown in Fig-
ure 2 in which entry 1 is corrupted on S1; S4, S5 are lag-
ging and do not have any entry. Assume S2 is the leader.
When S1 reads its log, it detects the corruption; however,
S1 truncates its log, losing the corrupted entry and all
subsequent entries (Figure 2(ii)). Meanwhile, S2 (leader)
and S3 crash. S1, S4, and S5 form a majority and elect S1
the leader. Now the system does not have any knowledge
of committed entries 1, 2, and 3, resulting in a silent data
loss. The system also commits new entries x, y, and z in
the place of 1, 2, and 3 (Figure 2(iii)). Finally, when S2
and S3 recover, they follow S1’s log (Figure 2(iv)), com-
pletely removing entries 1, 2, and 3.

In summary, although the faulty node detects the cor-
ruption, it truncates its log, losing the data locally. When
this node forms a majority along with other nodes that
are lagging, data is silently lost, violating safety. We find
this safety violation in ZooKeeper and LogCabin.

Further, Truncate suffers from inefficient recovery.
For instance, in Figure 1(i), S1 truncates its log after a
fault, losing entries 1, 2, and 3. Now to fix S1’s log,
the leader needs to transfer all entries, increasing S1’s re-
covery time and wasting network bandwidth. ZooKeeper
and LogCabin suffer from this slow recovery problem.
DeleteRebuild. Another commonly employed action is
to manually delete all data on the faulty node and restart
the node. Unfortunately, similar to Truncate, DeleteRe-
build can violate safety; specifically, a node whose data
is deleted could form a majority along with the lagging
nodes, leading to a silent data loss. Surprisingly, admin-
istrators often use this approach hoping that the faulty



S1

(i) S4, S5 lagging;
1 faulty at S1

1 2 3

2 3
1 2 3

x y z

x y z
x y z x y z

x y z
x y z
x y z
x y z

(ii) S1 truncates 1,2,3; 
S2, S3 down

(iii) 1,2,3 lost;
overwritten by x,y,z

(iv) S2, S3 follow 
 S1’s log

1 2 3
1 2 3

1 2 3
1 2 3

S2
S3
S4
S5

Figure 2: Safety Violation Example. The figure shows the se-
quence of events which exposes a safety violation in Truncate.

node will be “simply fixed” by fetching the data from
other nodes [63, 65, 73]. DeleteRebuild also suffers from
the slow recovery problem similar to Truncate.
MarkNonVoting. In this approach, used by a Paxos-
based system at Google [17], a faulty node deletes all its
data on a fault and marks itself as a non-voting mem-
ber; the node does not participate in elections until it
observes one round of consensus and rebuilds its data
from other nodes. By marking a faulty node as non-
voting, safety violations such as the one in Figure 2 are
avoided. However, MarkNonVoting can sometimes vio-
late safety as noted by prior work [70]. The underlying
reason for unsafety is that a corrupted node deletes all
its state including the promises† given to leaders. Once
a faulty node has lost its promise given to a new leader,
it could accept an entry from an old leader (after observ-
ing a round of consensus on an earlier entry). The new
leader, however, still believes that it has the promise from
the faulty node and so can overwrite the entry, previously
committed by the old leader.

Further, this approach suffers from unavailability. For
example, when only a majority of nodes are alive, a sin-
gle fault can cause unavailability because the faulty node
cannot vote; other nodes cannot now elect a leader.
Reconfigure. In this approach, a faulty node is removed
and a new node is added. However, to change the con-
figuration, a configuration entry needs to be committed
by a majority. Hence, the system remains unavailable in
many cases (for example, when a majority are alive but
one node’s data is corrupted). Although Reconfigure is
not used in practical systems to tackle storage faults, it
has been suggested by prior research [15, 44].
BFT. An extreme approach is to use a Byzantine-fault-
tolerant algorithm which should theoretically tolerate
storage faults. However, BFT is expensive to be used in
practical storage systems; specifically, BFT can achieve
only half the throughput of what a crash-tolerant proto-
col can achieve [21]. Moreover, BFT requires 3 f + 1
nodes to tolerate f faults [2], thus remaining unavailable
in most scenarios in Figure 1.
Taxonomy Summary. None of the current approaches
effectively use redundancy to recover from storage faults.

†In Paxos, a promise for a proposal numbered p is a guarantee given
by a follower (acceptor) to the leader (proposer) that it will not accept
a proposal numbered less than p in the future [41].

Most approaches do not use any protocol-level knowl-
edge to recover; for example, Truncate and DeleteRe-
build take actions locally on the faulty node and so inter-
act with the distributed protocol in unsafe ways, causing
a global data loss. Although some approaches (e.g., Mar-
kNonVoting) use some RSM-specific knowledge, they do
not do so correctly, causing data loss or unavailability.
Thus, to ensure safety and high availability, a recovery
approach should effectively use redundancy by exploit-
ing protocol-specific knowledge. Further, it is benefi-
cial to avoid other problems such as manual intervention
and slow recovery. Our protocol-aware approach, CTRL,
aims to achieve these goals.

3 Corruption-Tolerant Replication
Designing a correct recovery mechanism needs a careful
understanding of the underlying protocols of the system.
For example, the recovery mechanism should be cog-
nizant of how updates are performed on the replicated
data and how the leader is elected. We base CTRL’s de-
sign on the following important protocol-level observa-
tions common to most RSM systems.
Leader-based. A single node acts as the leader; all data
updates flow only through the leader.
Epochs. RSM systems partition time into logical units
called epochs. For any given epoch, only one leader is
guaranteed to exist. Every data item is associated with
the epoch in which it was appended and its index in the
log. Since the entries could only be proposed by the
leader and only one leader could exist for an epoch, an
〈epoch, index〉 pair uniquely identifies a log entry.
Leader Completeness. A node will not vote for a can-
didate if it has more up-to-date data than the candidate.
Since committed data is present at least in a majority of
nodes and a majority vote is required to win the election,
the leader is guaranteed to have all the committed data.

CTRL exploits these protocol-level attributes common
to RSM systems to correctly recover from storage faults.
CTRL divides the recovery responsibility between two
components: the local storage layer and the distributed
recovery protocol; while the storage layer reliably de-
tects faulty data on a node, the distributed protocol recov-
ers the data from redundant copies. Both the components
use RSM-specific knowledge to perform their functions.

In this section, we first describe CTRL’s fault model
(§3.1) and safety and availability guarantees (§3.2). We
then describe the local storage layer (§3.3). Finally, we
describe CTRL’s distributed recovery in two parts: first,
we show how faulty logs are recovered (§3.4) and then
we explain how faulty snapshots are recovered (§3.5).

