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Abstract
In this paper, we present an approach to systematically
examine the schedulability of distributed storage sys-
tems, identify their scheduling problems, and enable ef-
fective scheduling in these systems. We use Thread Ar-

chitecture Models (TAMs) to describe the behavior and
interactions of different threads in a system, and show
both how to construct TAMs for existing systems and
utilize TAMs to identify critical scheduling problems.
We identify five common problems that prevent a system
from providing schedulability and show that these prob-
lems arise in existing systems such as HBase, Cassandra,
MongoDB, and Riak, making it difficult or impossible to
realize various scheduling disciplines. We demonstrate
how to address these schedulability problems by devel-
oping Tamed-HBase and Muzzled-HBase, sets of mod-
ifications to HBase that can realize the desired schedul-
ing disciplines, including fairness and priority schedul-
ing, even when presented with challenging workloads.

1 Introduction
The modern data center is built atop massive, scalable
storage systems [12, 25, 42, 51]. For example, a typical
Google cluster consists of tens of thousands of machines,
with PBs of storage spread across hard disk drives (or
SSDs) [51]. These expansive storage resources are man-
aged by Colossus, a second-generation scalable file sys-
tem that replaced the original GFS [25]; many critical
Google applications (e.g., Gmail and Youtube), as well
as generic cloud-based services, co-utilize Colossus and
thus contend for cluster-wide storage resources such as
disk space and I/O bandwidth.

As a result, a critical aspect of these storage systems is
how they share resources. If, for example, requests from
one application can readily drown out requests from an-
other, building scalable and predictable applications and
services becomes challenging (if not impossible).

To address these concerns, scalable storage systems
must provide correct and efficient request scheduling as
a fundamental primitive. By controlling which client
or application is serviced, critical features including fair
sharing [28, 38, 58, 66], throughput guarantees [54, 68],
low tail latency [19, 29, 47, 63, 72] and performance iso-
lation [9, 55, 62] can be successfully realized.

Unfortunately, modern storage systems are complex,
concurrent programs. Many systems are realized via an
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(a) Weighted Fair Share:
Original HBase does not
respect different weights
of clients, yet in Muzzled-
HBase all the clients get
throughput proportional to
their weights.
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(b) Latency Guarantee: The tail
latency of the foreground client is
severely impacted by background work-
loads (cached scan, random get, and
random put, indicated by grey bars)
with original HBase, but remains stable
with Muzzled-HBase.

Figure 1: TAM Enable SLOs (HBase). Muzzled-HBase
supports multiple scheduling policies under YCSB benchmark.
Experiment setup described in §4.2.

intricate series of stages, queues, and thread pools, based
loosely on SEDA design principles [64]. For example,
HBase [24] consists of ~500K lines of code, and involves
~1000 interacting threads within each server when run-
ning. Understanding how to introduce scheduling control
into systems is challenging even for those who develop
them; a single request may flow through numerous stages
across multiple machines while being serviced.

All of the open-source storage systems we examined
have significant scheduling deficiencies, thus rendering
them unable to achieve desired scheduling goals. As
shown in Figure 1, the original HBase fails to provide
weighted fairness or isolation against background work-
loads, yet our implemenation of Muzzled-HBase suc-
cessfully achieved these goals. Such scheduling deficien-
cies have also caused significant problems in production,
including extremely low write throughput or even data
loss for HBase [5], unbounded read latency for Mon-
goDB [6, 7], and imbalance between workloads in Cas-
sandra [4]. All above problems have been assigned major
or higher priority by the developers, but remain unsolved
due to their complexities and the amount of changes re-
quired to the systems.

To remedy this problem, and to make the creation of
flexible and effective scheduling policies within com-
plex storage systems easy, this paper presents a novel
approach to such schedulability analysis, which allows
systematic reasoning on how well a system could sup-
port scheduling based on its thread architecture. Specif-
ically, we define a Thread Architecture Model (TAM),
which captures the behavior and interactions of differ-
ent threads within a system. By revealing the resource



consumption patterns and dependencies between com-
ponents, a TAM effectively links the performance of a
storage system to its architecture (while abstracting away
implementation details). Using a TAM, various schedul-
ing problems can be discerned, pointing toward solutions
that introduce necessary scheduling controls. The sys-
tem can then be transformed to provide schedulability
by fixing these problems, allowing realization of various
scheduling policies atop it. TAMs are also readily visu-
alized using Thread Architecture Diagrams (TADs), and
can be (nearly) automatically obtained by tracing a sys-
tem of interest under different workloads.

We use TAMs to analyze the schedulability of four
important and widely-used scalable storage systems:
HBase/HDFS [24, 56], Cassandra [36], MongoDB [15],
and Riak [33], and highlight weaknesses in the schedul-
ing architecture of each. Our analysis centers around five
essential problems we have discovered, each of which
leads to inadequate scheduling controls: a lack of lo-
cal scheduling control points, unknown resource usage,
hidden competition between threads, uncontrolled thread
blocking, and ordering constraints upon requests. Fortu-
nately, these problems can be precisely specified using
TAMs, enabling straightforward and automatic problem
identification. These problems can also be visually iden-
tified using TADs, allowing system architects to readily
understand where problems arise.

By fixing the problems identified using TAM, HBase,
the most complex system we studied, can be trans-
formed to provide schedulability. We show via simula-
tion that Tamed-HBase (TAM-EnableD HBase) utilizes
a problem-free thread architecture to enable fair sharing
under intense resource competition and provide strong
tail latency guarantees with background interference; it
also achieves proper isolation despite variances in re-
quest amount, size, and other workload factors. We im-
plement Muzzled-HBase (an approximation of Tamed-
HBase) to show that TAM-guided schedulability analysis
corresponds to the real world.

The rest of this paper is structured as follows. We first
introduce the thread architecture model (TAM) (§2), and
then discuss how to use TAM to perform schedulability
analysis, centered around the five scheduling problems
(§3). We use HBase/HDFS as a case study to demon-
strate how to use TAM to analyze the schedulability of a
realistic system, and make said system schedulable (§4).
We then present the schedulability analysis results of
other systems (§5). Next, we discuss the limitations of
TAM and how it can be extended (§6). Finally, we dis-
cuss related work (§7) and conclude (§8).

2 Thread Architecture Model
Implementing new scheduling policies in existing sys-
tems is non-trivial; most modern scalable storage sys-
tems have complex structures with specific features that

complicate the realization of scheduling policies. We in-
troduce thread architecture models (TAMs) to describe
these structures. The advantage of TAM is that one can

perform schedulability analysis with only information

specified in this model, abstracting away all the imple-

mentation details. We first give a general and intuitive
description of TAM (§2.1) and describe its visualization
using TAD (§2.2). We then discuss how to automatically
obtain TAM for existing systems (§2.3). Finally, we give
a formal definition of the TAM model (§2.4).

2.1 TAM: General Description
We model scheduling in a storage system as containing
requests that flow through the data path consuming vari-
ous resources while a control plane collects information
and determines a scheduling plan to realize the system’s
overall goal (e.g., fairness). This plan is enforced by lo-
cal schedulers at different points along the data path.

