
Designing a True Direct-Access File System with DevFS
Sudarsun Kannan∗, Andrea Arpaci-Dusseau+, Remzi Arpaci-Dusseau+,

Yuangang Wang∗∗, Jun Xu∗∗, Gopinath Palani∗∗
Rutgers University∗, Univ. of Wisconsin-Madison+, Huawei Technologies∗∗

Abstract
We present DevFS, a direct-access file system embedded com-
pletely within a storage device. DevFS provides direct, con-
current access without compromising file system integrity,
crash consistency, and security. A novel reverse-caching
mechanism enables the usage of host memory for inactive ob-
jects, thus reducing memory load upon the device. Evaluation
of an emulated DevFS prototype shows more than 2x higher
I/O throughput with direct access and up to a 5x reduction in
device RAM utilization.

1. Introduction
The world of storage, after decades of focus on hard-drive
technologies are finally opening up towards a new era of fast
solid-state storage devices. Flash-based SSDs have become
standard technology, forming a new performance tier in the
modern datacenter. New, faster flash memory technologies
such as NVMe and storage class memory (SCM) such as In-
tel’s 3D XPoint promise to revolutionize how we access and
store persistent data. State-of-the-art flash memory technolo-
gies have reduced storage-access latency to tens of microsec-
onds compared to milliseconds in the hard-drive era [1, 2]. To
fully realize the potential, a careful reconsideration of storage
stack is critical. The traditional storage stack requires appli-
cations to trap into the OS and interact with multiple software
layers such as the in-memory buffer cache, file system, and de-
vice drivers. While spending millions of cycles is not a signif-
icant problem for slow storage devices, even simply trapping
into OS and returning from a system call substantially ampli-
fies I/O access latencies preventing applications from exploit-
ing storage hardware benefits.

To reduce OS-level overheads and provide direct stor-
age access for applications, prior work such as Arrakis [2],
Moneta-D [3], and others split the file system into user-level
and kernel-level components. The user-level component han-
dles all data-plane operations (thus bypassing the OS), and
the trusted kernel is used only for control-plane operations
such as permission checking. However, prior approaches fail
to deliver several important file-system properties. First, us-
ing untrusted user-level libraries to maintain file system meta-
data shared across multiple applications can seriously com-
promise file-system integrity and crash consistency. Second,
unlike user-level networking, in file systems, data-plane op-
erations (e.g., read or write to a file) are closely intertwined
with control-plane operations (e.g., block allocation); bypass-
ing the OS during data-plane operations can compromise the
security guarantees of a file system. Third, most of these ap-
proaches require OS support when sharing data across appli-
cations even for data-plane operations.

To address these limitations, and realize a true user-level
direct-access file system, we propose DevFS, a device-level
file system inside the storage hardware. The DevFS design
uses the compute capability and device-level RAM to provide
applications with a high-performance direct-access file system
that does not compromise integrity, concurrency, crash consis-
tency, or security. With DevFS, applications use a traditional
POSIX interface without trapping into the OS for control-
plane and data-plane operations. In addition to providing di-
rect storage access, a file system inside the storage hardware
provides direct visibility to hardware features such as device-
level capacitance and support for processing data from mul-

tiple I/O queues. With capacitance, DevFS can safely com-
mit data even after a system crash and also reduce file system
overhead for supporting crash consistency. With knowledge
of multiple I/O queues, DevFS can increase file system con-
currency by providing each file with its own I/O queue and
journal.

A file system inside device hardware also introduces new
challenges. First, even modern SSDs have limited RAM ca-
pacity due to cost ($/GB) and power constraints. In DevFS,
we address this dilemma by introducing reverse caching, an
approach that aggressively moves inactive file system data
structures off the device to the host memory. Second, a file
system inside a device is a separate runtime and lacks visibil-
ity to OS state (such as process credentials) required for se-
cured file access. To overcome this limitation, we extend the
OS to coordinate with DevFS: the OS performs down-calls
and shares process-level credentials without impacting direct
storage access for applications.

To the best of our knowledge, DevFS is the first design to
explore the benefits and implications of a file system inside the
device to provide direct user-level access to applications. Due
to a lack of real hardware, we implement and emulate DevFS
at the device-driver level. Evaluation of benchmarks on the
emulated DevFS prototype with direct storage access shows
more than 2x higher write and 1.6x higher read throughput
as compared to a kernel-level file system. DevFS memory-
reduction techniques reduce file system memory usage by
up to 5x. Evaluation of a real-world application, Google’s
Snappy compression, shows 22% higher throughput. The full
version of this abstract appeared at USENIX FAST 2018 [4].