3.1 Fault Model
Our fault model includes the standard failure assump-
tions made by crash-tolerant RSM systems: nodes could



Fault Outcome Possible Causes
D

at
a corrupted data misdirected and lost writes in ext

inaccessible data LSE, corruptions in ZFS and btrfs

FS
M

et
ad

at
a missing files/directories directory entry corrupted, fsck may

remove a faulty inode

unopenable files/directories sanity check fails after inode cor-
ruption, permission bits corrupted

files with more or fewer bytes i size field in the inode corrupted
file system read-only journal corrupted; fsck not run
file system unmountable superblock corrupted; fsck not run

Table 2: Storage Fault Model. The table shows storage faults
included in our model and possible causes that lead to a fault outcome.

crash at any time and recover later, and nodes could be
unreachable due to network failures [21, 42, 50]. Our
model adds another realistic failure scenario where per-
sistent data on the individual nodes could be corrupted
or inaccessible. Table 2 shows a summary of our storage
fault model. Our model includes faults in both user data
and the file-system metadata blocks.

User data blocks in the files that implement the sys-
tem’s persistent structures could be affected by errors
or corruption. A number of (possibly contiguous) data
blocks could be faulty as shown by studies [12,59]. Also,
a few bits/bytes of a block could be corrupted. Depend-
ing on the local file system in use, corrupted data may be
returned obliviously or transformed into errors.

File-system metadata blocks can also be affected by
faults; for example, the inode of a log file could be cor-
rupted. Our fault model considers the following out-
comes that can be caused by file-system metadata faults:
files/directories may go missing, files/directories may be
unopenable, a file may appear with fewer or more bytes,
the file system may be mounted read-only, and in the
worst case, the file system may be unmountable. Some
file systems such as ZFS may mask most of the above
outcomes from applications [72]; however, our model
includes these faulty outcomes because they could real-
istically occur on other file systems that provide weak
protection against corruption (e.g., ext2/3/4). Through
fault-injection tests, we have verified that the metadata
fault outcomes shown in Table 2 do occur on ext4.

3.2 Safety and Availability Guarantees
CTRL guarantees that if there exists at least one correct
copy of a committed data item, it will be recovered or the
system will wait for that item to be fixed; committed data
will never be lost. In unlikely cases where all copies of
a committed item are faulty, the system will correctly re-
main unavailable. CTRL also guarantees that the system
will make a decision about an uncommitted faulty item
as early as possible, ensuring high availability.

3.3 CTRL Local Storage Layer
To reliably recover, the storage layer (CLSTORE) needs
to satisfy three key requirements. First, CLSTORE must
be able to reliably detect a storage fault. Second,

ei- ith log entry; idi - identifier of entry ei
idi = <index(ei), epoch(ei), offset(ei), cksum> 
idi also serves as persist record for ei  

log len
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Figure 3: Log Format. (a) shows the format and update protocol
of a typical RSM log; (b) shows the same for CLSTORE.

CLSTORE must correctly distinguish crashes from corrup-
tions; safety can be violated otherwise. Third, CLSTORE

must identify which pieces of data are faulty; only if
CLSTORE identifies which pieces have been affected, can
the distributed protocol recover those pieces.

3.3.1 Persistent Structures Overview
As we discussed, RSM systems maintain three persis-
tent structures: the log, the snapshots, and the metainfo.
CLSTORE uses RSM-specific knowledge of how these
structures are used and updated, to perform its functions.
For example, CLSTORE detects faults at a different granu-
larity depending on the RSM data structure: faults in the
log are detected at the granularity of individual entries,
while faults in the snapshot are detected at the granular-
ity of chunks. Similarly, CLSTORE uses the RSM-specific
knowledge that a log entry is uniquely qualified by its
〈epoch, index〉 pair to identify faulty log entries.
Log. The log is a set of files containing a sequence of
entries. The format of a typical RSM log is shown in
Figure 3(a). The log is updated synchronously in the crit-
ical path; hence, changes made to the log format should
not affect its update performance. CLSTORE uses a mod-
ified format as shown in Figure 3(b) which achieves this
goal. A corrupted log is recovered at the granularity of
individual entries.
Snapshots. The in-memory state machine is periodi-
cally written to a snapshot. Since snapshots can be huge,
CLSTORE splits them into chunks; a faulty snapshot is re-
covered at the granularity of individual chunks.
Metainfo. The metainfo is special in that faulty metainfo
cannot be recovered from other nodes. This is because
the metainfo contains information unique to a node (e.g.,
its current epoch); recovering metainfo obliviously from
other nodes could violate safety. CLSTORE uses this
knowledge correctly and so maintains two copies of the
metainfo locally; if one copy is faulty, the other copy is
used. Fortunately, the metainfo is only a few tens of bytes
in size and is updated infrequently; therefore, maintain-
ing two copies does not incur significant overheads.

3.3.2 Detecting Faulty Data
CLSTORE uses well-known techniques for detection: in-
accessible data is detected by catching return codes (e.g.,



EIO) and corrupted data is detected by a checksum mis-
match. CLSTORE assumes that if an item and its check-
sum agree, then the item is not faulty. In the log, each
entry is protected by a checksum; similarly, each chunk
in a snapshot and the entire metainfo are checksummed.

CLSTORE also handles file-system metadata faults.
Missing and unopenable files/directories are detected by
handling error codes upon open. Log and metainfo
files with fewer or more bytes are detected easily be-
cause these files are preallocated and are of a fixed size;
snapshot sizes are stored separately, and CLSTORE cross-
checks the stored size with the file-system reported size
to detect discrepancies. A read-only/unmountable file
system is equivalent to a missing data directory. In most
cases of file-system metadata faults, CLSTORE crashes
the nodes. Crashing reliably on a metadata fault pre-
serves safety but compromises on availability. However,
we believe this is an acceptable behavior because there
are far more data blocks than metadata blocks; therefore,
the probability of faults is significantly less for metadata
than data blocks.

3.3.3 Disentangling Crashes and Corruption in Log
An interesting challenge arises when detecting corrup-
tions in the log. A checksum mismatch for a log entry
could occur due to two different situations. First, the
system could have crashed in the middle of an update; in
this case, the entry would be partially written and hence
cause a mismatch. Second, the entry could be safely per-
sisted but corrupted at a later point. Most log-based sys-
tems conflate these two cases: they treat a mismatch as
a crash [30]. On a mismatch, they discard the corrupted
entry and all subsequent entries, losing the data. Discard-
ing entries due to such conflation introduces the possibil-
ity of a global data loss (as shown earlier in Figure 2).