In modern SEDA-based distributed storage systems,
the data path consists of many distinct stages residing
in different nodes. A stage contains threads performing
similar tasks (e.g., handling RPC requests or performing
I/O). A thread refers to any sequential execution (e.g., a
kernel thread, a user-level thread, or a virtual process in
a virtual machine). Within a stage, threads can be orga-
nized as a pool with a fixed (or maximum) number of ac-
tive threads (bounded stage) or can be allocated dynam-
ically as requests increase (on-demand stage). In certain
stages, some requests may need to be served in a specific
order for correctness; this is an ordering constraint.

Each bounded stage has an associated queue from
which threads pick tasks; each queue is a potential
scheduling point where schedulers can reorder requests.
The queue can be either implicit (e.g., the default FIFO
queue of a Java thread pool) or explicit (with an API to
allow choice of policy, or hard-coded decisions).

A stage may pass requests to its downstream stages for
processing. After a thread issues a request to downstream
stages, the thread may immediately proceed to another
request, or block until notified that the request completed
at other stages.

Resources are consumed within a stage as requests are
processed; we consider CPU, I/O, network and lock1 re-
sources, but other resources can be readily added to our
model. Instead of specifying the exact amount of re-
sources used in each stage (which can change based on
specific characteristics of workloads), we only consider
whether a resource is extensively used in a stage. This
simplification allows us to abstract away the details of
slightly different workloads but still captures important
problems related to resource usage (shown in §3). Exten-

1We treat each lock instance as a separate resource, but are usually
only interested in one or two highly contended locks in the system, e.g.,
the namespace lock in HDFS.



CPU, I/O, network, lock resource [Left to right. Square 
bracket: unknown usage]! " #$%&

Node boundary

stage [Boxes above: its resource vector. Stop: ordering 
constraints]

Blocking relationship [Stage A blocks on the stage B]BA

Downstream relationship [Stage A issues requests to stage B]BA

Scheduling point [Plug!"allows pluggable schedulers. No 
scheduling point: on-demand stage]

name
! "% #$%&

Table 1: Notation for Thread Architecture Diagrams.
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Figure 2: HBase/HDFS Thread Architecture. Based
on HBase 2.0.0 and Hadoop 2.7.1. Some stages are omitted
to simplify discussion. Red: main RPC processing flow; green:
processing flow that requires HDFS read; blue: processing flow
that requires data modifications.

sive resource usage is interpreted as “any serious usage
of resources that is worth considering during schedul-
ing”; we discuss how we choose the threshold in §2.3. If
a stage may or may not extensively use a resource during
processing based on different workloads, it has unknown

resource usage for this resource.
All the stages and their collective behaviors, relation-

ships, and resource consumption patterns form the thread

architecture of a system.

2.2 Visualization with TAD
One advantage of TAM is that it allows direct visual-
izations using Thread Architecture Diagrams (TADs).
Table 1 summarizes the building blocks in TADs; Fig-
ure 2 through 5 show the TADs of HBase/HDFS [24, 56],
MongoDB [15], Cassandra [36] and Riak [33] (labels on
the arrows and important workload flows are manually
added to aid understanding, and are not parts of TAD).
TAM and TAD can be thought of as duals: TAD is the
graphical representation of TAM, while TAM is the sym-
bolic representation of TAD; one can easily transform a
TAD to its underlying TAM, and vice versa.

We now use the (simplified) HBase/HDFS TAD in
Figure 2 to illustrate how to read a TAD and identify spe-
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Figure 3: MongoDB Thread Architecture. (v3.2.10)
Red: processing flow for requests that do not block on replica-
tion; blue: processing flow for requests that do.

cific features of system scheduling from it.

When HBase clients send queries to the RegionServer,
the RPC Read stage reads from the network and passes
the request to the RPC Handle stage (1). Based on the re-
quest type (Put or Get) and whether data is cached, RPC
Handle may have different behavior. One may insert cus-
tom schedulers into RPC Handle (plug symbol).

If the RPC needs to read data, RPC Handle checks if
the data is local. If not, RPC Handle sends a read re-
quest to the Data Xceive stage in a Datanode and blocks
(r1 − r2, where blocking is indicated by dashed r2). If
it is local, RPC Handle directly performs short-circuited
reads, consuming I/O. I/O resource usage in RPC Handle
is initially unknown and thus marked with a bracket.

For operations that modify data, RPC Handle appends
WAL entries to a log (a1) and blocks until the entry is
persisted. LOG Append fetches WAL entries from the
queue in the same order they are appended (stop symbol),
and writes them to HDFS by passing data to Data Stream
(w1), which sends the data to Data Xceive (w2 − w3).
All WAL entries append to the same HDFS file, so Data
Stream and Data Xceive must process them in sequence.
LOG Append also sends information about WAL entries
to LOG Sync (a2), which blocks (w7) until the write
path notifies it of completion (further details omitted);
it then tells RPC Handle to proceed (dashed a3). RPC
Handle may also flush changes to the MemStore cache
(f1); when the cache is full, the content is written to
HDFS with the same steps as with LOG Append writes
(w1 − w7), though without the ordering constraint.

Finally, after RPC Handle finishes an RPC, it passes
the result to RPC Respond and continues another
RPC (2). In most cases, RPC Respond responds to the
client, but if the connection is idle, RPC Handle bypasses
RPC Respond and responds directly.

HBase has more than ten complex stages exhibiting
different local behaviors (e.g., bounded vs. on-demand),
resource usage patterns (e.g., unknown I/O demand), and
interconnections (e.g., blocking and competing for the
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Figure 4: Cassandra Thread Architecture. (v3.0.10)
The ellipsis represent other database processing stages. Red:
remote mutation processing flow; blue: remote read processing
flow; green: local read processing flow.

same resources across stages). All of them are compactly
encoded in its TAM/TAD, enabling us to identify prob-
lematic scheduling, as we discuss later (§3).

2.3 Automatic Obtainment
TAM is defined with automatic procurement in mind: all
information specified in TAM can be (relatively) easily
obtained, allowing automation of the schedulability anal-
ysis. We now present TADalyzer, a tool we developed to
auto-discover TAM/TAD for real systems using instru-
mentation and tracing techniques. The workflow to gen-
erate the TAM of a given system with TADalyzer con-
sists of four steps:

1. Stage Naming: the user lists (and names) important
stages in the system.

2. Stage Annotation: the user identifies thread creation
code in the code base and annotates if the new thread
belongs to one of the stages previously named. Fig-
ure 6 shows a sample annotation. Threads not explic-
itly annotated default to a special NULL stage.

3. Monitoring: the user deploys the system and
feeds various workloads (e.g., hot-/cold-cached, lo-
cal/remote) to it. TADalyzer automatically collects
necessary information for later TAM generation. If
the user missed some important stages in step 1, TAD-
alyzer would notice that some threads in the NULL

stage are overly active, and alert the user with the
stack trace of these threads. Based on the alert, the
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Figure 5: Riak Thread Architecture. (v2.1.4) Red: local
request processing flow; blue: remote request processing flow.

RPC_READ
RPC_HANDLE
LOG_IO
RPC_RESPOND
…
NULL(default)

static void *rpc_handle_run(void* args)
{
 
       ...
}

pthread_create(&tid, NULL,(void *)
              &rpc_handle_run, args);                         

Stage Name List:

Figure 6: Sample Annotation.

user identifies the missing stages and repeats step 1-3.
4. Generating: After enough information is collected,

the user asks TADalyzer to generate the TAM; some
information TADalyzer cannot obtain (see Figure 7),
and the user needs to provide manually. TADalyzer
also automatically plots TAD from the TAM (though
the TADs shown in the paper are drawn manually).