2. Motivation
We believe that a holy grail of modern storage research is to
explore software-hardware designs that can provide applica-
tions direct access to storage without OS intervention and but
without compromising fundamental storage properties, such
as integrity, crash-consistency, security, and sharing. We will
briefly outline the challenges and attempts by prior research
to reduce the OS cost for storage access.
Storage software overheads and Prior work. Traditional
OS-level file systems placed inside the OS (a trusted comput-
ing base) act as a central entity for preserving fundamental
storage properties such as data and metadata integrity (cor-
rectness), crash-consistency (correctness after a failure), se-
curity (verifying every I/O operation), and sharing of file sys-
tem across one or more applications. However, with the ad-
vent of ultra-fast storage devices such as NVMe and NVM,
the focus has been to eliminate software layers and reduce the
latency of direct-access to storage. Even simply trapping into
the OS file system consumes 1-4µs which are unacceptable
for modern storage with 6-10µs hardware latency. Inspired
by prior work on user-level networking and OS bypass, prior
approaches have attempted to move file system to untrusted
userspace bypassing both control plane (e.g., security check)
and data plane (e.g., read and write), but compromise one or
more critical properties; this is mainly because, in file sys-
tems, the control plane and data plane are closely tied together
(security check for every I/O). For example, Arrakis [2] pro-
vides direct access and must trap into OS whenever applica-
tions are sharing data. Moneta-D [3] virtualizes I/O interface
(creating a per-application I/O channel) instead of storage and



Jf

data	blocks

Global	file	system	structures
DevFS

Open(F1,	flags,	PERM)		

Per-file	structures

OS	allocated		
command	buffer

Submission		
queue	(SQ)		

In-memory	
journal

journal		

Fd

Application

User	FS	lib
Cmd:	ops	=DEVFS_Open,		
																				perm=PERM,	path=F1

2 Write(fd,	buff,	4k,	off=1)

Cmd:	payload=buff,		ops	=WRITE,			
										UID=	1,	off	=	1,		size=	4k

Controller	(CPU)

On-disk	file	metadata

In-memory	metadata

User	space

In-memory	filemap	tree
/root

/root/dir1/root/proc

filemap:	
						*dentry	
						*inode;	
						*queues	
				*mem_journal	
					*disk_journal	

1

Super	
block Bitmaps Inodes Dentries Completion	

queue	(SQ)		

Super	
block Bitmaps Inodes Dentries

Figure 1: DevFS high-level design. The file system data struc-
ture is partitioned into global and per-file structures. The per-file structures
are created during file setup. DevFS metadata structures are similar to other
kernel-level file system.

offloads the permission check to hardware using a user-space
library; however, a malicious or buggy library could avoid
this step. Prior microkernel-like approaches could solve these
problems, but do not provide direct-access because an appli-
cation must context switch into a third party server.

3. Case for DevFS
In the pursuit of providing direct storage access and address
the limitations of prior work, we design DevFS, a true direct-
access file system, that embeds the file system inside the de-
vice. Applications can directly access DevFS using a stan-
dard POSIX interface. DevFS satisfies file system integrity,
concurrency, crash consistency, and security guarantees of a
kernel-level file system. DevFS also supports a traditional
file-system hierarchy such as files and directories, and their
related functionality instead of primitive read and write oper-
ations. DevFS maintains file system integrity and crash con-
sistency because it is trusted code that acts as a central entity.
With minimal support and coordination with the OS, DevFS
also enforces permission checks for common-case data-plane
operations without requiring applications to trap into the ker-
nel. To overcome the prototyping challenges, such as lack of
commercially available programmable storage, DevFS is built
as a device driver with dedicated wimpy (throttled) proces-
sors and independently managed memory. To avoid applica-
tion to OS trapping and context switches, the DevFS proto-
type provides a userspace library built on the top of user-level
NVMe driver converting application’s POSIX calls to a set
of extended NVMe commands and executing them using the
device-level file system. Figure 1 shows the high-level design
of DevFS. We next discuss key design principles.
Principle 1: Disentangle file system data structures to em-
brace hardware-level parallelism. Modern storage hard-
ware controllers contain up to four CPUs, and this amount is
expected to increase. Also, storage hardware such as NVMe
also supports up to 64K hardware-level I/0 queues to increase
I/O parallelism driven by a PCIe-based interface that can sup-
port up to 8-16 GB/s maximum throughput. To utilize the
hardware-level concurrency of multiple CPU controllers and
I/O queues from which a device can process I/O requests, De-
vFS assigns each fundamental data unit (i.e., a file) to an inde-
pendent hardware resource. DevFS partitions file system into
global and per-file structures (see Figure 1) and assigns per-
file structures such as I/O queue and in-memory journal to a
file to enable concurrent I/O across different files.
Principle 2: Guarantee file system integrity. To maintain
integrity, file system metadata is always updated by the trusted
DevFS. Unlike user-level file systems, there is no concern
about the legitimacy of metadata content beyond file-system
bugs. When a user-level library issues an I/O command, the
command is added to a per-file queue, DevFS creates a cor-
responding metadata log record (e.g., for a file append com-