Note that if the mismatch were really due to a crash,
it is safe to discard the partially written entry. It is safe
because the node would not have acknowledged to any
external entity that it has written the entry. However, if
an entry is corrupted, the entry cannot be simply dis-
carded since it could be globally committed. Further, if a
mismatch can be correctly attributed to a crash, the faulty
entry can be quickly discarded locally, avoiding the dis-
tributed recovery. Hence, it is important for the local
storage layer to distinguish the two cases.

To denote the completion of an operation, many sys-
tems write a commit record [13,18]. Similarly, CLSTORE

writes a persist record, pi, after writing an entry ei. For
now, assume that ei is ordered before pi, i.e., the se-
quence of steps to append an entry ei is write(ei), fsync(),
write(pi), fsync(). On a checksum mismatch for ei, if pi
is not present, we can conclude that the system crashed
during the update. Conversely, if pi is present, we can
conclude that the mismatch was caused due to a corrup-

tion and not due to a crash. pi is checksummed and is
very small; it can be atomically written and thus cannot
be “corrupted” due to a crash. If pi is corrupted in addi-
tion to ei, we can conclude that it is a corruption and not
a crash.

The above logic works when ei is ordered before pi.
However, such ordering requires an (additional) expen-
sive fsync in the critical path, affecting log-update per-
formance. For this reason, CLSTORE does not order
ei before pi; thus, the append protocol is t1:write(ei),
t2:write(pi), t3:fsync().† Given this update sequence, as-
sume a checksum mismatch occurs for ei. If pi is not
present, CLSTORE can conclude that it is a crash (before
t2) and discard ei. Contrarily, if pi is present, there are
two possibilities: either ei could be affected by a corrup-
tion after t3 or a crash could have occurred between t2
and t3 in which pi hit the disk while ei was only partially
written. The second case is possible because file systems
can reorder writes between two fsync operations and ei
could span multiple sectors [3, 19, 52, 53]. CLSTORE can
still conclude that it is a corruption if ei+1 or pi+1 is
present. However, if ei is the last entry, then we cannot
determine whether it was a crash or a corruption.∗

The inability to disentangle the last entry when its
persist record is present is not specific to CLSTORE, but
rather a fundamental limitation in log-based systems. For
instance, in ext4’s journal async commit mode (where a
transaction is not ordered before its commit record), a
corrupted last transaction is assumed to be caused due to
a crash, possibly losing data [38,69]. Even if crashes and
corruptions can be disentangled, there is little a single-
machine system can do to recover the corrupted data.
However, in a distributed system, redundant copies can
be used to recover. Thus, when the last entry cannot
be disentangled, CLSTORE safely marks the entry as cor-
rupted and leaves it to the distributed recovery to fix or
discard the entry based on the global commitment.

The entanglement problem does not arise for snap-
shots or metainfo. These files are first written to a tempo-
rary file and then atomically renamed. If a crash happens
before the rename, the partially written temporary file is
discarded. Thus, the system will never see a corrupted
snapshot or metainfo due to a crash; if these structures
are corrupted, it is because of a storage corruption.

3.3.4 Identifying Faulty Data
Once a faulty item is detected, it has to be identified; only
if CLSTORE can identify a faulty item, the distributed
layer can recover the item. For this purpose, CLSTORE

redundantly stores an identifier of an item apart from the
item itself; duplicating only the identifier instead of the
whole item obviates the (2×) storage and performance

†The final fsync is required for durability.
∗The proof of this claim is available [1].



overhead. However, storing the identifier near the item is
less useful; a misdirected write can corrupt both the item
and its identifier [9,10]. Hence, identifiers are physically
separated from the items they identify.

The 〈epoch, index〉 pair serves as the identifier for a
log entry and is stored separately at the head of the log,
as shown in Figure 3(b). The offset of an entry is also
stored as part of the identifier to enable traversal of subse-
quent entries on a fault. The identifier of a log entry also
conveniently serves as its persist record. Similarly, for
a snapshot chunk, the 〈snap-index, chunk#〉 pair serves
as the identifier; the snap-index and the snapshot size are
stored in a separate file than the snapshot file. The iden-
tifiers have a nominal storage overhead (32 bytes for log
entries and 12 bytes for snapshots), can be atomically
written, and are also protected by a checksum.

It is highly unlikely an item and its identifier will both
be faulty since they are physically separated [9, 10, 12,
59]. In such unlikely and unfortunate cases, CLSTORE

crashes the node to preserve safety. Table 3 (second col-
umn) summarizes CLSTORE’s key techniques.

3.4 CTRL Distributed Log Recovery
The local storage layer detects faulty data items and
passes on their identifiers to the distributed recovery
layer. We now describe how the distributed layer recov-
ers the identified faulty items from redundant copies us-
ing RSM-specific knowledge. We first describe how log
entries are recovered and subsequently describe snapshot
recovery. As we discussed, metainfo files are recovered
locally and so we do not discuss them any further. We
use Figure 4 to illustrate how log recovery works.
Naive Approach: Leader Restriction. RSM systems
do not allow a node with an incomplete log to become
the leader. A naive approach to recovering from storage
faults could be to impose an additional constraint on the
election: a node cannot be elected the leader if its log
contains a faulty entry. The intuition behind the naive
approach is as follows: since the leader is guaranteed to
have all committed data and our new restriction ensures
that the leader is not faulty, faulty log entries on other
nodes could be fixed using the corresponding entries on
the leader. Cases (a)(i) and (a)(ii) in Figure 4 show sce-
narios where the naive approach could elect a leader. In
(a)(i), only S1 can become the leader because other nodes
are either lagging or have at least one faulty entry. As-
sume S1 is the leader also in case (a)(ii).
Fixing Followers’ Logs. When the leader has no faulty
entries, fixing the followers is straightforward. For ex-
ample, in case (a)(i), the followers inform S1 of their
faulty entries; S1 then supplies the correct entries. How-
ever, sometimes the leader might not have any knowl-
edge of an entry that a follower is querying for. For in-
stance, in case (a)(ii), S5 has a faulty entry at index 3 but

with a different epoch. This situation is possible because
S5 could have been the leader for epoch 2 and crashed
immediately after appending an entry. As discussed ear-
lier, an entry is uniquely identified by its 〈epoch, index〉;
thus, when querying for faulty entries, a node needs to
specify the epoch of the entry in addition to its index.
Thus, S5 informs the leader that its entry 〈epoch:2, in-
dex:3〉 is faulty. However, S1 does not have such an entry
in its log. If the leader does not have an entry that the fol-
lower has, then the entry must be an uncommitted entry
because the leader is guaranteed to have all committed
data; thus, the leader instructs S5 to truncate the faulty
entry and also replicates the correct entry.