This workflow requires the user to know the important
(but not all) stages in the system. From our experience,
someone unfamiliar with the code base usually misses
naming some stages initially. However, TADalyzer pro-
vides enough information to point the user to the code of
the missing stages to aid further annotation, and one can
typically get a satisfactory TAM within a few (< 5) it-
erations of the workflow. In HBase and MongoDB such
annotation took ~50 lines of code, and ~20 in Cassandra.

We now briefly describe how TADalyzer generates the
TAM. Based on user annotation, TADalyzer monitors
thread creation and termination, and builds a mapping
between threads and stages. Using this mapping, it auto-
matically discovers the following information:

Stage Type: TADalyzer tracks active threads at each
stage to classify bounded or on-demand stages.

Resource Consumption: Using Linux kernel tracing
tools [1, 40], TADalyzer attaches hooks to relevant ker-
nel functions (e.g., vfs read, socket read) to monitor
the I/O and network consumed at each stage. CPU con-
sumption is tracked through /proc/stat; the lock resource
by automatically instrumenting relevant lock operations.

Intra-Node Data Flow: TADalyzer automatically in-
struments standard classes that are commonly used to
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pass requests, such as util.AbstractQueue in Java
and std<queue> in C++, to build data flow between
stages within the same node.

Inter-Node Data Flow: TADalyzer tracks how much
data each thread sends and receives on different ports. By
matching the IP and port information, TADalyzer builds
the data flow between stages on different nodes.

Blocking Relationship: TADalyzer injects delays in a
stage and determines whether other stages block by ob-
serving if the delay propagates to these stages.

The current version of TADalyzer cannot automati-
cally derive if a stage provides a pluggable scheduling
point or has an ordering constraint, and requests this in-
formation from the user. Figure 7 summarizes how TAD-
alyzer obtains TAM information; based on the informa-
tion, TADalyzer generates the TAM/TAD.

When generating TAM, TADalyzer needs to deter-
mine the threshold for extensive resource usage of a
stage. In a typical system there exist many “light” stages
that are occasionally activated to perform bookkeeping
and consume few resources (e.g., a timer thread); even
for stages that are actively involved in request process-
ing, they may perform tasks with a particular resource
pattern and only very lightly use other resources. When
accumulating the resource consumption in a long run, we
observe that these stages use at most 1% of the concerned
resource, while the stages that are actively consuming
resources when processing requests typically use more
than 10% (or much higher) of the resource. For example,
in MongoDB the Worker stage consumes up to 95% of
the total CPU time, while the Fetcher stage consumes at
most 0.2%; similarly, in HBase the RPC Respond stage is
responsible for 20% to 80% of the total bytes transferred
through network, but its I/O consumption never exceeds
1%. TADalyzer thus chooses the extensiveness thresh-
old to be within 1% and 10% to prevent these “light”
stages from unnecessarily complicating the TAM (the ex-
act threshold is set to 5%).

TADalyzer has certain limitations (detailed discussion
omitted for brevity); in particular, the TAMs generated
by TADalyzer are correct, but maybe incomplete (miss-

ing stages or flows).2 However, we would like to em-
phasize that TAM defines a clear set of obtainable in-

formation (see §2.4), which enables tools that automati-
cally extract this information to construct TAM and per-
form schedulability analysis. TADalyzer is just one such
tool we built to demonstrate the feasibility of automatic
schedulability analysis; we encourage other tools to be
developed that deploy different techniques (e.g., those
in [8, 11, 14, 69]) to discover the information listed in
Figure 7 and optimize the process of obtaining TAM.

2.4 TAM: Formal Definition
We now give a more formal definition of the thread archi-
tecture model, which precisely specifies the information
encoded in a TAM. Such formalism is critical for both
automatically constructing TAMs (§2.3) and for system-
atically identifying the scheduling problems (§3).

Definition 1. A thread architecture is defined by the 3-
tuple (S,D,B), where

• S is a finite set; each element s ∈ S is a stage, which
is defined in Definition 2.

• D is a function that maps S to P(S) (the power set
of S); D represents the downstream relationship. For
example, D(s1) = {s2, s3} means s1 issues requests
to s2 and s3.

• B is a function that maps S to P(S); B represents the
blocking relationship. For example, B(s1) = {s2}
means stage s1 blocks on stage s2.

Definition 2. A stage is defined by the 5-tuple
(n, h, r, o, q), where

• n is a string representing the name of the stage.
• h is a positive integer indicating host ID. Stages with

the same h value are on the same node.
• r is a 4-vector representing the resource usage pattern

of this stage. Each component in r can take one of
the three values: true, false, or unknown, indicating
whether the corresponding resource (CPU, I/O, net-
work, lock) is used extensively in this stage.

• o is a boolean value representing whether the stage has
an ordering constraint or not.

• q represents the local scheduling type, and can take
one of the three values: on demand, pluggable or
general, indicating whether the stage is on-demand,
allows pluggable schedulers, or has hard-coded or im-
plicit scheduling logic.

3 Scheduling Problems
TAM allows us to identify scheduling problems without
being concerned about low-level implementation details;
it also points towards solutions that introduce necessary
scheduling controls. We now discuss how to perform
schedulability analysis using TAM/TAD. Our analysis

2All TAM/TADs shown in the paper (except MongoDB) have been
validated by each system’s developers [21, 23, 27].



centers around five common problems we discovered in
modern distributed storage systems: no scheduling, un-

known resource usage, hidden contention, blocking, and
ordering constraint. To illustrate the process clearly, we
begin by focusing on systems with only a single prob-
lem; in Section 4 we consider the HBase TAM in which
multiple problematic stages are interconnected.

For each problem, we first give a general description,
then precisely specify the problem in TAM and TAD. We
use simulation to demonstrate how problematic thread
architecture hinders scheduling policy realization; differ-
ent scheduling policies including fairness, latency guar-
antees, and priority scheduling are investigated.

The simulation framework (built on simpy [39]) pro-
vides building blocks such as requests, threads, stages,
resources, and schedulers. Using TAMs as blueprints,
stages can be assembled to form various thread architec-
tures that refect existing or hypothetical system designs.
With a given thread architecture, one can specify work-
load characteristics (e.g., request types and arrival dis-
tribution), resource configurations (e.g., CPU frequency
and network bandwidth), and scheduling policies; the
framework then simulates how requests flow through the
stages and consume the resources, and reports detailed
performance statistics.

Unless noted, all simulations in this section use a
common configuration: two competing clients (C1 and
C2) continuously issue requests; C1 has 40 threads, C2
varies; each node has a 1 GHz CPU, 100 MB/s disk, and
a 1 Gbps network connection.

3.1 No Scheduling
Each resource-intensive stage in a thread architecture
should provide local scheduling. With local scheduling
for a stage, requests are explicitly queued and resource-
intensive activities can be ordered according to system’s
overall scheduling goal. In contrast, an on-demand stage
with no request queue and extensive resource usage suf-
fers the no scheduling problem (e.g., the Data Stream and
Data Xceive stages in HBase, and the Req In-Out and
Process stages in Riak).

TAM: A TAM (S,D,B) suffers no scheduling if ∃s ∈
S, s.t. s.r ̸= [false, false, false, false] ∧ s.q =
on demand. 3

TAD: A TAD suffers no scheduling if it contains stages
with non-empty resource boxes but no queues.

