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Benchmarks are crucial to assessing performance of file and storage systems; by providing a com-

mon measuring stick among differing systems, comparisons can be made, and new techniques

deemed better or worse than existing ones. Unfortunately, file and storage systems are currently

difficult to benchmark; there is little consensus regardingthe workloads that matter and insufficient

infrastructure to make it easy to run interesting workloads. This dissertation attempts to simplify the

task of file and storage system benchmarking by focusing on three of its important principles– de-

veloping an understanding of and creating solutions forrepresentative, reproducibleandpractical

benchmarking state and benchmark workloads.

We first develop an understanding of file-system metadata that comprises much of the file-

system state by performing the first large-scale longitudinal study of file system snapshots. We then

develop means to recreate representative and reproduciblefile-system state for benchmarking by

building Impressions, a framework to generate statistically accurate file-system images with realis-

tic metadata and content. We develop a systemCompressions, that makes it practical to run large,

complex benchmarks on storage systems with modest capacities, while also being faster in total

runtime if desired. We also develop an understanding towards creating representative, reproducible

and practical synthetic benchmark workloads, and describeour first steps in creating “realistic syn-

thetic” benchmarks by building a tool calledCodeMRI.

Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau





xiv

ABSTRACT

Benchmarks are crucial to assessing performance of file and storage systems; by pro-

viding a common measuring stick among differing systems, comparisons can be made,

and new techniques deemed better or worse than existing ones. Unfortunately, file and

storage systems are currently difficult to benchmark; thereis little consensus regarding

the workloads that matter and insufficient infrastructure to make it easy to run interesting

workloads. This dissertation attempts to simplify the taskof file and storage system bench-

marking by focusing on all three of its important principles– developing an understanding

of and creating solutions forrepresentative, reproducibleandpracticalbenchmarking state

and benchmark workloads.

We develop an understanding of file-system metadata by performing a large-scale lon-

gitudinal study of file system snapshots representative of corporate PC systems. For five

years from 2000 to 2004, we collected annual snapshots of file-system metadata from over

60,000 Windows PC file systems in a large corporation. In our study, we use these snap-

shots to study temporal changes in file size, file age, file-type frequency, directory size,

namespace structure, file-system population, storage capacity and consumption, and degree

of file modification. We present a generative model that explains the namespace structure

and the distribution of directory sizes. We find significant temporal trends relating to the

popularity of certain file types, the origin of file content, the way the namespace is used,

and the degree of variation among file systems, as well as morepedestrian changes in sizes

and capacities.
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We develop means to recreaterepresentativeand reproduciblefile-system state for

benchmarking. The performance of file systems and related software depends on char-

acteristics of underlying file-system image (i.e., file-system metadata and file contents).

Unfortunately, rather than benchmarking with realistic file-system images, most system

designers and evaluators rely onad hocassumptions and (often inaccurate) rules of thumb.

To remedy these problems, we developImpressions, a framework to generate statistically

accurate file-system images with realistic metadata and content; we present its design, im-

plementation and evaluation. Impressions is flexible, supporting user-specified constraints

on various file-system parameters using a number of statistical techniques to generate con-

sistent images. We find that Impressions not only accuratelyquantifies benchmark perfor-

mance, but also helps uncover application policies and potential bugs, making it a useful

for system developers and users alike.

We develop a system that makes itpractical to run large, complex benchmarks on

storage systems with modest capacities. Typically, benchmarking with such benchmarks

on large disks is a frequent source of frustration for file-system evaluators; the scale alone

acts as a strong deterrent against using larger albeit realistic benchmarks. To address this

problem, we have developed Compressions, a benchmarking system that makes it practical

to run benchmarks that were otherwise infeasible on a given system, while also being faster

in total runtime. Compressions creates a “compressed” version of the original file-system

image on disk by omitting all file data and laying out metadatamore efficiently; we present

the design, implementation and evaluation of Compressions.

We develop an understanding towards creatingrepresentative, reproducibleandprac-

tical synthetic benchmark workloads. Synthetic benchmarks are accepted and widely used

as substitutes for more realistic and complex workloads in file systems research, however,

they are largely based on the benchmark writer’s interpretation of the real workload, and

how it exercises the system API. It is our hypothesis that if two workloads execute roughly
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the same set of function calls within the file system, that they will be roughly equivalent to

one another; based on this hypothesis, we describe our first steps in creating “realistic syn-

thetic” benchmarks by building a tool called CodeMRI. CodeMRI leverages file-system

domain knowledge and a small amount of system profiling in order to better understand

how the benchmark is stressing the system and to deconstructits workload.
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Chapter 1

Introduction

Everyone cares about data, from scientists running simulations to families storing pho-

tos and tax returns. Thus, the file and storage systems that store and retrieve our data

play an essential role in our computer systems. To handle thedifferent needs of various

user communities, many different file and storage systems have been developed, from the

Google File System [50], IBM GPFS [122] and NetApp Data ONTAPstorage system [45]

in the enterprise segment, to local file systems such as NTFS [135] and Linux ext3 [150].

Modern file systems are provisioned with features going wellbeyond their primary ob-

jective of just reading and writing to storage media. For example, scalability has been a

focus for file system designers to support both large counts of files and directories, and

large file sizes [111, 141]. Many have investigated ways to build useful search function-

ality within and outside the file system, making more sophisticated use of dynamic file

system usage information [52, 53, 126, 137]. Providing content management for shar-

ing digital media across administrative domains has been explored in the context of file

systems [48, 152]. Finally, reliability schemes to handle media failures both in desk-

top [106, 154] and enterprise systems [20] have also been developed. With this growth

in file system functionality and correspondingly in complexity, the techniques to effec-

tively evaluate the performance of file and storage systems have become increasingly more

relevant.
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Unfortunately, file and storage systems are currently difficult to benchmark [145]. There

is little consensus regarding the workloads that matter andinsufficient infrastructure to

make it easy to run interesting workloads. Years of researchon the design and implemen-

tation of file systems, and on applications using these file systems, has led to an abundance

of innovations; however, approaches for benchmarking still lag behind. Benchmark per-

formance measurements are often uncorrelated with representative real-world settings and

the results are hard to compare across systems due to lack of standardization and repro-

ducibility. This general state of disarray in file-system benchmarking complicates matters

for system designers, evaluators, and users alike.

The objective of this dissertation is to simplify the task ofbenchmarking by developing

tools and techniques that provide a thorough and easy to use experience for file and stor-

age system benchmarking. To do so, we focus on three important principles that systems

benchmarking should adhere to, and is currently lacking in being:

• Representative:of target usage scenario and real-world conditions

• Reproducible: to provide a common yardstick and enable fair comparison

• Practical: to encourage community-wide adoption and standardization

In order to meet the expectations defined by these principles, we have set ourselves the

following goals: first, to examine the characteristics and develop an understanding of file

system metadata that forms much of the basis for representative file system state; second, to

provide means to adopt and accurately reproduce the empirical information about file sys-

tem metadata for experimental usage by creating representative, reproducible file-system

benchmarking state; third, to make it practical to run complex, real-world benchmarks

on realistic storage infrastructure; and finally, also develop an understanding of workloads

used for file system benchmarking and provide means to createrepresentative, reproducible

and practical synthetic benchmark workloads.
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We address the goals of this dissertation as follows. First,we analyze the transverse

and longitudinal properties of file system metadata by conducting a large-scale study of

file-system contents [8, 9]. Second, we develop a statistical framework that allows one

to incorporate realistic characteristics of file system metadata and file data, and reproduce

them for benchmarking [6]. Third, we develop a practical benchmarking system that al-

lows one to run large, complex workloads with relatively modest storage infrastructure [5].

Finally, we also outline a methodology to create synthetic benchmarks that are functionally

equivalent to and representative of real workloads [3, 4].

By freely contributing our data and software to the community, we encourage file-

system developers to use them as standardized resources forbenchmarking and experimen-

tation. The ensuing sections explain in greater detail eachof these contributions of the

dissertation.

1.1 Representative and Reproducible File-System Benchmarking State

One of the primary objectives of benchmarking is to be able toevaluate the perfor-

mance of a system under operating conditions that closely reflect the real-world scenario in

which the system-under-test is going to be deployed. Another important objective is to al-

low comparison among competing systems; for a fair comparison, the performance of two

or more systems should be measuredunder the same operating conditions. By providing

a common measuring stick among differing systems, benchmarks can quantifiably distin-

guish performance, and allow new techniques to be deemed better or worse than existing

ones.