Although the naive approach guarantees safety, it has
availability problems. The system will be unavailable
in cases such as the ones shown in (b): a leader cannot
be elected because the logs of the alive nodes are either
faulty or lagging. Note that even a single storage fault
can cause an unavailability as shown in (b)(i). It is possi-
ble for a carefully designed recovery protocol to provide
better availability in these cases. Specifically, since at
least one intact copy of all committed entries exists, it is
possible to collectively reconstruct the log.

3.4.1 Removing the Restriction Safely
To recover from scenarios such as those in Figure 4(b),
we remove the additional constraint on the election.
Specifically, any node that has a more up-to-date log can
now be elected the leader even if it has faulty entries.
This relaxation improves availability; however, two key
questions arise: first, when can the faulty leader proceed
to accept new commands? second, and more importantly,
is it safe to elect a faulty node as the leader?

To accept a new command, the leader has to append
the command to its log, replicate it, and apply it to the
state machine. However, before applying the new com-
mand, all previous commands must be applied. Specif-
ically, faulty commands cannot be skipped and later ap-
plied when they are fixed; such out-of-order application
would violate safety. Hence, it is required for the leader
to fix its faulty entries before it can accept new com-
mands. Thus, for improved availability, the leader needs
to fix its faulty entries as early as possible.

The crucial part of the recovery to ensure safety is to
fix the leader’s log using the redundant copies on the fol-
lowers. In simple cases such as (b)(i) and (b)(ii), the
leader S1 could fix its faulty entry 〈epoch:1, index:1〉 us-
ing the correct entries from the followers and proceed
to normal operation. However, in several scenarios, the
leader cannot immediately recover its faulty entries; for
example, none of the reachable followers might have any
knowledge of the entry to be recovered or the entry to be
recovered could also be faulty on the followers.
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3.4.2 Determining Commitment
The main insight to fix the leader’s faulty log safely and
quickly is to distinguish uncommitted entries from possi-
bly committed ones; while recovering the committed en-
tries is necessary for safety, uncommitted entries can be
safely discarded. Further, discarding uncommitted faulty
entries immediately is crucial for availability. For in-
stance, in case (c)(i), the faulty entry on S1 cannot be
fixed since there are no copies of it; waiting to fix that
entry results in indefinite unavailability. Sometimes, an
entry could be partially replicated but remain uncommit-
ted; for example, in case (c)(ii), the faulty entry on S1 is
partially replicated but is not committed. Although there
is a possibility of recovering this entry from the other
node (S2), this is not necessary for safety; it is completely
safe for the leader to discard this uncommitted entry.

To determine the commitment of a faulty entry, the
leader queries the followers. If a majority of the follow-
ers respond that they do not have the entry (negative ac-
knowledgment), then the leader concludes that the entry
is uncommitted. In this case, the leader safely discards
that and all subsequent entries; it is safe to discard the
subsequent entries because entries are committed in or-
der. Conversely, if the entry were committed, at least
one node in this majority would have that entry and in-
form the leader of it; in this case, the leader can fix its
faulty entry using that response.
Waiting to Determine Commitment. Sometimes, it
may be impossible for the leader to quickly determine
commitment. For instance, consider the cases in Fig-
ure 4(d) in which S4 and S5 are down or slow. S1 queries
the followers to recover its entry 〈epoch:1, index:3〉. S2
and S3 respond that they do not have such an entry (neg-
ative acknowledgment). S4 and S5 do not respond be-
cause they are down or slow. The leader, in this case,
has to wait for either S4 or S5 to respond; discarding the
entry without waiting for S4 or S5 could violate safety.
However, once S4 or S5 responds, the leader will make a
decision immediately. In (d)(i), S4 or S5 would respond
with the correct entry, fixing the leader. In (d)(ii), S4 or
S5 would respond that it does not have the entry, accu-

mulating three (a majority out of five) negative acknowl-
edgments; hence, the leader can conclude that the entry
is uncommitted, discard it, and continue to normal oper-
ation. In (d)(iii), S4 would respond that it has the entry
but is faulty in its log too. In this case, the leader has to
wait for the response from S5 to determine commitment.
In the unfortunate and unlikely case where all copies of
an entry are faulty, the system will remain unavailable.

3.4.3 The Complete Log Recovery Protocol
We now assemble the pieces of the log recovery protocol.
First, fixing faulty followers is straightforward; the com-
mitted faulty entries on the followers can be eventually
fixed by the leader because the leader is guaranteed to
have all committed data. Faulty entries on followers that
the leader does not know about are uncommitted; hence,
the leader instructs the followers to discard such entries.

The main challenge is thus fixing the leader’s log. The
leader queries the followers to recover its entry 〈epoch:e,
index:i〉. Three types of responses are possible:
Response 1: have – a follower could respond that it has
the entry 〈epoch:e, index:i〉 and is not faulty in its log.
Response 2: dontHave – a follower could respond that it
does not have the entry 〈epoch:e, index:i〉.
Response 3: haveFaulty – a follower could respond that
it has 〈epoch:e, index:i〉 but is faulty in its log too.

Once the leader collects these responses from the fol-
lowers, it takes the following possible actions:
Case 1: if it gets a have response from at least one fol-
lower, it fixes the entry in its log.
Case 2: if it gets a dontHave response from a majority
of followers, it confirms that the entry is uncommitted,
discards that entry and all subsequent entries.
Case 3: if it gets a haveFaulty response from a follower,
it waits for either Case 1 or Case 2 to happen.

Case 1 and Case 2 can happen in any order; both order-
ings are safe. Specifically, if the leader decides to discard
the faulty entry (after collecting a majority dontHave re-
sponses), it is safe since the entry was uncommitted any-
ways. Conversely, there is no harm in accepting a correct
entry (at least one have response) and replicating it. The



first to happen out of these two cases will take prece-
dence over the other.

The leader proceeds to normal operation only after its
faulty data is discarded or recovered. However, CTRL

discards uncommitted data as early as possible and min-
imizes the recovery latency by recovering faulty data at
a fine granularity (as we show in §5.2), ensuring that the
leader proceeds to normal operation quickly.