Figure 8(a) shows a simple TAD with two stages,
the second of which has no scheduling (an on-demand
stage with intensive I/O). The scheduler for Req Handle
(Q1) attempts to provide a latency guarantee to C1 us-
ing earliest-deadline-first (EDF) but is unsuccessful: as

3A more stringent definition may require each resource intensive
stage to provide pluggable scheduling point to allow flexible schedul-
ing policy realization; we opt for a looser definition here.
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Figure 8: The No Scheduling Problem. Each client
request requires 100 us CPU and 100 KB I/O, making I/O the
bottleneck. The deadline is set to 15 ms for C1, 500 ms for C2;
the gray area indicates latency within the C1 deadline. The left
y-axis shows the average latency of C1; the right y-axis shows
the number of C2 requests competing with C1 at the I/O stage.

C2 issues requests with more threads, the latency of C1
exceeds the deadline by as much as 5x. The problem oc-
curs because Q1 scheduling is irrelevant when Req Han-
dle is not the bottleneck: the average queue length of Q1
is zero. Meanwhile, as shown in Figure 8(a), there are
many requests contending for I/O in the I/O stage, which
is not managed by a scheduler.

Figure 8(b) shows another architecture which has the
same functionality but does not suffer the no schedul-
ing problem as it possesses a scheduling point at the I/O
stage. Local scheduling points enable the system to reg-
ulate I/O resource usage at the point where the resource
is contended, thus simply and naturally ensuring latency
guarantees and isolation of the two clients.

3.2 Unknown Resource Usage
Each stage within a system should know its resource us-
age patterns. However, in some stages, requests may fol-
low different execution paths with different resource us-
age, and these paths are not known until after the stage
begins. For example, a thread could first check if a re-
quest is in cache, and if not, perform I/O; the requests in
this stage have two execution paths with distinct resource
patterns and the scheduler does not know this ahead of
time. In such cases, the stage suffers unknown resource

usage (e.g., the RPC Handle stage in HBase due to the
short-circuited reads it might perform). Unknown re-
source usage forces schedulers to make decisions before
information is available.
TAM: A TAM (S,D,B) suffers unknown resource us-
age if ∃s ∈ S, ∃i ∈ {1, 2, 3, 4}, s.t. s.r[i] = unknown.
TAD: A TAD suffers unknown resource usage if it con-
tains resource symbols surrounded by square brackets.

Figure 9 (a) shows a single stage with unknown I/O us-
age (the bracket around the I/O resource), where Q1 per-
forms dominate resource fairness (DRF) [26] with equal
weighting. When C2 issues a mix of cold and cached re-
quests, Q1 schedules C2-cold and C2-cached in the same
way. Even though there are idle CPU resources, Q1 can-
not schedule additional C2-cached requests to utilize the
CPU because it does not know whether the request would
later cause I/O, which is currently contended. Unknown
resource usage thus causes low CPU utilization and low
throughput of C2-cached.
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look up the cache when serving a request, and perform I/O if it
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Figure 10: The Hidden Contention Problem. C1 sends
1 KB requests and receives 10 KB replies; C2 also sends 1 KB
requests but its reply size varies (shown in the x-axis). The line
graph below shows the throughput of C1. The bar graph above
shows the bandwidth each stage is forced to allocate to C1 or
C2 to maintain work conservation: when scheduling, there are
only C1/C2 requests in the queue. C1-S1 means the bandwidth
S1 (Req Read) is forced to allocate to C1, and so on.

Figure 9(b) shows another system with the same func-
tionality but one stage split into two. The Req Han-
dle stage performs CPU-intensive cache lookups while a
new stage performs I/O for requests that miss the cache.
Each stage has its own scheduler. Q1 freely admits re-
quests when there are enough CPU resources, leading to
high CPU utilization and C2-Cached throughput. Mean-
while, not only does Q2 know a request needs I/O, it also
knows the size and location of the I/O, enabling Q2 to
make better scheduling decisions. System(b) is thus free
from the unknown resource usage problem.

3.3 Hidden Contention
When multiple stages with independent schedulers com-
pete for the same resource, they suffer from hidden con-

tention which impacts overall resource allocation (e.g.,
the Worker and Oplog Writer stages in MongoDB for
database locks, and the Read, Mutation, View-Mutation
stages in Cassandra for CPU and I/O). The hidden con-
tention in MongoDB is reported to cause unbounded read
latencies in production [6]. Hidden contention is ubiqui-
tous, because some contention is difficult to avoid (e.g.,
most stages use CPU).

TAM: A TAM (S,D,B) suffers hidden contention if
∃s1 ∈ S, ∃s2 ∈ S, ∃i ∈ {1, 2, 3, 4} s.t. s1 ̸= s2 ∧
s1.h = s2.h ∧ s1.q ̸= on demand ∧ s2.q ̸= on demand

∧ s1.r[i] ̸= false ∧ s2.r[i] ̸= false.
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Figure 11: The Blocking Problem. Initially both C1
and C2 issue requests that require 100 us CPU time and can
be completed within the Req Handle Stage. At time 60, C2
switches to an I/O intensive workload where each request ad-
ditionally requires 100 KB I/O at the I/O stage. C1 continues to
issue CPU-only requests. The table below shows the average
number of blocking threads in Req Handle (10 threads in total).

TAD: A TAD suffers hidden contention if it contains
stages within a node boundary that have separate queues
but the same resource in the resource usage boxes.

Figure 10(a) shows a two-stage system with the net-
work as the source of hidden contention; one stage reads
requests and the other sends replies. Both Q1 and Q2 pre-
form fair queuing [26] with equal weighting. However,
enforcing fairness at each stage does not guarantee fair
sharing at the node level. When C2 increases its reply
size (i.e., its network usage), it unfairly consumes up to
95% of the network and reduces throughput of C1. With
larger C2 reply size, S2 is frequently forced to schedule
C2 because there are no requests from C1 in its queue.
As there is no regulation on contention between stages,
S2 effectively monopolizes the network when it sends
larger replies (on behalf of C2) and prevents S1 from us-
ing the network; this causes fewer requests to be com-
pleted at S1 and flow to S2, further limiting the chocies
available to S2. Hidden network contention between the
two stages thus causes unfair scheduling.

Figure 10(b) shows a system where one stage handles
both reading and replying RPCs. Q1 has full control of
the network and can isolate C1 and C2 perfectly.

3.4 Blocking
For optimal performance, even when some requests are
waiting to be serviced, each stage should allow other re-
quests to make progress if possible; a problem occurs if
there are no unblocked threads to serve these requests.
A system has a blocking problem if a bounded stage may
block on a downstream stage (e.g., the RPC Handle stage
in HBase, and the Worker stage in MongoDB), as scenar-
ios may occur where all threads in that stage block at one
path and other requests that could have been completed
cannot be scheduled. The blocking problem of HBase is
reported to cause extremely low throughput or even data
loss in production [5]. Blocking forces upstream sched-
ulers to account for downstream progress.

TAM: A TAM (S,D,B) suffers blocking if ∃s ∈ S, s.t.
s.q ̸= on demand ∧ B(s) ̸= ∅.
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Figure 12: The Ordering Constraint Problem. High
priority C1 issues requests in burst; low priority C2 steadily
issues requests with more threads. Each request requires 100 us
CPU time at the Worker stage, and 100 KB I/O at the LOG
Append stage. The left y-axis shows the average latency of C1;
the right y axis shows the average queue size of LOG Append.