Thus, any benchmarking experiment must be preceded by an initialization phase to

recreate the necessary state representative of the target usage scenario. The state should

itself be reproducible, so as to enable different developers to ensure they are all comparing

performance of a system under the same conditions.
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For file and storage systems, generating representative andreproducible state for bench-

marking requires first an understanding of the file system state which primarily consists

of the file-system metadata, and second, means to create an initial file-system image (or

benchmarking state) that is both representative of the metadata properties and reproducible

for experimentation. Throughout this document, we refer toa benchmarkas the combina-

tion of abenchmark workloadand thebenchmark state.

1.1.1 Characteristics of File-System Metadata

File systems store user data and its associatedmetadataor bookkeeping information

on a storage device such as a hard disk. Metadata is stored in an internal representation

to allow operations such as creation, look up, insertion anddeletion of user data. Theon-

disk image of the file system contains this information in a persistent data structure; for

example, NTFS [135] and ReiserFS [111] use balanced B+ trees, Apple’s HFS [15] and

Reiser4 [79] use B∗ trees, while Ext3 [150] uses statically reserved block groups to store

metadata, similar to cylinder groups in the Berkeley FFS [83]. Operations performed on

metadata heavily influence the overall performance of a file system; metadata intensive

benchmarks are often considered a stress test for any file system.

Detailed knowledge of file-system metadata is thus essential for designing file and stor-

age systems, and in our case, for creating representative benchmark state. Real world infor-

mation about the structure, organization and contents of files and directories stored in file

systems is crucial both to make informed design decisions and to accurately evaluate these

systems. However useful, real world data is hard to collect and analyze, forcing storage

system designers to rely on anecdotal information and oftenoutdated rules of thumb.

In the past, there have been few empirical studies of file-system metadata [67, 94, 120,

128], and even fewer that involved any sizeable metadata collection [41]. In this disserta-

tion, we present the first large-scale longitudinal study offile-system metadata. To perform
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this study, every year from 2000 to 2004, we collected snapshots of metadata from over

ten thousand file systems on Windows desktop computers at Microsoft Corporation. Our

resulting data sets contain metadata from 63,398 distinct file systems, 6457 of which pro-

vided snapshots in multiple years. These systems contain 4 billion files totaling 700 TB of

file data, allowing us to understand various characteristics of file-system metadata and how

it evolves over a multi-year time period.

In particular, we studied temporal changes in the size, age,and type frequency of files,

the size of directories, the structure of the file-system namespace, and various characteris-

tics of file systems, including file and directory population, storage capacity, storage con-

sumption, and degree of file modification. Our measurements revealed several interesting

properties of file systems and offered useful lessons. In this study we find significant tem-

poral trends relating to the popularity of certain file types, the origin of file content, the

way the namespace is used, and the degree of variation among file systems, as well as more

pedestrian changes in sizes and capacities.

One interesting discovery is the emergence of a second mode in the Gigabyte range in

the distribution of bytes by containing file size. A few largefiles, mainly video, database,

and blob files, are the dominant contributors to this second mode and are responsible for an

increasing fraction of the total file-system usage. The increasingly large fraction of content

in large files suggests that variable block sizes, as supported by ZFS [24] and NTFS [136],

are becoming increasingly important.

Another interesting finding is our observation on file systemfullness changes. Over

the course of our five-year study, despite a vast increase in available file-system capacity

(roughly 500% increase in the arithmetic mean of available capacity), aggregate file system

fullness remained remarkably stable at 41% over all years, and mean fullness dropped only

by 4%. Storage manufacturers can thus keep focusing effort on increasing capacity, because

customers will continue to place great value on capacity forthe foreseeable future.
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We have made our dataset available to the community via the Storage Networking In-

dustry Association’s IOTA repository. To obtain it, visit the URLhttp://iotta.snia.

org/traces/tracesStaticSnapshot/. We hope this will help others use this dataset in

their own endeavors and also encourage more such studies to be conducted in the future.

1.1.2 Generating File-System Benchmarking State

Armed with the information on file-system metadata, the second requirement in order

to generate file-system state for benchmarking is to developmeans to create an initial file-

system image that is both representative of the metadata properties and reproducible for

experimentation.

In order for a benchmark execution to be comprehensible, thesystem under test needs

to be brought to a known state before running the benchmark workload. Typically, this

initialization consists of a warm-up phase wherein the benchmark workload is run on the

system for some time prior to the actual measurement phase. An example of such a warm-

up phase is warming the caches prior to evaluating performance of memory organization

in processors [63], database systems [88] or file systems. Previous work has noted that the

contents of the cache during a test have significant impact onthe performance results [25,

38, 63]. Different systems may have additional requirements for the initialization phase,

but across systems, state is important when doing performance evaluation.

Several factors contribute to the file-system state, important amongst them are thein-

memorystate (contents of the file-system buffer cache), theon-diskstate (disk layout and

fragmentation) and the characteristics of thefile-system image(files and directories belong-

ing to the namespace and file contents).

Cache warm-up takes care of the in-memory state of file systems. Another important

factor is the on-disk state of the file system, or the degree offragmentation; it is a measure

of how the disk blocks belonging to the file system are laid outon disk. Previous work has



7

shown that fragmentation can adversely affect performanceof a file system [132]. Thus,

prior to benchmarking, a file system should undergoagingby replaying a workload similar

to that experienced by a real file system over a period of time [132].

In the case of file and storage system benchmarking, the requirement for reproducibility

translates to the need for methodically recreating file-system state prior to every benchmark

run. This would include warming up the caches, inducing appropriate fragmentation for

on-disk layout as mentioned before, and creating afile-system imagerepresentative of the

target environment.

Surprisingly, the characteristics of the file-system image, a key contributor to file-

system state have been largely ignored in creating benchmarking state; the properties of

file-system metadata and file content can have a significant impact on the performance of

a system. Properties of file-system metadata includes information on how directories are

organized in the file-system namespace, how files are organized into directories, and the

distributions for various file attributes such as size, depth, and extension type.

Much of this information can be obtained in limited forms from various empirical stud-

ies of file-system contents. Such studies focus on measuringand modeling different aspects

of file-system metadata by collecting snapshots of file-system images from real machines.

Collecting and analyzing this data provides useful information on how file systems are used

in real operating conditions.

However, no clear methodology exists to incorporate this knowledge in accurately and

reproducibly creating file-system images, failing which, more often than not, benchmark-

ing resorts to arbitrary approaches for creating file-system state. The lack of standardization

and reproducibility of these choices makes it almost impossible to compare results, sacri-

ficing the utility of the benchmark itself. To address this problem, we need a systematic

approach to creating benchmarking state for file systems, with particular emphasis given to

creating realistic and reproducible file-system images.
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With the goal of simplifying the process of creating benchmark state, we developIm-

pressions, a framework to generate statistically accurate file-system images with realistic

file-system metadata and file content. Impressions is flexible in accommodating a number

of user-specified inputs and supports additional constraints on various file-system parame-

ters, using a number of statistical techniques to generate consistent file-system images.

A casual user looking to create a representative file-systemimage without worrying

about selecting parameters can simply run Impressions withits default settings; Impres-

sions will use pre-specified distributions from file-systemstudies to create a representative

image. A more sophisticated user has the power to individually control the knobs for a

comprehensive set of file-system parameters; Impressions will carefully work out the sta-

tistical details to produce a consistent and accurate image. In both cases, Impressions en-

sures complete reproducibility of the image, by reporting the used distributions, parameter

values, and seeds for random number generators.

In our experiences with Impressions, we found it effective and easy to use for bench-

marking file systems and related software. In a case study of popular desktop search tools

in Linux, Beagle and Google Desktop, Impressions allowed usto accurately quantify and

compare the overhead in building the initial search index for various indexing schemes and

file-system images.

We believe Impressions will prove to be a useful tool for benchmarking and we have

made it publicly available; to obtain Impressions, visit the URL http://www.cs.wisc.

edu/adsl/Software/Impressions/.