The leader could crash or be partitioned while recov-
ering its log. On a leader failure, the followers will elect
a new leader and make progress. The partial repair done
by the failed leader is harmless: it could have either fixed
committed faulty entries or discarded uncommitted ones,
both of which are safe.

3.5 CTRL Distributed Snapshot Recovery
Because the logs can grow indefinitely, periodically,
the in-memory state machine is written to disk and the
logs are garbage collected. Current systems including
ZooKeeper and LogCabin do not handle faulty snapshots
correctly (§2.3): they either crash or load corrupted snap-
shots obliviously. CTRL aims to recover faulty snapshots
from redundant copies. Snapshot recovery is different
from log recovery in that all data in a snapshot is com-
mitted and already applied to the state machine; hence,
faulty snapshots cannot be discarded in any case (unlike
uncommitted log entries which can be discarded safely).

3.5.1 Leader-Initiated Identical Snapshots
Current systems [43] have two properties with respect to
snapshots. First, they allow new commands to be applied
to the state machine while a snapshot is in progress. Sec-
ond, they take index-consistent snapshots: a snapshot Si
represents the state machine in which log entries exactly
up to i have been applied. One of the mechanisms used
in current systems to realize the above two properties is
to take snapshots in a fork-ed child process; while the
child can write an index-consistent image to the disk, the
parent can keep applying new commands to its copy of
the state machine. CTRL should enable snapshot recovery
while preserving the above two properties.

In current systems, every node runs the snapshot pro-
cedure independently, taking snapshots at different log
indexes. Because the snapshots are taken at different in-
dexes, snapshot recovery can be complex: a faulty snap-
shot on one node cannot be simply fetched from other
nodes. Further, snapshots cannot be recovered at the
granularity of chunks because they will be byte-wise
non-identical; entire snapshots have to be transferred
across nodes, slowing down recovery.

This complexity can be significantly alleviated if the
nodes take the snapshot at the same index; identical snap-
shots also enable chunk-based recovery.

However, coordinating a snapshot operation across
nodes can, in general, affect the common-case perfor-

Local Storage Distributed Recovery
Log granularity: entry;

identifier:〈epoch, index〉;
crash-corruption disentanglement

global-commitment de-
termination to fix leader,
leader fixes followers

Snapshot granularity: chunk;
identifier:〈snap-index, chunk#〉;
no entanglement

leader-initiated identical
snapshots,
chunk-based recovery

Metainfo granularity: file;
identifier: n/a;
no entanglement

none (only internal re-
dundancy)

Table 3: Techniques Summary. The table shows a summary of
techniques employed by CTRL’s storage layer and distributed recovery.

mance. For example, one naive way to realize identi-
cal snapshots is for the leader to produce the snapshot,
insert it into the log as yet another entry, and repli-
cate it. However, such an approach will affect update
performance since the snapshot could be huge and all
client commands must wait while the snapshot com-
mits [49]. Moreover, transferring the snapshot to the fol-
lowers wastes network bandwidth.

CTRL takes a different approach to identical snapshots
that preserves common-case performance. The leader
initiates the snapshot procedure by first deciding the in-
dex at which a snapshot will be taken and informing the
followers of the index. Once a majority agree on the in-
dex, all nodes independently take a snapshot at the index.
When the leader learns that a majority (including itself)
have taken a snapshot at an index i, it garbage collects its
log up to i and instructs the followers to do the same.

CTRL implements the above procedure using the log.
When the leader decides to take a snapshot, it inserts
a special marker called snap into the log. When the
snap marker commits, and thus when a node applies the
marker to the state machine, it takes a snapshot (i.e., the
snapshot corresponds to the state where commands ex-
actly up to the marker have been applied). Within each
node, we reuse the same mechanism used by the original
system (e.g., a fork-ed child) to allow new commands
to be applied while a snapshot is in progress. Notice
that the snapshot operation happens independently on all
nodes but the operation will produce identical snapshots
because the marker will be seen at the same log index by
all nodes when it is committed. When the leader learns
that a majority of nodes (including itself) have taken a
snapshot at an index i, it appends another marker called
gc for i; when the gc marker is committed and applied,
the nodes garbage collect their log entries up to i.

3.5.2 Recovering Snapshot Chunks
With the identical-snapshot mechanism, snapshot recov-
ery becomes easier. Once a faulty snapshot is detected,
the local storage layer provides the distributed protocol
the snapshot index and the chunk that is faulty. The dis-
tributed protocol recovers the faulty chunk from other
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Table 4: Log Recovery. (a) shows results for targeted corruptions; we trigger two policies (truncate and crash) in the original systems. (b)
shows results for random block corruptions and errors. (c) shows results for random corruptions with crashed and lagging nodes.

nodes. First, the leader recovers its faulty chunks from
the followers and then fixes the faulty snapshots on fol-
lowers. Three cases arise during snapshot recovery.

First, the log entries for a faulty snapshot may not be
garbage collected yet; in this case, the snapshot is recov-
ered locally from the log (after fixing the log if needed).

Second, if the log is garbage collected, then a faulty
snapshot has to be recovered from other nodes. However,
if the log entries for a snapshot are garbage collected,
then at least a majority of the nodes must have taken the
same snapshot. This is true because the gc marker is
inserted only after a majority of nodes have taken the
snapshot. Thus, faulty garbage-collected snapshots are
recovered from those redundant copies.

Third, sometimes, the leader may not know a snapshot
that a follower is querying for (for example, if a follower
took a snapshot and went offline for a long time and the
leader replaced that snapshot with an advanced one); in
this case, the leader supplies the full advanced snapshot.

3.6 CTRL Summary
The storage layer detects and identifies faulty data. Atop
the storage layer, the distributed protocol recovers the
faulty items from redundant copies. Both the layers ex-
ploit RSM-specific knowledge to correctly perform their
functions. A summary of CTRL’s local storage and dis-
tributed recovery techniques is shown in Table 3.

4 Implementation
We implement CTRL in two different RSM systems, Log-
Cabin (v1.0) and ZooKeeper (v3.4.8); while LogCabin is
based on Raft, ZooKeeper is based on ZAB. Implement-
ing CTRL’s storage layer and distributed recovery took
only a moderate developer effort; CTRL adds about 1500
lines of code to each of the base systems.