TAD: A TAD suffers blocking if it contains stage boxes
with queues and dashed arrows pointing to them.

Figure 11(a) shows a system with blocking at Req
Handle. Requests in Req Handle have two paths: they
may complete in this stage or block on the I/O stage; the
schedulers perform DRF [26] with equal weighting. Ini-
tially both C1 and C2 receive high throughput as they
issue cached requests without blocking; however, when
C2 switches to an I/O-intensive workload, the through-
put of C1 (which is still CPU-only) suffers. The table
below shows that all threads in Req Handle are blocked
on I/O, leaving no threads to process C1 requests.

In contrast, Figure 11(b) shows a system in which the
Req Handle stage is asynchronous. No threads block; all
perform useful work, leading to high throughput for C1.

3.5 Ordering Constraint
Many storage systems use Write-Ahead Logging (WAL),
which requires the writes to the log to occur in sequence.
When a system requires some requests at a resource-
intensive stage to be served in a specific order to ensure
correctness, it has the ordering constraint problem (e.g.,
the Data Stream and Data Xceive stage in HBase). Or-
dering constraint leaves the scheduling framework with
fewer or no choices, because the local scheduler cannot
reorder resource-intensive activities as desired.
TAM: A TAM (S,D,B) suffers ordering constraint if
∃s ∈ S, ∃i ∈ {1, 2, 3, 4} s.t. s.o = true ∧ s.r[i] ̸=
false.
TAD: A TAD suffers ordering constraint if it contains
stages with stop symbols and non-empty resource boxes.

Figure 12(a) shows a two-stage system with ordering
constraint on the second stage. The schedulers enforce
priorities, where high priority requests are served first as
long as this does not break correctness. In this system,
C1 (high priority) suffers much longer latency when C2
(low priority) issues requests aggressively. The majority
of this latency occurs from queuing delay in the second
stage since low priority requests must be serviced first if
they enter the stage earlier.

Figure 12(b) shows a system that eliminates the prob-
lem by separating requests from different clients into dif-
ferent streams that share no common states (e.g., each

stream has its own WAL); even though requests within
a stream are still serviced in order, the scheduler can
choose which stream to serve and provide differentiated
services on a per-stream basis. The figure shows that C1
maintains low latency despite the larger queue size at the
LOG Append stage when C2 issues more requests: free
from the ordering constraint, Q2 can pick the high prior-
ity requests from C1 first.

3.6 Discussion
We have identified five categories of scheduling prob-
lems. For each category, we have given an example
that highlights the problem. In some cases the example
highlights a fairness problem; in others it highlights a la-
tency or utilization problem. However, one should note
that each of these problems can manifest in many dif-
ferent ways, causing violations in any scheduling disci-
pline. For example, in §3.1 we show how no scheduling
causes excessive latencies; since there are no scheduling
points to prioritize requests, it could as easily cause un-
fairness or priority inversions. How (and whether) the
scheduling problems manifest depends on the resources
available, the workload, and the scheduling policy; when
TAM/TAD suggests a scheduling problem, it means that
there exist certain workloads/resource configurations un-
der which the problem manifests.

Each of the five scheduling problem by itself is not
very surprising. However, by compactly representing
the thread architecture and exposing scheduling prob-
lems, TAM can serve a useful conceptual tool that allows
the system designer to identify and fix all the problems
in an existing system, or to design a problem-free ar-
chitecture for a new system. In addition, TAD enables
visual analysis, making it clear where problems arise,
while the TAM-based simulation can be used to study
how scheduling problems actually manifest given certain
workloads and resource configurations.

Do the five categories of problems exhaustively de-
scribe how system structure could hinder scheduling?
For now we can only answer this question empirically.
We analyzed systems with distinct architectures (thread-
based vs. loose SEDA vs. strict SEDA) and thread be-
haviors (kernel- vs. user-level threads). Only these prob-
lems arise and fixing them allows us to realize various
scheduling policies effectively. We leave proving the
completeness of the problems to future work.

4 HBase: A Case Study
Given the TAM of a system, multiple scheduling prob-
lems may be discovered, pointing towards solutions
that introduce necessary scheduling controls. By fix-
ing these problems, the system can be transformed to
provide schedulability. We now perform such anal-
ysis on a realistic storage system, the HBase/HDFS
storage stack (hereinafter just HBase). We focus on



HBase, as it presents the most complex architecture, is
widely deployed in many production environments [24],
and achieving schedulability remains difficult despite re-
peated attempts [3, 5, 37, 63, 68]. We analyze the
schedulability of MongoDB [15], Cassandra [36] and
Riak [33] later (§5).

4.1 TAM simulations
We simulate an HBase cluster with 8 nodes; one mas-
ter node hosts the HMaster and NameNode, and 7 slave
nodes host RegionServers and DataNodes. Each node
has a 1 GHz CPU, 100 MB/s disk, and a 1 Gbps network
connection. Using this simulation, we compare the orig-
nal HBase (Orig-HBase) and the HBase modified with
our solutions (Tamed-HBase, with its TAD shown in Fig-
ure 14); later we implement the solutions to show that
our TAM-based simulation corresponds to the real world.
The solutions can be used to realize any scheduling pol-
icy; in our simulation the schedulers simply attempt to
isolate C1’s performance from C2’s workload changes.

4.1.1 No Scheduling

Problem: The Data Xceive and Data Stream stages in
HBase have a non-empty resource vector and on demand

scheduling type, indicating the no scheduling problem.

Solution: In the Tamed-HBase TAM, we change the
scheduling type of Data Xceive and Data Stream from
on demand to pluggable, so it is free from no schedul-
ing. In a real system, this corresponds to adding schedul-
ing points to the two stages and exporting an API to allow
different schedulers to be plugged into each.

We simulate a workload where C1 and C2 keep issuing
(uncached) Gets, each of which incurs 128 K I/O at Data
Xceive. C1 has 40 threads issuing requests in parallel;
the number of threads of C2 increases from 40 to 200.
Figure 13(a) shows that even though the original TAM
does not isolate C1 from C2, our modified TAM provides
stable throughput to C1 despite the change of C2.

4.1.2 Unknown Resource Usage

Problem: In HBase TAM, the I/O and network com-
ponents of the RPC Handle resource vector take the
unknown value, indicating unknown resource usage.

Further code inspection reveals that the RPC Han-
dle threads only sends responses when the network is
idle, so it does not interfere with scheduling. TAM pro-
duces a false positive here because the threads exhibited
“scheduler-like” behavior (deciding whether to perform
a task based on the status of the resource) without going
through the schedulers, which is not captured by TAM.
Short-circuited reads, which are unknown when the re-
quest is scheduled, do cause contention for I/O and lead
to ineffective scheduling.

Solution: We remove the unknown resource usage in
the RPC Handle stage by moving short-circuited reads

from RPC Handle to Data Xceive. Instead of performing
reads by itself, once the RPC Handle stage recognizes
a short-circuited read, it directly passes the read to the
local Data Xceive stage without going through network
transferring; at this point, the Data Xceive scheduler has
knowledge of the I/O size and locations.