1.2 Practical Benchmarking for Large, Real Workloads

So far we have discussed two important challenges in file-system benchmarking: recre-

ating benchmarking infrastructure representative of real-world conditions, and ensuring
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reproducibility of the benchmarking state to allow fair comparison. The time and effort re-

quired to ensure that the above conditions are met often discourages developers from using

benchmarks that matter, settling instead for the ones that are easy to set up and use. These

deficiencies in benchmarking point to a thematic problem – when it comes to actual usage,

ease of use and practicality often overshadow realism and accuracy.

In practice, realistic benchmarks (and realistic configurations of such benchmarks) tend

to be much larger and more complex to set up than their trivialcounterparts. File system

traces (e.g., from HP Labs [113]) are good examples of such workloads, often being large

and unwieldy. In many cases the evaluator has access to only amodest infrastructure,

making it harder still to employ large, real workloads.

Two trends further exacerbate this difficulty in file and storage benchmarking. First,

storage capacities have seen a tremendous increase in the past few years; Terabyte-sized

disks are now easily available for desktop computers; enterprise systems are now frequently

dealing with Petabyte-scale storage. Second, popular applications are taking increasingly

longer to execute. Examples of such applications include file-system integrity checkers like

fsck and desktop search indexing, each taking anywhere from several hours to a few days

to run on a Terabyte-sized partition.

Benchmarking with such applications on large partitions isa frequent source of frustra-

tion for file-system evaluators; the scale alone acts as a strong deterrent against using larger

albeit realistic benchmarks [146]. Given the rate at which storage capacities are increasing,

running toy workloads on small disks is no longer a satisfactory alternative. One obvious

solution is to continually upgrade one’s storage infrastructure. However, this is an expen-

sive, and perhaps an infeasible solution, especially to justify the costs and administrative

overheads solely for benchmarking.

In order to encourage developers of file systems and related software to adopt larger,

more realistic benchmarks and configurations, we need meansto make them practical to
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run on modest storage infrastructure. To address this problem, we have developed Com-

pressions, a “scale down” benchmarking system that allows one to run large, complex

workloads using relatively small storage capacities by scaling down the storage require-

ments transparent to the workload. Compressions makes it practical to experiment with

benchmarks that were otherwise infeasible to run on a given system.

They key idea in Compressions is to create a “compressed” version of the original file-

system image for the purposes of benchmarking. In the compressed image, unneeded user

data blocks are omitted and file system metadata blocks (e.g., inodes, directories and indi-

rect blocks) are laid out more efficiently on disk. To ensure that applications and benchmark

workloads remain unaware of this interposition, Compressions synthetically produces file

data using a suitably modified in-kernel version of Impressions, and appropriately fetches

the redirected metadata blocks. Compressions then uses an in-kernel model of the disk and

storage stack to determine the runtime of the benchmark workload on the original uncom-

pressed image. The storage model calculates the run times ofall individual requests as they

would have executed on the uncompressed image.

Depending on the workload and the underlying file-system image, the size of the com-

pressed image can range anywhere from1 to 10% of the original, a huge reduction in the

required disk size for benchmarking. Compressions also reduces the time taken to run the

benchmark by avoiding a significant fraction of disk I/O and disk seeks. The storage model

within Compressions is fairly accurate in spite of operating in real-time, and imposes an

almost negligible overhead on the workload execution.

Compressions thus allows one to run benchmark workloads that require file-system im-

ages orders of magnitude larger than the available disk and to run much faster than usual,

all this while still reporting the runtime as it would have taken on the original image; we

believe Compressions provides a practical approach to run large, real workloads with a
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modest overhead and virtually no extra expense in frequently upgrading storage infrastruc-

ture for benchmarking.

1.3 Representative, Reproducible and Practical BenchmarkWorkloads

The other crucial requirement for benchmarking apart from the benchmark state is the

benchmark workload: no benchmarking can proceed without one. Like benchmarking

state, the benchmark workload should also be representative of the target usage scenario,

in this case the real-world applications running on the system. While creating a benchmark

workload care must be taken to ensure that the workload is easy to reproduce so as to enable

comparison across systems.

To evaluate the performance of a file and storage system, developers have a few different

options, each with its own set of advantages and disadvantages.

• Real Applications: One option for evaluating a file or storage system is to directly

measure its performance when running real I/O-intensive applications.

• Microbenchmarks of Application Kernels: A second option is to run application

kernels that are simplified versions of the full applications themselves.

• Trace replay: A third option is to replay file system traces that have been previously

gathered at various research and industrial sites.

• Synthetic workloads: A final option is to run synthetic workloads that are designed

to stress file systems appropriately, even as technologies change.

On the whole, synthetic benchmark workloads are much more popular than real work-

loads and trace replays, largely due to the ease of use with which synthetic workloads can

be employed. Given the popularity of synthetic benchmark workloads, we believe that

an ideal benchmark for file and storage systems combines theease of useof a synthetic

workload with therepresentativenessof a real workload.
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The process of creating such a benchmark should capture the essence of the original

workload in a way that the synthetic workload remains representative; the process should be

reproducible so that others can verify the authenticity of the benchmark workload without

having to rely on the interpretation of the benchmark writer; and finally, creating synthetic

workloads should be practical and encourage developers to adopt complex, real workloads

into mainstream benchmarking.

While creating representative benchmark workloads is not an entirely solved problem,

significant steps have been taken towards this goal. Empirical studies of file-system ac-

cess patterns [17, 58, 100] and file-system activity traces [113, 133] have led to work on

synthetic workload generators [12, 44] and methods for trace replay [14, 85]. However,

automated workload synthesizers are hard to write. Currentmethods for creating synthetic

benchmark workloads are largely based on the benchmark writer’s interpretation of the real

workload, and how it exercises the system API. This is insufficient since even a simple op-

eration through the API may end up exercising the file system in very different ways due

to effects of features such as caching and prefetching.

Determining whether or not two workloads stress a system in the same way is a chal-

lenging question; certainly, the domain of the system undertest has a large impact on

which features of the two workloads must be identical for theresulting performance to be

identical. We believe that in order to create an equivalent synthetic workload for file and

storage systems, one must mimic not the system calls, but thefunction callsexercised dur-

ing workload execution, in order to befunctionally equivalent. It is our hypothesis that if

two workloads execute roughly the same set of function callswithin the file system, that

they will be roughly equivalent to one another.

Towards this end, we develop a tool called CodeMRI (an “MRI” for code if you will),

that leverages file-system domain knowledge and a small amount of system profiling in

order to better understand how a workload is stressing the system, and eventually construct
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a synthetic equivalent. Our initial experience with CodeMRI has shown promise in de-

constructing real workloads; we believe it can provide essential building blocks towards

developing automated workload synthesizers that are representative of real workloads.

1.4 Overview

The rest of the dissertation is organized as follows.

• Representative and Reproducible Benchmarking State:Chapter 2 presents our

five-year study of file-system metadata; we analyze both static and longitudinal prop-

erties of file-system metadata that are representative of Windows PC systems in a

corporate environment; this study is used as an exemplar forrepresentative metadata

properties throughout the rest of the dissertation.

Chapter 3 presents our design, implementation and evaluation of Impressions, a

framework to generate statistically accurate file-system images with realistic meta-

data and content. Impressions is flexible, supporting user-specified constraints on

various file-system parameters using a number of statistical techniques to generate

consistent, reproducible images for benchmarking.

• Practical Large-Scale Benchmarking: Chapter 4 presents our design, implemen-

tation and evaluation of Compressions, a practical scale-down system for running

large, complex benchmarks. Compressions makes it feasibleto run workloads that

were otherwise infeasible to run with modest storage infrastructure, while also re-

ducing the time taken to run the benchmark.

• Representative, Reproducible and Practical Benchmark Workloads:

We discuss file-system benchmark workloads in Chapter 5; herein, we first present

the requirements for generating representative syntheticbenchmarks, then describe
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our initial successes with deconstructing real workloads,and finally discuss chal-

lenges in perfecting an automated benchmark workload synthesizer.

• Conclusions and Future Work: Chapter 6 concludes this dissertation, first summa-

rizing the contributions of our work and discussing the lessons learned, and second,

outlining possible avenues for future research that open upfrom this dissertation.
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Chapter 2

Five Year Study of File System Metadata

Detailed knowledge of file-system metadata is essential fordesigning and benchmark-

ing file and storage systems. Real world information about the structure, organization and

contents of files and directories stored in file systems is crucial both to make informed de-

sign decisions and to accurately evaluate these systems. However useful, real world data is

hard to collect and analyze, forcing storage system designers to rely on anecdotal informa-

tion and often outdated rules of thumb.