4.1 Local Storage Layer
We implemented CLSTORE by modifying the storage en-
gines of LogCabin and ZooKeeper. In both systems, the

log is a set of files, each of a fixed size and preallocated.
The header of each file is reserved for the log-entry iden-
tifiers. The size of the reserved header is proportional to
the file size. CLSTORE ensures that a log entry and its
identifier are at least a few megabytes physically apart.
Both systems batch many log entries to improve update
performance. With batching, CLSTORE performs crash-
corruption disentanglement as follows: the first faulty
entry without an identifier and its subsequent entries are
discarded; faulty entries preceding that point are marked
as corrupted and passed on to the distributed layer.

In both systems, the state machine is a data tree. We
modified both the systems to take index-consistent iden-
tical snapshots: when a snap marker is applied, the state
machine (i.e., the tree) is serialized to the disk. The snap-
index and snapshot size are stored separately. CLSTORE

uses a chunk size of 4K, enabling fine-grained recovery.
In LogCabin, the metainfo contains the currentTerm

and votedFor structures. Similarly, in ZooKeeper,
structures such as acceptedEpoch and currentEpoch

constitute the metainfo. CLSTORE stores redundant
copies of metainfo and protects them using checksums.

Log entries, snapshot chunks, and metainfo are pro-
tected by a CRC32 checksum. CLSTORE detects inac-
cessible data items by catching errors (EIO); it then pop-
ulates the item’s in-memory buffer with zeros, causing
a checksum mismatch. Thus, CLSTORE deals with both
corruptions and errors as checksum mismatches.

4.2 Distributed Recovery
LogCabin. In Raft, terms are equivalent to epochs.
Thus, a log entry is uniquely identified by its 〈term, in-
dex〉 pair. To fix the followers, we modified the Append-
Entries RPC used by the leader to replicate entries [50].
The followers inform the leader of their faulty log en-
tries and snapshot chunks in the responses of this RPC;
the leader sends the correct entries and chunks in a sub-
sequent RPC. A follower starts applying commands to
its state machine once its faulty data is fixed. To fix the



leader, we added a new RPC which the leader issues to
the followers. The leader does not proceed to normal op-
eration until its faulty data is fixed. After a configurable
recovery timeout, the leader steps down if it is unable to
recover its faulty data (for example, due to a partition),
allowing other nodes to become the leader. Several en-
tries and chunks are batched in a single request/response,
avoiding multiple round trips.
ZooKeeper. In ZAB, the epoch and index are packed
into the zxid which uniquely identifies a log entry [5].
Followers discover and connect to the leader in Phase 1.
We modified Phase 1 to send information about the fol-
lowers’ faulty data. The followers are synchronized with
the leader in Phase 2. We modified Phase 2 so that the
leader sends the correct data to the followers. The leader
waits to hear from a majority during Phase 1 after which
it sends a newEpoch message; we modified this message
to send information about the leader’s faulty data. The
leader does not proceed to Phase 2 until its data is fixed.

5 Evaluation
We evaluate the correctness and performance of CTRL

versions of LogCabin and ZooKeeper. We conducted our
performance experiments on a three-node cluster on a 1-
Gb network; each node is a 40-core Intel Xeon CPU E5-
2660 machine with 128 GB memory running Linux 3.13,
with a 500-GB SSD and a 1-TB HDD managed by ext4.

5.1 Correctness
To verify CTRL’s safety and availability guarantees, we
built a fault-injection framework that can inject stor-
age faults (targeted corruptions and random block cor-
ruptions and errors). The framework can also inject
crashes. By injecting crashes at different points in time,
the framework simulates lagging nodes. After injecting
faults, we issue reads from clients to determine whether
the target system remains available and preserves safety.

We first exercise different log-recovery scenarios.
Then, we test snapshot recovery, and finally file-system
metadata fault recovery.

5.1.1 Log Recovery
Targeted Corruptions. We initialize the cluster with
four log entries, replicated to all three nodes. We ex-
ercise all combinations of entry corruptions across the
three nodes ((24)3 = 4096 combinations). Out of the
4096 cases, a correct recovery is possible in 2401 cases
(at least one non-faulty copy of each entry exists). In the
remaining 1695 cases, recovery is not possible because
one or more entries are corrupted on all the nodes. We
inject targeted corruptions into two different sets of on-
disk structures. In the first set, on a corruption, the origi-
nal systems invoke the truncate action (i.e., they truncate
faulty data and continue). In the second set, the origi-
nal systems invoke the crash action (i.e., node crashes
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Table 5: Snapshot and FS Metadata Faults. (a) and (b) show how
CTRL recovers from snapshot and FS metadata faults, respectively.

on detection). For example, while ZooKeeper truncates
when the tail of a transaction is corrupted, it crashes the
node if the transaction header is corrupted. CTRL always
recovers the corrupted data from other replicas.

Table 4(a) shows the results. When recovery is possi-
ble, the original systems recover only in 46/2401 cases.
In those 46 cases, no node or only one node is corrupted.
In the remaining 2355 cases, the original systems are
either unsafe (for truncate) or unavailable (for crash).
In contrast, CTRL correctly recovers in all 2401 cases.
When a recovery is not possible (all copies corrupted),
the original systems are either unsafe or unavailable in
all cases. CTRL, by design, correctly remains unavailable
since continuing would violate safety.
Random Block Corruptions and Errors. We initialize
the cluster by replicating a few entries to all nodes. We
first choose a random set of nodes. In each such node, we
then corrupt a randomly selected file-system block (from
the files implementing the log). We repeat this process,
producing 5000 test cases. We similarly inject block er-
rors. Since we inject a fault into a block, several entries
and their checksums within the block will be faulty.

Table 4(b) shows the results. For block corruptions,
original LogCabin is unsafe or unavailable in about
30% ((738 + 793)/5000) of cases. Similarly, original
ZooKeeper is incorrect in about 30% of cases. On a
block error, original LogCabin and ZooKeeper simply
crash the node, leading to unavailability in about 50% of
cases. In contrast, CTRL correctly recovers in all cases.
Faults with Crashed and Lagging Nodes. In the previ-
ous experiments, all entries were committed and present
on all nodes. In this experiment, we inject crashes at
different points on a random set of nodes while insert-
ing entries. Thus, in the resultant log states, nodes could
be lagging, entries could be uncommitted, and have dif-
ferent epochs on different nodes for the same log index.
〈S1 : [a1, , ],S2 : [b2,c3, ],S3 : [b2, , ]〉 is an example
state where S1 appends a at index 1 in epoch 1 (shown
in superscript) and crashes, S2 appends b at index 1 in
epoch 2, replicates to S3, then S2,S3 crash and recover,
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Figure 5: Common-Case Write Performance. (a) and (b) show the write throughput in original and CTRL versions of LogCabin and ZooKeeper
on an HDD. (c) and (d) show the same for SSD. The number on top of each bar shows the performance of CTRL normalized to that of original.