We simulate a standalone HBase node, which en-
sures that all HDFS reads at the RegionServer are short-
circuited, thus isolating the effect of unknown resource
usage. In Figure 13(b), both C1 and C2 issue Gets on
cold data, which incurs 100 KB short-circuited reads at
RPC Handle. C2 also issues cached Gets that do not re-
quire I/O. One can see that Tamed-HBase achieves addi-
tional throughput for the cached Gets of C2 compared to
Orig-HBase, without reducing the throughput of C1 or
C2’s cold-cached Gets.

4.1.3 Hidden Contention

Problem: Within the same node of the HBase TAM,
both the RPC Handle and Data Xceive stages have an I/O
component in their resource vectors; the RPC Read, RPC
Handle, RPC Respond, Data Stream, and Data Xceive
stage resource vectors all share the network component;
many stage resource vectors contain the CPU compo-
nent. All of them lead to the hidden contention problem.

Solution: To remove hidden contention, we restructure
the stages so that in Tamed-HBase, each resource is man-
aged by one dedicated stage. In general, one cannot com-
pletely eliminate hidden contention by dividing stages
based on resource usage for two reasons:

1. Without special hardware, network packet processing
requires significant CPU [16, 20, 30], so the network
stage inevitably incurs both network and CPU usage.

2. Lock usage typically cannot be separated to a dedi-
cated stage: it may be pointless to obtain a lock without
doing some processing and consuming other resources.

In the case of HBase, the highly contended namespace
lock is obtained to perform namespace manipulation (not
shown in the simplified TAD), which does not incur ex-
tensive usage on other resources, so the lock stage can
be separated. The network stage in Tamed-HBase does
incur CPU usage; however, by moving most CPU inten-
sive tasks to the CPU stage (e.g., serialization and check-
sum verification), we can reduce the hidden contention
on CPU between the network stage and the CPU stage
to a minimal level. The restructured stages are shown
in Figure 14; to avoid no scheduling, all the new stages
have pluggable scheduling points, but the blocking re-
lationships and order constraints are inherited from the
old stages to the new ones (until further fixes).

We simulate a workload where C1 and C2 keep issuing
1 KB RPC requests. C1’s response size remains 20 KB,
while C2’s response size varies from 10 to 200 KB. Fig-
ure 13(c) shows Tamed-HBase, with the hidden con-
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Figure 13: Tamed-HBase Simulation. Problem and solution for (a) no scheduling; (b) unknown resource usage; (c) hidden
contention; (d) blocking; (e) ordering constraints.

tention on network removed, isolates C1 from C2’s reply
size change; Orig-HBase cannot provide isolation.

4.1.4 Blocking

Problem: In the HBase TAM, three stages are bounded
and have a non-empty blocking set: RPC Handle, Mem
Flush, and Log Sync, suggesting the blocking problem
(which actually occurs in production [5]).

Solution: In Tamed-HBase (with stages restructured to
remove hidden contention), we make the CPU and Log
Sync stage asynchronous to fix the blocking problem.

In Figure 13(d) we simulate a workload where initially
both C1 and C2 issue cached Gets. At time 60s C2 re-
quest uncached data, causing threads to block on I/O.
When C2 switches to an I/O intensive workload, Tamed-
HBase allows C1 to achieve high throughput. In contrast,
Orig-HBase delivers very low throughput even though
the system has enough resources to process C1 requests.

4.1.5 Ordering Constraints

Problem: In the HBase TAM, the Data Stream and Data
Xceive stage have ordering constraints and resource us-
ages, which points to the ordering constraint problem
(the Log Sync stage also has ordering constraint, but does
not incur extensive usage on any resources, so does not
lead to the ordering constraint problem).

Solution: By re-designing the consistency mechanism,
the ordering constraint can be removed. For example,
each client can maintain a separate WAL, thus eliminat-
ing the need to preserve request ordering across clients
and removing the ordering constraint in the Log Append
and I/O stage in Tamed-HBase.

We simulate a workload where both C1 and C2 issue 1
KB Puts, resulting in 1 KB WAL appends. Figure 13(e)
shows that unlike in Orig-HBase, where the throughput
drops sharply as C2 issues more requests, Tamed-HBase,
with the ordering constraint removed, is able to isolate
C2’s effect on C1.

4.1.6 Discussion

HBase does attempt to provide scheduling, in the form
of exporting a scheduling API at the RPC Handle stage;
however, this effort is rather incomplete as it fails to solve
any of the scheduling problems HBase possesses, thus
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Figure 14: Tamed-HBase Thread Architecture. Stages
in grey are replaced by new stages.

suggesting the importance of systematic schedulability
analysis. The TAD of Tamed-HBase is shown in Fig-
ure 14. With the aid of TAM, we are able to identify and
solve all of HBase’s scheduling problems (except for the
hidden contention on CPU, which we reduce to a low
level), and transform HBase to provide schedulability.

4.2 Implementing Schedulable HBase

In this section, we demonstrate that real HBase suffers
from the scheduling problems we identified, and fixing
these problems leads to schedulability. The schedula-
ble HBase implementation gives us experience realizing
schedulability in real systems and validates that the TAM
simulations are excellent predictors of the real world.

To match the simulation environment, we run experi-
ments on an 8-node cluster. Each node has two 8-core
CPUs at 2.40 GHz (plus hyper-threading), 128 GB of
RAM, an 480 GB SSD (to run the system) and two
1.2 TB HDD (to host the HDFS data). The nodes are
connected via 10 Gbps network. One node hosts the
HMaster, NameNode, and Secondary NameNode; the
other seven nodes host RegionServers and DataNodes.
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4.2.1 Schedulability in Real Implementation

In §4.1 we showed via simulation how Tamed-HBase
solves the scheduling problems by changing the thread
architecture. However, realizing these changes in im-
plementation may be too difficult and risky; for exam-
ple, making stages asynchronous requires changing the
RPC programming model of HBase, and removing the
ordering constraint is akin to re-designing the consis-
tency mechanism. Thus in implementation we use var-
ious approaches to alleviate the effects of the schedul-
ing problems and approximate the control achieved by
Tamed-HBase, with minimal changes to the TAM; we
call the resulted implementation Muzzled-HBase (for it
is not completely tamed).

No Scheduling: We add scheduling points to the Data
Xceive and Data Stream stages to fix the no scheduling
problem in HBase. Figure 15(a) illustrates that HBase
suffered the no scheduling problem and as a result, the
throughput of client C1 is significantly harmed when
C2 issues more requests; further, it shows that adding
scheduling points at resource-intensive stages provides
performance isolation in the real-world.

Unknown Resource Usage: For ease of implementa-
tion, in Muzzled-HBase we do not move short-circuited
read processing to Data Xceive, as we did for Tamed-
HBase (§4.1.2). Instead, we keep the TAM unchanged
and use speculative execution to work around this prob-
lem. We track the workload pattern of each client; when
the CPU is idle, we speculatively execute requests from
the CPU-intensive clients. If, during speculation, a re-
quest is found to require I/O, it is aborted and put back
on the queue where it is subjected to normal scheduling.

The unknown resource problem that exists in HBase
is shown in Figure 15(b): when client C2 requests in-
cache data, Orig-HBase is not able to efficiently uti-
lize the CPU. Muzzled-HBase with speculative execu-
tion dramatically improves the throughput of C2 with-
out harming C1, achieving roughly the same effects as
Tamed-HBase, though at the cost of wasted CPU cycles.