In this chapter we present the first large-scale longitudinal study of file-system meta-

data. To perform this study, every year from 2000 to 2004, we collected snapshots of

metadata from over ten thousand file systems on Windows desktop computers at Microsoft

Corporation. We gathered this data by mass-emailing a scanning program to Microsoft’s

employees, and we had a 22% participation rate every year. Our resulting datasets contain

metadata from 63,398 distinct file systems, 6457 of which provided snapshots in multiple

years.

This project was a longitudinal extension of an earlier study performed by the Microsoft

co-authors in 1998 [41], which was an order of magnitude larger than any prior study of

file-system metadata. The earlier study involved a single capture of file-system metadata,

and it focused on lateral variation among file systems at a moment in time. By contrast, the

present study focuses on longitudinal changes in file systems over a five-year time span.
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In particular, we study temporal changes in the size, age, and type frequency of files; the

size of directories; the structure of the file-system namespace; and various characteristics of

file systems, including file and directory population, storage capacity, storage consumption,

and degree of file modification.

The contributions of this work are threefold. First, we contribute the collected data set,

which we have sanitized and made available for general use [7]. This is the largest set of

file-system metadata ever collected, and it spans the longest time period of any sizeable

metadata collection. Second, we contribute all of our research observations, including:

• The space used in file systems has increased over the course ofour study from

year 2000 to 2004, not only because mean file size has increased (from 108 KB

to 189 KB), but also because the number of files has increased (from 30K to 90K).

• Eight file-name extensions account for over 35% of files, and nine file-name exten-

sions account for over 35% of the bytes in files. The same sets of extensions have

remained popular for many years.

• The fraction of file-system content created or modified locally has decreased over

time. In the first year of our study, the median file system had 30% of its files created

or modified locally, and four years later this percentage was22%.

• Directory size distribution has not notably changed over the years of our study. In

each year, directories have had very few subdirectories anda modest number of en-

tries. 90% of them have had two or fewer subdirectories, and 90% of them have had

20 or fewer total entries.

• The fraction of file system storage residing in the namespacesubtree meant for user

documents and settings has increased in every year of our study, starting at 7% and

rising to 15%. The fraction residing in the subtree meant forsystem files has also

risen over the course of our study, from 2% to 11%.
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• File system capacity has increased dramatically during ourstudy, with median capac-

ity rising from 5 GB to 40 GB. One might expect this to cause drastic reductions in

file system fullness, but instead the reduction in file systemfullness has been modest.

Median fullness has only decreased from 47% to 42%.

• Over the course of a single year, 80% of file systems become fuller and 18% become

less full.

Third, we contribute a generative, probabilistic model forhow directory trees are cre-

ated. Our model explains the distribution of directories bydepth in the namespace tree,

and it also explains the distribution of the count of subdirectories per directory. This is the

first generative model that characterizes the process by which file-system namespaces are

constructed.

We believe that analysis of longitudinal file system data is of interest to many sets of

people with diverse concerns about file system usage. For instance:

• developers of file systems, including desktop, server, and distributed file systems

• storage area network designers

• developers of file system utilities, such as backup, anti-virus, content indexing, en-

cryption, and disk space usage visualization

• storage capacity planners

• disk manufacturers, especially those using gray-box techniques to enable visibility

into the file system at the disk level [16]

• multitier storage system developers

Throughout this chapter, after discussing our findings and what we consider to be the most

interesting summaries of these findings, we will present some examples of interesting im-

plications for the people enumerated above.
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The rest of this chapter is organized as follows.§2.1 describes the methodology of our

data collection, analysis, and presentation.§2.2, §2.3, and§2.4 present our findings on,

respectively, files, directories, and space usage.§2.5 surveys related work and compares

our study with others that have been conducted in the past.§2.6 presents a discussion of

our findings and§2.7 concludes the chapter.

2.1 Methodology

This section describes the methodology we applied to collecting, analyzing, and pre-

senting the data.

2.1.1 Data collection

We developed a simple program that traverses the directory tree of each local, fixed-

disk file system mounted on a computer. The program records a snapshot of all metadata

associated with each file or directory, including hidden files and directories. This metadata

includes name, size, timestamps (file or directory creationand modification), and attributes.

The program also records the parent-child relationships ofnodes in the namespace tree, as

well as some system configuration information. The program records file names in an

encrypted form. We used this program to collect informationfrom NTFS and FAT based

file systems. Apart from the file system information, the scanning program also records

some system configuration such as volume and user ID, number of users on the computer,

OS version and build, and information related to the processor on the machine.

We also wrote automated tools that decrypt the file names for computing aggregate

statistics, but for privacy reasons we do not look at the decrypted file names directly, which

places some limits on our analyses. In post-processing, we remove metadata relating to the

system paging file, because this is part of the virtual memorysystem rather than the file

system.
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In the autumn of every year from 2000 to 2004, we distributed the scanning program

via email to a large subset of the employees of Microsoft, with a request for the recipients

to run the program on their desktop machines. The snapshots were collected entirely at

Microsoft’s primary campus in Redmond, WA. The sample population consists entirely of

Microsoft Windows machines with users ranging from developers, system administrators,

non-technical staff and researchers.

As an incentive to participate, we held a lottery in which each scanned machine counted

as an entry, with a single prize of a night’s stay at a nearby resort hotel. The specific

subset of people we were permitted to poll varied from year toyear based on a number of

factors; however, despite variations in user population and in other distribution particulars,

we observed approximately a 22% participation rate every year.

We scanned desktops rather than servers because at Microsoft, files are typically stored

on individual desktops rather than centralized servers. Wecollected the data via voluntary

participation rather than random selection because the company only permitted the former

approach; note that this voluntary approach may have produced selection bias.

2.1.2 Data properties

Table 2.1 itemizes some properties of each year’s data collection. The primary collec-

tion period ran between the listed start and end dates, whichmark the beginning of our

emailing requests and the last eligible day for the lottery.Some snapshots continued to

trickle in after the primary collection period; we used these in our analyses as well.

Table 2.2 itemizes the breakdown of each year’s snapshots according to file-system

type. 80% of our snapshots came from NTFS [136], the main file system for operating

systems in the Windows NT family; 5% from FAT [89], a 16-bit file system dating from

DOS; and 15% from FAT32 [89], a 32-bit upgrade of FAT developed for Windows 95.
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Year Period Users Machs FSs

2000 13 Sep – 29 Sep 5396 6051 11,654

2001 8 Oct – 2 Nov 7539 9363 16,022

2002 30 Sep – 1 Nov 7158 9091 15,011

2003 13 Oct – 14 Nov 7436 9262 14,633

2004 5 Oct – 12 Nov 7180 8729 13,505

Table 2.1 Properties of each year’s dataset

For some analyses, we needed a way to establish whether two file-system snapshots

from different years refer to the same file system. “Sameness” is not actually a well-formed

notion; for example, it is not clear whether a file system is still the same after its volume is

extended. We defined two snapshots to refer to the same file system if and only if they have

the same user name, computer name, volume ID, drive letter, and total space. The need

for some of these conditions was not obvious at first. For example, we added drive letter

because some drives on some machines are multiply mapped, and we added total space so

that a volume set would not be considered the same if a new volume were added to the

set. Based on this definition, Table 2.3 shows the number of snapshots for which we have

consecutive-year information.

2.1.3 Data presentation

Many of our graphs have horizontal axes that span a large range of non-negative num-

bers. To represent these ranges compactly, we use a logarithmic scale for non-zero values,

but we also include an abscissa for the zero value, even though zero does not strictly belong

on a logarithmic scale.