S2 appends c in epoch 3 and crashes. From each such
state, we corrupt different entries, generating 5000 test
cases. For example, from the above state, we corrupt a
on S1 and b,c on S2. If S2 is elected the leader, S2 needs
to fix b from S3 (since b is committed), discard c (c is
uncommitted and cannot be recovered), and also instruct
S1 to discard a (a is uncommitted) and replicate correct
entry b. As shown in Table 4(c), CTRL correctly recov-
ers from all such cases, while the original versions are
unsafe or unavailable in many cases.
Model Checking. We also model checked CTRL’s log
recovery since it involves many corner cases, using a
python-based model that we developed. We explored
over 2.5M log states all of in which CTRL correctly re-
covered. Also, when key decisions are tweaked, the
checker finds a violation immediately: for example, the
leader concludes that a faulty entry is uncommitted only
after gathering bN/2c+ 1 dontHave responses; if this
number is reduced, then the checker finds a safety viola-
tion. We have also added the specification of CTRL’s log
recovery to the TLA+ specification of Raft [23] and con-
firmed that it correctly recovers from corruptions, while
the original specification violates safety.

5.1.2 Snapshot Recovery
We trigger the nodes to take a snapshot, crashing them at
different points, producing three possible states for each
node: l, t, and g, where l is a state where the node has
only the log (it has not taken a snapshot), t is a snapshot
for which garbage collection has not been performed yet,
and g is a snapshot which has been garbage collected. We
produce all possible combinations of states across three
nodes. On each such state, we randomly pick a set of
nodes to inject faults, and corrupt a random combination
of snapshots and log entries, generating 1000 test cases.
For example, 〈S1 : t,S2 : g,S3 : l〉 is a base state on which
we corrupt snapshot t and a few preceding log entries
on S1 and g on S2. In such a state, if S1 becomes the
leader, it has to fix its log from S3, then has to locally
recover its t snapshot, after which it has to fix g on S2.
S1 also needs to install the snapshot on S3. As shown in
Table 5(a), CTRL correctly recovers from all such cases.
Original LogCabin is incorrect in about half of the cases
because it obliviously loads faulty snapshots sometimes
and crashes sometimes. Original ZooKeeper crashes the

node if it is unable to locally construct the data from the
snapshot and the log, leading to unavailability; unsafety
results because a faulty log is truncated in some cases.

5.1.3 File-system Metadata Faults
To test how CTRL recovers from file-system metadata
faults, we corrupt file-system metadata structures (such
as inodes and directory blocks) resulting in unopenable
files, missing files, and files with fewer or more bytes.
We inject such faults in a randomly chosen file on one or
two nodes at a time, creating 1000 test cases. Table 5(b)
shows the results. In some cases, the faulty nodes in orig-
inal versions crash because of a failed deserialization or
assertion. However, sometimes original LogCabin and
ZooKeeper do not detect the fault and continue operat-
ing, violating safety in 36 and 192 cases, respectively. In
contrast, CTRL reliably crashes the node on a file-system
metadata fault, preserving safety always.

5.2 Performance
We now compare the common-case performance of the
CTRL versions against the original versions. In both Log-
Cabin and ZooKeeper, reads are served from memory
and the read paths are not affected by CTRL. Hence,
we show only performance of write workloads. The
workload runs for 300 seconds, inserting entries each of
size 1K. Both systems batch writes to improve through-
put. Snapshots are taken periodically during the updates.
Numbers reported are the average over five runs.

Figure 5(a) and (b) show the throughput on an
HDD for varying number of clients in LogCabin and
ZooKeeper, respectively. CLSTORE physically separates
the identifier from the entry; this separation induces a
seek on disks in the update path. However, the seek cost
is amortized when more requests are batched; CTRL has
an overhead of 8%-10% for 32 clients on disks. Fig-
ure 5(c) and (d) show throughput on an SSD; CTRL adds
very minimal overhead on SSDs (4% in the worst case).
Note that our workload performs only writes and there-
fore shows CTRL’s overheads in the worst case; for more
realistic workloads that predominantly perform reads,
the overheads should be even lower.
Fast Log Recovery. To show the potential reduction in
log-recovery time, we insert 30K log entries (each of size
1K) and corrupt the first entry on one node. In origi-



nal LogCabin, the faulty node detects the corruption but
truncates all entries; hence, the leader transfers all entries
to bring the node up-to-date. CTRL fixes only the faulty
entry, reducing recovery time. The faulty node is fixed in
1.24 seconds (32MB transferred) in the original system,
while CTRL takes only 1.2 ms (7KB transferred). We see
a similar reduction in log-recovery time in ZooKeeper.

6 Related Work
Our analysis of how RSM-based systems react to storage
faults (§2.3) builds upon several fault-injection studies.
Our design of CTRL (§3) builds upon several efforts on
tolerating practical faults in distributed systems.
Storage Faults. Several studies on storage faults [34,46,
48, 59, 60] motivated our work. Our previous work [29,
30] discovered fundamental reasons why distributed sys-
tems are not resilient to storage faults. However, the
study did not uncover any safety or availability viola-
tions reported in §2.3; this is because the fault model in
our previous study considers injecting only storage faults
(precisely, a single storage fault on a single node at a
time). In contrast, our fault model in this work considers
crashes and network failures in addition to storage faults,
exposing previously unknown safety and availability vi-
olations in RSM systems.
Targeted Approaches. Prior research describes two ap-
proaches [15, 17] to tackle storage faults in RSM sys-
tems. However, these approaches suffer from unavail-
ability. Furthermore, the MarkNonVoting approach [17]
can violate safety because important metainfo such as
promises can be lost on a storage fault [70]. CTRL avoids
such safety violations by storing two copies of metainfo
on each node. Approaches that improve the reliability of
other specific systems have also been proposed [68, 71].
Generic Approaches. Many generic approaches to han-
dling practical faults other than crashes have been pro-
posed. PASC [21] hardens systems to tolerate corrup-
tions by maintaining two copies of the entire state on
each node and assumes that both the copies will not be
faulty at the same time. This approach does not work
well for storage faults; having two copies of on-disk state
incurs 2× space overhead. Furthermore, in most cases,
PASC crashes the node on a fault, causing unavailability.
XFT [42] is designed to tolerate non-crash faults. How-
ever, it can tolerate only a total of b(N−1)/2c crash and
non-crash faults. Similarly, UpRight [20] has an upper
bound on the total faults to remain safe and available.