Hidden Contention: The complete solution to the hid-
den contention problem requires restructuring the TAM;
this is further complicated by the fact that these stages re-

side in two separate processes (RegionServer and DataN-
ode). For implementation simplicity, in Muzzled-HBase
we only combine the RPC Read and RPC Respond stage,
which are mostly responsible for network resource con-
sumption. We work around the remaining contention by
having a controller monitor resource usage and adjust
client weights at each stage. If stage S1 is excessively
using resource on behalf of client C1, the weight of C1
is reduced across all stages so that fewer C1 requests are
issued to S1, forcing S1 to either use fewer resources or
serve other clients; this algorithm is similar to the one
deployed in Retro [37].

Figure 15(c) verifies that HBase suffered hidden con-
tention across multiple stages, which manifests when one
stage consumes more resources on behalf of a particular
client (i.e., more network for C2). The small difference
between the implementation and simulation results for a
reply size of 64KB occurs because in the implementa-
tion, after transferring 64KB, the RPC Respond thread
switches to another request; we did not simulate this de-
tail. With two network-intensive stages combined and
cross-stage coordination, Muzzled-HBase is able to con-
trol the hidden contention and largely ensures isolation,
though incurs extra communication overheads.

Blocking: We work around the blocking problem in the
RPC Handle stage in HBase without changing the RPC
programming model by treating RPC Handle threads as a
resource and allocating them between clients like CPU or
I/O resources. This approach does not eliminate block-
ing, but prevents one client from occupying all threads
and allows other clients to make progress.

The blocking problem that exists within HBase is il-
lustrated in Figure 15(d). In Orig-HBase, when the work-
load of one client switches from CPU to I/O-intensive
(C2 at time 60), both clients are harmed because not
enough threads are available. Our solution, however,
protects C1 from the workload change of C2. The slight
difference in the implementation and simulation results
occurs because we did not simulate page cache effects.

Ordering Constraint: Directly removing ordering con-
straints from the TAM would require re-designing the
consistency mechanism of HBase. In Muzzled-HBase,
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we work around this by scheduling at RPC Handle,
above the ordering-constrained LOG Append stage.
Note that we already schedule based on RPC Handle
time in this stage to solve the blocking problem. Since
threads block until WAL writes are done, under a sta-
ble workload, blocking time is roughly proportional to
the number of downstream requests, and scheduling RPC
Handle time indirectly schedules the WAL writes before
passing it to LOG Append. However, the number of RPC
Handle threads are typically larger than the I/O paral-
lelism in the system, making this approach less effective;
therefore, we compare two settings of Muzzled-HBase,
with 10 or 30 RPC Handle threads.

HBase’s ordering problem is shown in Figure 15(e);
when C2 writes more data, the throughput of C1 suffers.
Again, this problem is alleviated in Muzzled-HBase by
limiting the number of outstanding requests to the lower
stage to 10 or 30; 30 outstanding requests leads to worse
isolation than 10, as C1 competes with more requests
from C2 after they enter RPC Handle.

Summary: The TAD of Muzzled-HBase is shown in
Figure 16. We can see that the no scheduling prob-
lem and the hidden contention between RPC Read and
RPC Respond are fixed. However, it still exhibits other
problems, including unknown resource usage, block-
ing, ordering constraint, and hidden contention among
other stages; changing the thread architecture of HBase
to fix these problems would be too difficult. Various
approaches are used instead to mitigate the effects of
these problems and achieve approximate scheduling con-
trol, but these approaches also incur overheads (e.g.,
wasted CPU cycles on aborted requests or communica-
tion across stages).

On top of Muzzled-HBase, multiple scheduling poli-
cies are implemented, including FIFO, DRF and prior-
ity scheduling. Client identifiers are propagated across

stages with requests, so each scheduler can map requests
back to the originating client. In our implementation,
a centralized controller collects information and coordi-
nates local scheduler behavior; however, other mecha-
nisms such as distributed coordination are also possible.
For now the scheduler only performs network resource
scheduling on server bandwidth; we anticipate incorpo-
rating global network bandwidth allocation [35] in the
future. The final implementation consists of ∼4800 lines
of code modification to HBase and ∼3000 to HDFS.

The performance of Muzzled-HBase for YCSB [17]
is shown in Figure 1. For Figure 1(a), five clients are
each given a different weight and we use DRF-based lo-
cal scheduler to achieve global weighted fairness. Orig-
HBase was unable to provide weighted fairness across
clients with different priorities, instead delivering ap-
proximately equal throughput to each; Muzzled-HBase,
in contrast, enforces weighted fairness as desired. For
Figure 1(b), priority scheduling is implemented atop
Muzzled-HBase by always reserving a small subset of
resources, including the RPC Handle threads for fore-
ground workloads. With Orig-HBase, the tail latencies of
the foreground workload increase significantly when dif-
ferent types of workloads run in background; Muzzled-
HBase, however, is able to maintain stable latencies de-
spite the interference from the background workloads.

4.2.2 Discussion

Schedulability can be achieved by modifying the prob-
lematic TAM to eliminate scheduling problems. How-
ever, as we can see in the case of HBase, changing the
TAM for existing systems usually involves restructuring
the system, which is labor-intensive. To minimize the
changes to the architecture or lower the engineering ef-
fort, often we are forced to keep the same TAM, but use
various approaches to work around its inherent structural
flaws and alleviate the effects of the scheduling prob-
lems. Unfortunately, these approaches only provide ap-
proximate scheduling control and incur overheads.

We thus encourage developers to take schedulability
into consideration in the early phase of system design;
this is especially important in a cloud-based world where
users demand isolation and quality of service guaran-
tees. By specifying the TAM of a system, potential
scheduling problems can be discovered early, avoid-
ing the painful process of retrofitting scheduling con-
trol later. Of course, schedulability may need to be bal-
anced with other system design goals. For example, the
system architects may decide that having a simple syn-
chronous programming model is more important, and ac-
cept blocking at some stages. However, these kind of
compromises should be made only after carefully weigh-
ing the trade-offs between different goals, not just due to
the obliviousness of their schedulability ramification.



5 Schedulability of Other Systems
Earlier we showed how to transform HBase to provide
schedulability. Other concurrent systems can be ana-
lyzed and tranformed in the same way. Here, we analyze
the schedulability of MongoDB [15], Cassandra [36],
and Riak [33]. Table 2 presents a summary of their
scheduling problems. Some of the problems predicted
by TAM have been experienced in production environ-
ments [4, 5, 6]; these problems and their solutions have
also been verified by simulation results (see [67]).

MongoDB: The TAD of MongoDB is shown in Fig-
ure 3. From its TAM we can identify (a) the unknown
resource usage problem at the Worker stage, which pro-
cesses client requests until completion; (b) the hidden
contention problem in the secondary node; most no-
tably, the Worker and Oplog Writer stages compete for
database locks, causing reads to have unbounded delay
under heavy write load, which is reported in produc-
tion [6]; (c) the blocking problem at the Worker stage.

Lessons: MongoDB resembles the traditional thread-per-
request architecture and thus suffers unknown resource
usage, which stems from the complex execution path
within one thread. The complex path and resource pat-
terns within the Worker stage makes it challenging to
work around this problem. We expect that altering Mon-
goDB to provide schedulability will be difficult and may
require substantial structural changes.

Cassandra: The TAD of Cassandra is shown in Figure 4.
From its TAM we identify (a) unknown resource usage
in the Read, Mutation, View-Mutation stages since those
stages may perform I/O; (b) hidden contention between
many stages for CPU, I/O and network; (c) blocking in
the C-ReqHandle stage.