We plot most histograms with line graphs rather than bar graphs because, with five or

more datasets on a single plot, bar graphs can become difficult to read. For each bin in the
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Year NTFS FAT32 FAT Other Total

2000 7,015 2,696 1,943 0 11,654

2001 11,791 3,314 915 2 16,022

2002 12,302 2,280 429 0 15,011

2003 12,853 1,478 302 0 14,633

2004 12,364 876 264 1 13,505

Total 56,325 10,644 3,853 3 70,825

Table 2.2 File system types in datasets

Start 1 2 3 4 5

2000 11,654 950 234 63 18

2001 16,022 1,833 498 144 -

2002 15,011 1,852 588 - -

2003 14,633 1,901 - - -

2004 13,505 - - - -

Total 70,825 6,536 1,320 207 18

Table 2.3File systems with snapshots in successive years.Number of file systems for which
we have snapshots in then consecutive years starting with each year. The numbers in this table are
cumulative for then years. For instance, there are 1,852 file systems for which wehave snapshots
from both 2002 and 2003, and 588 file systems for which we have snapshots in the three years 2002,
2003 and 2004.
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histogram, we plot a point(x, y) wherex is the midpoint of the bin andy is the size of the

bin. We use the geometric midpoint when thex axis uses a logarithmic scale. We often plot

un-normalized histograms rather than probability densityfunctions (PDFs) for two reasons:

First, the graphs expose more data if we do not normalize them. Second, because the count

of files and directories per file system has grown substantially over time, not normalizing

allows us to plot multiple years’ curves on the same chart without overlapping to the point

of unreadability.

Whenever we use the prefix K, as in KB, we mean210. Similarly, we use M for220 and

G for 230.

2.1.4 Limitations

All our data comes from a relatively homogeneous sample of machines: Microsoft

desktops running Windows. Since past studies [116, 153] have shown that file system

characteristics can vary from one environment to another, our conclusions may not be ap-

plicable to substantially different environments. For instance, our conclusions are likely

not applicable to file system server workloads, and it is unclear to what extent they can be

generalized to non-Windows operating systems. It may also be that artifacts of Microsoft

policy, such as specific software distributions that are common or disallowed, may yield

results that would not apply to other workloads.

2.2 Files

2.2.1 File count per file system

Figure 2.1 plots cumulative distribution functions (CDFs)of file systems by count of

files. The count of files per file system has increased steadilyover our five-year sample

period: The arithmetic mean has grown from 30K to 90K files andthe median has grown

from 18K to 52K files.
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Figure 2.1 CDFs of file systems by file count

The count of files per file system is going up from year to year, and, as we will discuss

in §2.3.1, the same holds for directories. Thus, file system designers should ensure their

metadata tables scale to large file counts. Additionally, wecan expect file system scans that

examine data proportional to the number of files and/or directories to take progressively

longer. Examples of such scans include virus scans and metadata integrity checks follow-

ing block corruption. Thus, it will become increasingly useful to perform these checks

efficiently, perhaps by scanning in an order that minimizes movement of the disk arm.

2.2.2 File size

This section describes our findings regarding file size. We report the size of actual con-

tent, ignoring the effects of internal fragmentation, file metadata, and any other overhead.

We observe that the overall file size distribution has changed slightly over the five years

of our study. By contrast, the majority of stored bytes are found in increasingly larger

files. Moreover, the latter distribution increasingly exhibits a double mode, due mainly to

database and blob (binary large object) files.
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Figure 2.2 Histograms of files by size
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Figure 2.4 Histograms of bytes by containing file size

Figure 2.2 plots histograms of files by size and Figure 2.3 plots the corresponding

CDFs. We see that the absolute count of files per file system hasgrown significantly over

time, but the general shape of the distribution has not changed significantly. Although it is

not visible on the graph, the arithmetic mean file size has grown by 75% from 108 KB to

189 KB. In each year, 1–1.5% of files have a size of zero.

The growth in mean file size from 108 KB to 189 KB over four yearssuggests that

this metric grows roughly 15% per year. Another way to estimate this growth rate is to

compare our 2000 result to the 1981 result of 13.4 KB obtainedby Satyanarayanan [120].

This comparison estimates the annual growth rate as 12%. Note that this latter estimate is

somewhat flawed, since it compares file sizes from two rather different environments.

Figure 2.4 plots histograms of bytes by containing file size,alternately described as

histograms of files weighted by file size. Figure 2.5 plots CDFs of these distributions. We

observe that the distribution of file size has shifted to the right over time, with the median

weighted file size increasing from 3 MB to 9 MB. Also, the distribution exhibits a double

mode that has become progressively more pronounced. The corresponding distribution in
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Figure 2.5 CDFs of bytes by containing file size

our 1998 study did not show a true second mode, but it did show an inflection point around

64 MB, which is near the local minimum in Figure 2.4.

To study this second peak, we broke out several categories offiles according to file-

name extension. Figure 2.6 re-plots the 2004 data from Figure 2.4 as a stacked bar chart,

with the contributions of video, database, and blob files indicated. We see that most of

the bytes in large files are in video, database, and blob files,and that most of the video,

database, and blob bytes are in large files.

Our finding that different types of files have different size distributions echoes the find-

ings of other studies. In 1981, Satyanarayanan [120] found this to be the case on a shared

file server in an academic environment. In 2001, Evans and Kuenning also noted this phe-

nomenon in their analysis of 22 machines running various operating systems at Harvey

Mudd College and Marine Biological Laboratories [46]. The fact that this finding is con-

sistent across various different environments and times suggests that it is fundamental.

There are several implications of the fact that a large number of small files account for

a small fraction of disk usage, such as the following. First,it may not take much space to

co-locate many of these files with their metadata. This may bea reasonable way to reduce
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Figure 2.7 Histograms of files by age

the disk seek time needed to access these files. Second, a file system that co-locates several

files in a single block, like ReiserFS [110], will have many opportunities to do so. This will

save substantial space by eliminating internal fragmentation, especially if a large block size

is used to improve performance. Third, designers of disk usage visualization utilities may

want to show not only directories but also the names of certain large files.

2.2.3 File age

This subsection describes our findings regarding file age. Because file timestamps can

be modified by application programs [87], our conclusions should be regarded cautiously.

Figure 2.7 plots histograms of files by age, calculated as theelapsed time since the file

was created or last modified, relative to the time of the snapshot; we use the most recent

timestamp from amongst the creation and modification timestamps to calculate file age.

Figure 2.8 shows CDFs of this same data. The median file age ranges between 80 and 160

days across datasets, with no clear trend over time.

The distribution of file age is not memoryless, so the age of a file is useful in predicting

its remaining lifetime. So, systems such as archival backupsystems can use this distribution
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Figure 2.8 CDFs of files by age

to make predictions of how much longer a file will be needed based on how old it is. Since

the distribution of file age has not appreciably changed across the years, we can expect

that a prediction algorithm developed today based on the latest distribution will apply for

several years to come.

2.2.4 File-name extensions

This subsection describes our findings regarding popular file types, as determined by

file-name extension. Although the top few extensions have not changed dramatically over

our five-year sample period, there has been some change, reflecting a decline in the rel-

ative prevalence of web content and an increase in use of virtual machines. The top few

extensions account for nearly half of all files and bytes in file systems.

In old DOS systems with 8.3-style file names, the extension was the zero to three char-

acters following the single dot in the file name. Although Windows systems allow file

names of nearly arbitrary length and containing multiple dots, many applications continue

to indicate their file types by means of extensions. For our analyses, we define an extension

as the five-or-fewer characters following the last dot in a file name. If a name has no dots or
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Extension Typical Usage

cpp C++ source code

dll Dynamic link library

exe Executable

gif Image in Graphic Interchange Format

h Source code header

htm File in hypertext markup language

jpg Image in JPEG format

lib Code library

mp3 Music file in MPEG Layer III format

pch Precompiled header

pdb Source symbols for debugging

pst Outlook personal folder

txt Text

vhd Virtual hard drive for virtual machine

wma Windows Media Audio

Table 2.4 Typical usage of popular file extensions

has more than five characters after the last dot, we consider that name to have no extension,

which we represent with the symbol Ø. As a special case, if a file name ends in.gz, .bz2,

and.Z, then we ignore that suffix when determining extension. We dothis because these

are types of compressed files wherein the actual content typeis indicated by the characters

prior to the compression extension. To understand the typical usage of the file extensions

we discuss in this section, see Table 2.4.
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Figure 2.9 Fraction of files with popular extensions

Figure 2.9 plots, for the nine extensions that are the most popular in terms of file count,

the fraction of files with that extension. The fractions are plotted longitudinally over our

five-year sample period. The most notable thing we observe isthat these extensions’ popu-

larity is relatively stable—the top five extensions have remained the top five for this entire

time. However, the relative popularity ofgif files andhtm files has gone down steadily

since 2001, suggesting a decline in the popularity of web content relative to other ways to

fill one’s file system.