CTRL differs from the generic approaches through its
special focus on storage faults. This focus brings two
main advantages. First, CTRL attributes faults at a fine
granularity: while the generic approaches consider a
node as faulty if any of its data is corrupted, CTRL con-
siders faults at the granularity of individual data items.
Second, because of such fine-granular fault treatment,

CTRL can be available as long as a majority of nodes
are up and at least one non-faulty copy of a data item
exists even though portions of data on all nodes could
be corrupted. CTRL cannot tolerate arbitrary non-crash
faults [40] (e.g., memory errors). However, CTRL can
augment the generic approaches: for example, a sys-
tem can be hardened against memory faults using PASC
while making it robust to storage faults using CTRL.

7 Conclusions
Recovering from storage faults in distributed systems is
surprisingly hard. We introduce protocol-aware recov-
ery (PAR), a new approach that exploits protocol-specific
knowledge of the underlying distributed system to cor-
rectly recover from storage faults. We design CTRL, a
protocol-aware recovery approach for RSM systems. We
experimentally show that CTRL correctly recovers from a
range of storage faults with little performance overhead.

Our work is only a first step in hardening distributed
systems to storage faults: while we have successfully ap-
plied the PAR approach to RSM systems, other classes of
systems (e.g., primary-backup, Dynamo-style quorums)
still remain to be analyzed. We believe the PAR approach
can be applied to such classes as well. We hope our work
will lead to more work on building reliable distributed
storage systems that are robust to storage faults.

Acknowledgments
We thank Mahesh Balakrishnan (our shepherd), the
anonymous reviewers, and the members of ADSL
for their excellent feedback. We also thank Cloud-
Lab [56] for providing a great environment to run our
experiments. This material was supported by fund-
ing from NSF grants CNS-1421033 and CNS-1218405,
DOE grant DE-SC0014935, and donations from EMC,
Huawei, Microsoft, and VMware. Any opinions, find-
ings, and conclusions or recommendations expressed in
this material are those of the authors and may not reflect
the views of NSF, DOE, or other institutions.

References
[1] Crash-Corruption Disentanglement Proof.

http://research.cs.wisc.edu/adsl/
Publications/par/.

[2] Ittai Abraham, Gregory Chockler, Idit Keidar, and
Dahlia Malkhi. Byzantine Disk Paxos: Optimal
Resilience with Byzantine Shared Memory. Dis-
tributed Computing, 18(5):387–408, 2006.

[3] Ramnatthan Alagappan, Aishwarya Ganesan, Yu-
vraj Patel, Thanumalayan Sankaranarayana Pillai,

http://research.cs.wisc.edu/adsl/Publications/par/
http://research.cs.wisc.edu/adsl/Publications/par/


Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Correlated Crash Vulnerabilities. In Pro-
ceedings of the 12th USENIX Conference on Op-
erating Systems Design and Implementation (OSDI
’16), Savannah, GA, November 2016.

[4] Apache. ZooKeeper. https://zookeeper.
apache.org/.

[5] Apache. ZooKeeper Guarantees, Prop-
erties, and Definitions. https://
zookeeper.apache.org/doc/r3.2.
2/zookeeperInternals.html#sc_
guaranteesPropertiesDefinitions.

[6] Apache Cassandra. Cassandra Replication. http:
//docs.datastax.com/en/cassandra/
2.0/cassandra/architecture/
architectureDataDistributeReplication_
c.html.

[7] Apache ZooKeeper. Applications and Or-
ganizations using ZooKeeper. https:
//cwiki.apache.org/confluence/
display/ZOOKEEPER/PoweredBy.

[8] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 0.91 edition, May 2015.

[9] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, Garth R.
Goodson, and Bianca Schroeder. An Analysis of
Data Corruption in the Storage Stack. In Proceed-
ings of the 6th USENIX Symposium on File and
Storage Technologies (FAST ’08), San Jose, CA,
February 2008.

[10] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler. An Analysis
of Latent Sector Errors in Disk Drives. In Proceed-
ings of the 2007 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS ’07), San Diego, CA, June 2007.

[11] Lakshmi N. Bairavasundaram, Meenali Rungta,
Nitin Agrawal, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Michael M. Swift.
Analyzing the Effects of Disk-Pointer Corruption.
In Proceedings of the International Conference
on Dependable Systems and Networks (DSN ’08),
Anchorage, Alaska, June 2008.

[12] Lakshmi Narayanan Bairavasundaram. Character-
istics, Impact, and Tolerance of Partial Disk Fail-
ures. PhD thesis, University of Wisconsin, Madi-
son, 2008.

[13] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan
Prabhakaran, Ted Wobber, Michael Wei, and
John D. Davis. CORFU: A Shared Log Design for
Flash Clusters. In Proceedings of the 9th Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI ’12), San Jose, CA, April 2012.

[14] Andrew D. Birrell, Roy Levin, Michael D.
Schroeder, and Roger M. Needham. Grapevine:
An Exercise in Distributed Computing. Commun.
ACM, 25(4):260–274, April 1982.

[15] William J. Bolosky, Dexter Bradshaw, Randolph B.
Haagens, Norbert P. Kusters, and Peng Li. Paxos
Replicated State Machines As the Basis of a High-
performance Data Store. In Proceedings of the 8th
Symposium on Networked Systems Design and Im-
plementation (NSDI ’11), Boston, MA, April 2011.

[16] Mike Burrows. The Chubby Lock Service for
Loosely-Coupled Distributed Systems. In Proceed-
ings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI ’06), Seattle,
WA, November 2006.

[17] Tushar D Chandra, Robert Griesemer, and Joshua
Redstone. Paxos Made Live: An Engineering Per-
spective. In Proceedings of the 26th ACM Sympo-
sium on Principles of Distributed Computing, Port-
land, OR, August 2007.

[18] Vijay Chidambaram, Thanumalayan Sankara-
narayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Optimistic Crash Con-
sistency. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP ’13),
Farmington, PA, November 2013.

[19] Vijay Chidambaram, Tushar Sharma, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Consistency Without Ordering. In Proceedings of
the 10th USENIX Symposium on File and Storage
Technologies (FAST ’12), San Jose, CA, February
2012.

[20] Allen Clement, Manos Kapritsos, Sangmin Lee,
Yang Wang, Lorenzo Alvisi, Mike Dahlin, and Tay-
lor Riche. Upright Cluster Services. In Proceedings
of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’09), Big Sky, Montana, October
2009.

[21] Miguel Correia, Daniel Gómez Ferro, Flavio P. Jun-
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