Lessons: Cassandra closely follows the standard SEDA
architecture, where all activities are managed in con-
trolled stages; unfortunately, schedulability does not au-
tomatically follow. Too many stages with the same re-
source pattern leads to hidden contention and the “in-
ability to balance reads/writes/compaction/flushing”, as
reported by developers [4]; likewise, CPU- and I/O-
intensive operations in the same stage leads to unknown
resource usage. More thoughts on how to divide stages
are needed to build a highly schedulable system. Instead
of dividing stages based on functionality, we recommend
dividing stages based on resource usage patterns to give
more resource information to the scheduler and reduce
hidden competition. Cassandra is currently moving to-
ward this direction: developers have proposed combin-
ing different processing stages into a single non-blocking
stage, and moving I/O to a dedicated thread pool [4].

Riak: The TAD of Riak is shown in Figure 5. From
its TAM we can identify (a) the no scheduling problem
at the Req In-Out and Req Process stages; (b) unknown
resource usage in the Process and Cmd Handle stages;

N U C B O

HBase [24] ✖ ✖ ✖ ✖ ✖

MongoDB [15] ✖ ✖ ✖

Cassandra [36] ✖ ✖ ✖

Riak [33] ✖ ✖ ✖

Table 2: Scheduling Problems Identified From TAM.
✖:have the corresponding problem.

(c) hidden contention across all stages.

Lessons: Riak also closely follows the SEDA architec-
ture. Riak relies heavily on light-weighted processes and
transparent IPC provided by the Erlang virtual machine,
which makes resource management implicit [22]. Creat-
ing a new Erlang process may have low overhead; cre-
ating them on-demand leads to the no scheduling prob-
lem. Similarly, with transparent IPC, many stages may
consume network bandwidth without knowing it, caus-
ing unknown resource usage and hidden contention. To
make Riak schedulable, one must either explicitly man-
age the above mechanisms, or change Erlang VM to al-
low scheduling policies to be passed from Riak to the
VM, which manges the resources.

6 Model Limitations
We have shown that TAM is a useful tool for schedu-
lability analysis and delivers promising results. In this
section we discuss some of its limitations and how we
can extend TAM to further help schedulability analysis.

First, current TAM is best suited for describing SEDA-
like systems, where each thread belongs to a specific
stage. However, in other concurrency models, threads
and stages may not be statically bound. For example, in
a run-to-completion model, a single thread may perform
multiple tasks until a request is completed, and be sched-
uled (possibly by yielding) before each task. In this case,
a stage would be better defined as the execution between
scheduling points, allowing one thread to cross multiple
stages. We leave extending TAM to other concurrency
models to future work.

Second, various workarounds can be used to mitigate
the effects of scheduling problems; most of them involve
coordination among stages or predicting workload char-
acteristics. Encoding these mechanisms into TAM, pos-
sibly in the form of information flow between stages,
would allow it to capture the scheduling effects of in-
direct workarounds.

Finally, even though different systems might possess
the same scheduling problems, the difficulty of fixing
their problems could vary vastly based on the system’s
internal structure and code base. Fixing the unknown
resource problem directly in HBase requires only sepa-
rating the short-circuited read processing from the RPC
Read stage; fixing this problem in MongoDB, however,
requires a major re-structuring of the Worker stage to ac-
count for its complex execution paths. TAM is effective



in identifying the problems, but does not give many in-
dications on how difficult solving these problems would
be; systematically reasoning about such difficulties is an-
other interesting direction to extend TAM.

7 Related Work
Scheduling as a general problem has been extensively
studied in computer science, manufacturing, operational
research, and many other fields [34, 52, 53, 60]. Our
work differs from the previous ones as we separate
the scheduling problem in distributed storage systems
into two sub-problems: the meta schedulability prob-
lem and the specific scheduling problem. For a general-
purpose storage system that is designed to work for var-
ious workloads and meet various peformance measures,
the schedulability problem is answered at the system de-
sign/build phase, and concerns whether the system of-
fers proper scheduling support: are schedulers placed at
the right points in the system and given necessary infor-
mation and control? Once proper scheduling support is
built in (i.e., the system provides schedulability), the user
can solve his/her own specific scheduling problem: given
her workload, which scheduling policy should she imple-
ment on top of the scheduling support provided by the
system to realize a particular performance goal?

Such separation distinguishes the TAM approach from
other formalization of the scheduling problems, such as
queuing networks [13, 32, 41, 59] or stochastic Petri
nets [18, 46, 60, 70, 71], which focus on solving specific
scheduling problems. For example, traditional queuing
network models encode specific scheduling plan infor-
mation and workload characteristics, and output perfor-
mance measures [43, 50, 59]. One could view TAM as a
queuing network skeleton, stripped of all information but
that available at system design time; our schedulability
analysis aims to derive properties from the limited infor-
mation encoded in TAM that would hold after the TAM
skeleton is augmented with various workload/queing dis-
cipline information to form a complete queuing network.
Some techniques developed in the queuing theory con-
text may be borrowed to prove certain properties of the
TAM [31, 65]; we leave that as future work.

From a more system-oriented perspective, previous
work has focused on proposing scheduling plans that
achieve various specific goals [47, 54, 55, 57, 63, 68].
For example, Pisces [55] discusses how to allocate lo-
cal weights to match client demands and achieve global
fairness; Cake [63] proposes a feedback loop to adjust
local scheduler behavior to provide latency guarantees;
Retro [37] supports different scheduling policies, but by
translating these policies into rate limits at local sched-
ulers. All the above works need proper scheduling sup-
port to enforce their plans. As current systems usually
lack such support (§5), people indeed encouter the five
categories of problems we have identified during the re-

alization of their scheduling plans [38, 54, 63, 68]: Mace
et al. found that unknown resource usage and blocking
prevented them from achieving fairness [38]; Cake [63]
had to add scheduling points to HDFS to enforce SLOs.
However, in these systems the encountered problems are
solved in an ad hoc manner; the solutions are often buried
in implementation details or not discussed at all. A gen-
eral framework that addresses the schedulability problem
explicitly and systematically is thus strongly called for.

Monotasks [44] advocates an architecture in which
jobs are broken into units of work that each use a single
resource, and each resource is managed with a dedicated
scheduler. From the TAM perspective, such an architec-
ture eliminates the unknown resource usage and the hid-
den contention problem, allowing the system to provide
better schedulability. The authors indeed observe that
this architecture “allows MonoSpark to avoid resource
contention and under utilization”, as predicted by TAM.

Our work is also similar to SEDA [64] and Flash [45]
in the sense that it studies and modifies the thread struc-
ture and interactions to improve system performance.
Like our work, Capriccio [61] automatically deduces a
flow graph and places scheduling points at the graph
nodes for thread scheduling.

8 Conclusions
With sharing being one of the key aspects of modern
scalable storage systems, correct and flexible schedul-
ing becomes a central goal in system design. To en-
sure scheduling works as desired, schedulability analysis
should be included as an integrated part of the concur-
rency architecture. The thread architecture model pro-
vides a systematic way of performing such analysis, thus
turning the art of enabling effective scheduling into a
science that is easily accessible and automatable. The
software for schedulability analysis (e.g., TADalyzer and
the TAM-based simulation framework) is available at
http://research.cs.wisc.edu/adsl/Software/TAM.
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