Figure 2.10 plots, for the ten extensions that are the most popular in terms of summed

file size, the fraction of file bytes residing in files with thatextension. Across all years,

dynamic link libraries (dll files) contain more bytes than any other file type. Extension

vhd, which is used for virtual hard drives, is consuming a rapidly increasing fraction of

file-system space, suggesting that virtual machine use is increasing. The null extension

exhibits a notable anomaly in 2003, but we cannot investigate the cause without decrypting

the file names in our datasets, which would violate our privacy policy.
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Figure 2.10 Fraction of bytes in files with popular extensions

Since files with the same extension have similar properties and requirements, some

file system management policies can be improved by includingspecial-case treatment for

particular extensions. Such special-case treatment can bebuilt into the file system or au-

tonomically and dynamically learned [84]. Since nearly half the files, and nearly half the

bytes, belong to files with a few popular extensions, developing such special-case treatment

for only a few particular extensions can optimize performance for a large fraction of the

file system. Furthermore, since the same extensions continue to be popular year after year,

one can develop special-case treatments for today’s popular extensions and expect that they

will still be useful years from now.

2.2.5 Unwritten files

Figures 2.11 and 2.12 plot histograms and CDFs, respectively, of file systems by per-

centage of files that have not been written since they were copied onto the file system. We

identify such files as ones whose modification timestamps areearlier than their creation

timestamps, since the creation timestamp of a copied file is set to the time at which the
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Figure 2.11 Histograms of file systems by percentage of files unwritten
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Figure 2.12 CDFs of file systems by percentage of files unwritten
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Figure 2.13 CDFs of file systems by directory count

copy was made, but its modification timestamp is copied from the original file. Over our

sample period, the arithmetic mean of the percentage of locally unwritten files has grown

from 66% to 76%, and the median has grown from 70% to 78%. This suggests that users

locally contribute to a decreasing fraction of their systems’ content. This may in part be

due to the increasing amount of total content over time.

Since more and more files are being copied across file systems rather than generated

locally, we can expect identifying and coalescing identical copies to become increasingly

important in systems that aggregate file systems. Examples of systems with such support

are the FARSITE distributed file system [2], the Pastiche peer-to-peer backup system [35],

and the Single Instance Store in Windows file servers [23].

2.3 Directories

2.3.1 Directory count per file system

Figure 2.13 plots CDFs of file systems by count of directories. The count of directories

per file system has increased steadily over our five-year sample period: The arithmetic
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mean has grown from 2400 to 8900 directories and the median has grown from 1K to 4K

directories.

We discussed implications of the rising number of directories per file system earlier.

The count of and directories per file system is going up from year to year, and, as we dis-

cussed in§2.2.1, the same holds for files. Thus, file system designers should ensure their

metadata tables scale not only to large file counts, but also for large directory counts. Ad-

ditionally, we can expect file system scans that examine dataproportional to the number

of files and/or directories to take progressively longer. Examples of such scans include

virus scans and metadata integrity checks following block corruption. Thus, it will become

increasingly useful to perform these checks efficiently. One example is the XFS file sys-

tem [141] that promises to deliver fast response times, evenfor directories with tens of

thousands of entries.

2.3.2 Directory size

This section describes our findings regarding directory size, measured by count of con-

tained files, count of contained subdirectories, and total entry count. None of these size

distributions has changed appreciably over our sample period, but the mean count of files

per directory has decreased slightly.

Figure 2.14 plots CDFs of directories by size, as measured bycount of files in the

directory. It shows that although the absolute count of directories per file system has grown

significantly over time, the distribution has not changed appreciably. Across all years, 23–

25% of directories contain no files, which marks a change from1998, in which only 18%

contained no files and there were more directories containing one file than those containing

none. The arithmetic mean directory size has decreased slightly and steadily from 12.5 to

10.2 over the sample period, but the median directory size has remained steady at 2 files.
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Figure 2.14 CDFs of directories by file count
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Figure 2.15 CDFs of directories by subdirectory count
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Figure 2.16 CDFs of directories by entry count

Figure 2.15 plots CDFs of directories by size, as measured bycount of subdirectories

in the directory. It includes a model approximation we will discuss later in§2.3.5. This

distribution has remained unchanged over our sample period. Across all years, 65–67% of

directories contain no subdirectories, which is similar tothe 69% found in 1998.

Figure 2.16 plots CDFs of directories by size, as measured bycount of total entries in

the directory. This distribution has remained largely unchanged over our sample period.

Across all years, 46–49% of directories contain two or fewerentries.

Since there are so many directories with a small number of files, it would not take

much space to co-locate the metadata for most of those files with those directories. Such

a layout would reduce seeks associated with file accesses. Therefore, it might be useful to

preallocate a small amount of space near a new directory to hold a modest amount of child

metadata. Similarly, most directories contain fewer than twenty entries, suggesting using

an on-disk structure for directories that optimizes for this common case.
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Figure 2.17 Fraction of files and bytes in special subtrees

2.3.3 Special directories

This section describes our findings regarding the usage of Windows special directories.

We find that an increasing fraction of file-system storage is in the namespace subtree de-

voted to system files, and the same holds for the subtree devoted to user documents and

settings.

Figure 2.17 plots the fraction of file-system files that reside within subtrees rooted

in each of three special directories:Windows, Program Files, and Documents and

Settings. This figure also plots the fraction of file-system bytes contained within each

of these special subtrees.

For theWindows subtree, the fractions of files and bytes have both risen from2–3% to

11% over our sample period, suggesting that an increasinglylarge fraction of file-system

storage is devoted to system files. In particular, we note that Windows XP was released

between the times of our 2000 and 2001 data collections.

For theProgram Files subtree, the fractions of files and bytes have trended in oppo-

site directions within the range of 12–16%. For theDocuments and Settings subtree,
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the fraction of bytes has increased dramatically while the fraction of files has remained

relatively stable.

The fraction of all files accounted for by these subtrees has risen from 25% to 40%,

and the fraction of bytes therein has risen from 30% to 41%, suggesting that application

writers and end users have increasingly adopted Windows’ prescriptive namespace organi-

zation [29].

Backup software generally does not have to back up system files, since they are static

and easily restored. Since system files are accounting for a larger and larger fraction of

used space, it is becoming more and more useful for backup software to exclude these files.

On the other hand, files in the Documents and Settings folder tend to be the most im-

portant files to back up, since they contain user-generated content and configuration infor-

mation. Since the percentage of bytes devoted to these files is increasing, backup capacity

planners should expect, surprisingly, that their capacityrequirements will increasefaster

than disk capacity is planned to grow. On the other hand, the percentage of files is not

increasing, so they need not expect metadata storage requirements to scale faster than disk

capacity. This may be relevant if metadata is backed up in a separate repository from the

data, as done by systems such as EMC Centera [61].

2.3.4 Namespace tree depth

This section describes our findings regarding the depth of directories, files, and bytes in

the namespace tree. We find that there are many files deep in thenamespace tree, especially

at depth 7. Also, we find that files deeper in the namespace treetend to be orders-of-

magnitude smaller than shallower files.

Figure 2.18 plots histograms of directories by their depth in the namespace tree, and

Figure 2.19 plots CDFs of this same data; it also includes a model approximation we will

discuss later in§2.3.5. The general shape of the distribution has remained consistent over
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Figure 2.18 Histograms of directories by namespace depth
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Figure 2.20 Histograms of files by namespace depth

our sample period, but the arithmetic mean has grown from 6.1to 6.9, and the median

directory depth has increased from 5 to 6.

Figure 2.20 plots histograms of file count by depth in the namespace tree, and Fig-

ure 2.21 plots CDFs of this same data. With a few exceptions, such as at depths 2, 3, and

7, these distributions roughly track the observed distributions of directory depth, indicating

that the count of files per directory is mostly independent ofdirectory depth. To study this

more directly, Figure 2.22 plots the mean count of files per directory versus directory depth.

There is a slight downward trend in this ratio with increasing depth, punctuated by three

depths whose directories have greater-than-typical counts of files: at depth 2 are files in the

Windows andProgram Files directories; at depth 3 are files in theSystem andSystem32

directories; and at depth 7 are files in the web cache directories.

Figure 2.23 replots the 2004 data from Figure 2.20 as a stacked bar chart, with the

indicated contributions of the special namespace subtreesdefined in the previous section.