0

4

8

12

16

1KB 4KB 16KB

10
0K

 O
ps

/S
ec

on
d

(a) Random Write

NOVA

DevFS

0

10

20

30

40

1KB 4KB 16KB
(b) Random Read

Figure 2: Write and Read throughput. Results for filebench
random write and read micro-benchmark. X-axis varies the write size, and the
file size is kept constant to 32 GB. Results show single thread performance
compared to kernel-level NOVA file system.

mand, the bitmap and inode block), and adds the log record to
a per-file in-memory journal using a transaction. When De-
vFS commits updates from an in-memory I/O queue to stor-
age, it first writes the data followed by the metadata. Updates
to global data structures (such as bitmaps) are serialized using
locks. The trusted device-level file system also supports file
sharing across processes without trapping into the kernel [4],
and serializes shared updates using a per-file filemap lock
and time stamp counters (TSC). Applications requiring strict
data ordering for shared files could implement custom user-
level synchronization at application-level. As shown in Fig-
ure 2, DevFS on random access benchmarks shows more than
2x higher throughput compared to the state-of-the-art kernel-
level filesystem called NOVA (more results in [4]).
Principle 3: Simplify crash consistency with storage hard-
ware capacitance. Modern storage hardware internally con-
tain power-loss-protection capacitors to flush device memory
state to storage. Hence, unlike traditional OS-level file sys-
tems that rely on expensive journaling or log-structured (i.e.,
copy-on-write) mechanisms for crash consistency, DevFS ex-
ploits the power-loss-protection capacitors in the hardware to
safely update data and metadata in-place without compromis-
ing crash consistency.
Principle 4: Reverse caching to reduce the device memory
footprint. Unlike a kernel-level file system, DevFS cannot
use copious amounts of RAM for its data and metadata struc-
tures. To reduce memory usage, in DevFS, only in-memory
data structures (inodes, dentries, per-file structures) of active
files are kept in device memory, caching inactive data struc-
tures to host memory, which we call as reverse caching. The
inactive structures include files that were closed but their in-
memory inodes cannot be deleted. We observe up to 5x re-
duction in device memory usage, and mainly from reverse
caching inactive inodes.
Principle 5: Enable minimal OS-level state sharing for
permission management. DevFS is a separate runtime
and cannot access OS-level data structures, DevFS maintains
a credential table in device-level DRAM for each host CPU;
only the OS (a trusted layer) can share and update the table
with credential information of a process currently scheduled
to a CPU. Before processing a request, DevFS performs a sim-
ple table lookup to compare the credentials of a process cur-
rently running on the hosh CPU with the corresponding in-
ode’s permissions. As a result of state sharing between the
OS and DevFS, our design can perform permission checking
but without trapping into the kernel.
References
[1] J. Yang, D. B. Minturn, and F. Hady, “When Poll is Better Than

Interrupt,” FAST’12.
[2] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,

T. Anderson, and T. Roscoe, “Arrakis: The Operating System is the
Control Plane,” OSDI’14.

[3] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and
S. Swanson, “Providing Safe, User Space Access to Fast, Solid State
Disks,” SIGARCH Comput. Archit. News, vol. 40, Mar. 2012.

[4] S. Kannan, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, Y. Wang,
J. Xu, and G. Palani, “Designing a true direct-access file system with
devfs,” in FAST 2018.