Absent these specific types, the distribution of file count bydepth in the namespace tree

is closely approximated by a Poisson distribution withλ = 6.5, as shown, yielding an

MDCC of 1%. Figure 2.24 plots histograms of bytes by the depth of their containing files



42

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14  16

C
um

ul
at

iv
e 

%
 o

f f
ile

s

Namespace depth

2000
2001
2002
2003
2004

Figure 2.21 CDFs of files by namespace depth

 0

 10

 20

 30

 40

 50

 0  2  4  6  8  10  12  14  16

M
ea

n 
# 

of
 fi

le
s 

pe
r 

di
re

ct
or

y

Namespace depth

2000
2001
2002
2003
2004

Figure 2.22 Files per directory vs. namespace depth



43

0

5,000

10,000

15,000

20,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Namsepsace Depth

F
il

es
 p

er
 F

il
e 

S
ys

te
m

Other Windows

Program Files Documents and Settings

Model of Other

Figure 2.23 Contribution of special subtrees to histogram of 2004 files by namespace depth

0

500

1,000

1,500

2,000

2,500

3,000

1 4 7 10 13

Namespace Depth (bin size 1)

M
eg

ab
yt

es
 p

er
 F

il
e 

S
ys

te
m

2000 2001 2002 2003 2004

Figure 2.24 Histograms of bytes by namespace depth



44

0%

10%
20%

30%
40%

50%

60%
70%

80%
90%

100%

1 4 7 10 13

Namespace Depth 

C
u

m
. 

F
ra

ct
io

n
 o

f 
B

yt
es

2000 2001 2002 2003 2004

Figure 2.25 CDFs of bytes by namespace depth

 10000

 100000

 1e+06

 1e+07

 1e+08

 0  2  4  6  8  10  12  14  16

M
ea

n 
fil

e 
si

ze
 (

by
te

s)

Namespace depth

2000
2001
2002
2003
2004

Figure 2.26 File size vs. namespace depth



45

in the namespace tree, and Figure 2.21 plots CDFs of this samedata. These distributions

do not closely track the observed distributions of file depth. In particular, files deeper in the

namespace tree tend to be smaller than shallower ones.

This trend is more obvious in Figure 2.26, which plots the mean file size versus direc-

tory depth on a logarithmic scale. We see here that files deeper in the namespace tree tend

to be smaller. The mean file size drops by two orders of magnitude between depth 1 and

depth 3, and there is a drop of roughly 10% per depth level thereafter. This phenomenon

occurs because most bytes are concentrated in a small numberof large files (see Figures 2.2

and 2.4), and these files tend to reside in shallow levels of the namespace tree. In particular,

the hibernation image file is located in the root.

Since many files and directories are deep in the namespace tree, efficient path lookup

of deep paths should be a priority for file system designers. For instance, in distributed file

systems where different servers are responsible for different parts of the namespace tree [2],

deep path lookup may be expensive if not optimized. The high depth of many entries in

the namespace may also be of interest to designers of file system visualization GUIs, to

determine how much column space to allot for directory traversal. Furthermore, since the

fraction of files at high depths is increasing across the years of our study, these lessons will

become more and more important as years pass.

The clear trend of decreasing file size with increasing namespace tree depth suggests

a simple coarse mechanism to predict future file size at time of file creation. File systems

might use such prediction to decide where on disk to place a new file.

2.3.5 Namespace depth model

We have developed a generative model that accounts for the distribution of directory

depth. The model posits that new subdirectories are createdinside an existing directory in

offset proportion to the count of subdirectories already inthat directory.
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In the study of file-system metadata by Douceur and Bolosky [41], they observed that

the distribution of directories by depth could be approximated by a Poisson distribution

with λ = 4.38, yielding a maximum displacement of cumulative curves (MDCC) of 2%.

Poisson is also an acceptable approximation for the five datasets in the present study, with

λ growing from 6.03 to 6.88 over the sample period, yielding MDCCs that range from 1%

to 4%. However, the Poisson distribution does not provide anexplanation for the behavior;

it merely provides a means to approximate the result. By contrast, we have developed a

generative model that accounts for the distribution of directory depths we have observed,

with accuracy comparable to the Poisson model.

The generative model is as follows. A file system begins with an empty root directory.

Directories are added to the file system one at a time. For eachnew directory, a parent

directory is selected probabilistically, based on the count of subdirectories the parent cur-

rently has. Specifically, the probability of choosing each extant directory as a parent is

proportional toc(d) + 2, wherec(d) is the count of extant subdirectories of directoryd.

We used Monte Carlo simulation to compute directory depth distributions according to this

generative model. Given a count of directories in a file system, the model produces a dis-

tribution of directory depths that matches the observed distribution for file systems of that

size. Figure 2.19 plots the aggregate result of the model forall file systems in the 2004

dataset. The model closely matches the CDF of observed directory depths, with an MDCC

of 1%.

Our generative model accounts not only for the distributionof directory depth but also

for that of subdirectory size. Figure 2.15 shows this for the2004 dataset. The model closely

matches the CDF, with an MDCC of 5%.

Intuitively, the proportional probabilityc(d) + 2 can be interpreted as follows: If a

directory already has some subdirectories, it has demonstrated that it is a useful location

for subdirectories, and so it is a likely place for more subdirectories to be created. The
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Figure 2.27 CDFs of file systems by storage capacity

more subdirectories it has, the more demonstrably useful ithas been as a subdirectory

home, so the more likely it is to continue to spawn new subdirectories. If the probability

were proportional toc(d) without any offset, then an empty directory could never become

non-empty, so some offset is necessary. We found an offset of2 to match our observed

distributions very closely for all five years of our collected data, but we do not understand

why the particular value of 2 should be appropriate. One hypothesis is that the value of 2

comes from the two default directories “.” and “..” that are present in all directories.

2.4 Space Usage

2.4.1 Capacity and usage

Figure 2.27 plots CDFs of file system volumes by storage capacity, which has increased

dramatically over our five-year sample period: The arithmetic mean has grown from 8 GB

to 46 GB and the median has grown from 5 GB to 40 GB. The number ofsmall-capacity

file system volumes has dropped dramatically: Systems of 4 GBor less have gone from

43% to 4% of all file systems.
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Figure 2.28 CDFs of file systems by total consumed space

Figure 2.28 plots CDFs of file systems by total consumed space, including not only file

content but also space consumed by internal fragmentation,file metadata, and the system

paging file. Space consumption increased steadily over our five-year sample period: The

geometric mean has grown from 1 GB to 9 GB, the arithmetic meanhas grown from 3 GB

to 18 GB, and the median has grown from 2 GB to 13 GB.

Figure 2.29 plots CDFs of file systems by percentage of fullness, meaning the consumed

space relative to capacity. The distribution is very nearlyuniform for all years, as it was in

our 1998 study. The mean fullness has dropped slightly from 49% to 45%, and the median

file system has gone from 47% full to 42% full. By contrast, theaggregate fullness of our

sample population, computed as total consumed space divided by total file-system capacity,

has held steady at 41% over all years.

In any given year, the range of file system capacities in this organization is quite large.

This means that software must be able to accommodate a wide range of capacities simulta-

neously existing within an organization. For instance, a peer-to-peer backup system must
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Figure 2.29 CDFs of file systems by fullness

be aware that some machines will have drastically more capacity than others. File sys-

tem designs, which must last many years, must accommodate even more dramatic capacity

differentials.

2.4.2 Changes in usage

This subsection describes our findings regarding how individual file systems change in

fullness over time. For this part of our work, we examined the6536 snapshot pairs that

correspond to the same file system in two consecutive years. We also examined the 1320

snapshot pairs that correspond to the same file system two years apart. We find that 80% of

file systems become fuller over a one-year period, and the mean increase in fullness is 14

percentage points. This increase is predominantly due to creation of new files, partly offset

by deletion of old files, rather than due to extant files changing size.

When comparing two matching snapshots in different years, we must establish whether

two files in successive snapshots of the same file system are the same file. We do not

have access to files’ inode numbers, because collecting themwould have lengthened our

scan times to an unacceptable degree. We thus instead use thefollowing proxy for file
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sameness: If the files have the same full pathname, they are considered the same, otherwise

they are not. This is a conservative approach: It will judge afile to be two distinct files if it

or any ancestor directory has been renamed.

Figures 2.30 and 2.31 plot histograms and CDFs, respectively, of file systems by

percentage-point increase in fullness from one year to the next. We define this term by

example: If a file system was 50% full in 2000 and 60% full in 2001, it exhibited a 10

percentage-point increase in fullness. The distribution is substantially the same for all four

pairs of consecutive years. Figure 2.31 shows that 80% of filesystems exhibit an increase

in fullness and fewer than 20% exhibit a decrease. The mean increase from one year to the

next is 14 percentage points.

We also examined the increase in fullness over two years. We found the mean increase

to be 22 percentage points. This is less than twice the consecutive-year increase, indicating

that as file systems age, they increase their fullness at a slower rate. Because we have so

few file systems with snapshots in four consecutive years, wedid not explore increases over

three or more years.
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Since file systems that persist for a year tend to increase their fullness by about 14

points, but the mean file-system fullness has dropped from 49% to 45% over our sample

period, it seems that the steadily increasing fullness of individual file systems is offset by

the replacement of old file systems with newer, emptier ones.

Analyzing the factors that contribute to the 14-point mean year-to-year increase in full-

ness revealed the following breakdown: Fullness increasesby 28 percentage points due

to files that are present in the later snapshot but not in the earlier one, meaning that they

were created during the intervening year. Fullness decreases by 15 percentage points due

to files that are present in the earlier snapshot but not in thelater one, meaning that they

were deleted during the intervening year. Fullness also increases by 1 percentage point due

to growth in the size of files that are present in both snapshots. An insignificant fraction

of this increase is attributable to changes in system pagingfiles, internal fragmentation, or

metadata storage.

We examined the size distributions of files that were createdand of files that were

deleted, to see if they differed from the overall file-size distribution. We found that they



52

do not differ appreciably. We had hypothesized that users tend to delete large files to make

room for new content, but the evidence does not support this hypothesis.

Since deleted files and created files have similar size distributions, file system designers

need not expect the fraction of files of different sizes to change as a file system ages. Thus,

if they find it useful to assign different parts of the disk to files of different sizes, they can

anticipate the allocation of sizes to disk areas to not need radical change as time passes.

Many peer-to-peer systems use free space on computers to store shared data, so the

amount of used space is of great importance. With an understanding of how this free space

decreases as a file system ages, a peer-to-peer system can proactively plan how much it

will need to offload shared data from each file system to make room for additional local

content. Also, since a common reason for upgrading a computer is because its disk space

becomes exhausted, a peer-to-peer system can use a prediction of when a file system will

become full as a coarse approximation to when that file systemwill become unavailable.

2.5 Related Work

This research extends earlier work in measuring and modeling file-system metadata on

Windows workstations. In 1998, Douceur and Bolosky collected snapshots of over ten

thousand file systems on the desktop computers at Microsoft [41]. The focus of the earlier

study was on variations among file systems within the sample,all of which were captured

at the same time. By contrast, the focus of the present study is on longitudinal analysis,

meaning how file systems have changed over time.

Prior to that previous study, there were no studies of staticfile-system metadata on Win-

dows systems, but there were several such studies in other operating-system environments.

These include Satyanarayanan’s study of a Digital PDP-10 atCMU in 1981 [120], Mul-

lender and Tanenbaum’s study of a Unix system at Vrije Universiteit in 1984 [94], Irlam’s
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study of 1050 Unix file systems in 1993 [67], and Sienknecht etal.’s study of 267 file sys-

tems in 46 HP-UX systems at Hewlett-Packard in 1994 [128]. All of these studies involved

snapshots taken at a single time, like our study in 1998. There have also been longitudinal

studies of file-system metadata, but for significantly shorter times than ours: Bennettet

al.studied three file servers at the University of Western Ontario over a period of one day

in 1991 [22], and Smith and Seltzer studied 48 file systems on four file servers at Harvard

over a period of ten months in 1994 [131].

We are aware of only one additional collection of static file-system metadata since

the previous study. In 2001, Evans and Kuenning captured snapshots from 22 machines

running various operating systems at Harvey Mudd College and Marine Biological Lab-

oratories [46]. Their data collection and analysis focusedmainly, but not exclusively, on

media files. Their findings show that different types of files exhibit significantly different

size distributions, which our results support.

Many studies have examined dynamic file-system traces rather than static file system

snapshots. These studies are complementary to ours, describing things we cannot analyze

such as the rate at which bytes are read and written in a file system. A few examples of such

studies are Ousterhoutet al.’s analysis of the BSD file system [101], Gribbleet al.’s analysis

of self-similarity in the dynamic behavior of various file systems [58], Vogels’s analysis of

Windows NT [153], and Roselliet al.’s analysis of HP-UX and Windows NT [116].

In addition to file-system measurement research, there has been much work in model-

ing file-system characteristics, most notably related to the distribution of file sizes. Exam-

ples of work in this area include that of Satyanarayanan [120], Barford and Crovella [18],

Downey [42], and Mitzenmacher [91].

In 2001, Evans and Kuenning broke down measured file-size distributions according to

file type, and they modeled the sizes using log-lambda distributions [46]. They found that

video and audio files can significantly perturb the file-size distribution and prevent simple
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size models from applying. We did not find this to be true for file sizes in our sample

population. However, we did find video, database, and blob files responsible for a second

peak in the distribution of bytes by containing file size.

In the previous study by Douceur and Bolosky, directory depth was modeled with a

Poisson distribution [41], but we have herein proposed a generative model in which the

attractiveness of an extant directoryd as a location for a new subdirectory is proportional

to c(d) + 2, wherec(d) is the count of directoryd’s extant subdirectories. This is strikingly

similar to the rule for generating plane-oriented recursive trees, wherein the probability is

proportional toc(d) + 1 [80]. The generative model has the added advantage of being easy

to implement computationally.

2.6 Discussion

Over a span of five years, we collected metadata snapshots from more than 63,000 dis-

tinct Windows file systems in a commercial environment, through voluntary participation

of the systems’ users. These systems contain 4 billion files totaling 700 TB of file data. For

more than 10% of these file systems, we obtained snapshots in multiple years. Since these

snapshots from multiple years were from the same general population, it enabled us to di-

rectly observe how these file systems have changed over time.Our measurements reveal

several interesting properties of file systems and offer useful lessons.

One interesting discovery is the emergence of a second mode in the GB range in the

distribution of bytes by containing file size. It makes us wonder if at some future time a

third mode will arise. The increasingly large fraction of content in large files suggests that

variable block sizes, as supported by ZFS [24] and NTFS [136], are becoming increasingly

important. Since a few large files, mainly video, database, and blob files, are contributing

to an increasing fraction of file-system usage, these file extensions are ideal candidates for

larger block sizes.
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Although large files account for a large fraction of space, most files are 4 KB or smaller.

Thus, it is useful to co-locate several small files in a singleblock, as ReiserFS [110] does,

and to co-locate small file content with file metadata, as NTFSdoes. Our finding that most

directories have few entries suggests yet another possibility: Co-locate small file content

with the file’s parent directory. An even more extreme solution is suggested by the fact that

in 2004, the average file system had only 52 MB in files 4 KB or smaller. Since this number

is becoming small relative to main memory sizes, it may soon be practical to avoid cache

misses entirely for small files by prefetching them all at boot time and pinning them in the

cache.

Another noteworthy discovery is that the fraction of files locally modified decreases

with time, an effect significant enough to be observable in only a five-year sample. It

would appear that users’ ability to generate increasing amounts of content is outstripped

by the phenomenal growth in their disks. If individuals copying content from each other

becomes increasingly common, then applications like peer-to-peer backup will have in-

creasing amounts of inter-machine content similarity to leverage to obviate copying.

We were surprised to find a strong negative correlation between namespace depth and

file size. Such a strong and temporally-invariant correlation, in combination with the well-

known correlation between file extension and file size, can help us make predictions of

file size at creation time. This may be useful, e.g., to decidehow many blocks to initially

allocate to a file.

We also discovered that a simple generative model can account for both the distributions

of directory depth and the count of subdirectories per directory. The model we developed

posits that new subdirectories are created inside an existing directory in offset proportion

to the count of subdirectories already in that directory. This behavior is easy to simulate,

and it produces directory-depth and directory-size distributions that closely match our ob-

servations.
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Finally, it is remarkable that file system fullness over the course of five years has

changed little despite the vast increase in file system capacity over that same period. It

seems clear that users scale their capacity needs to their available capacity. The lesson for

storage manufacturers is to keep focusing effort on increasing capacity, because customers

will continue to place great value on capacity for the foreseeable future.

2.7 Conclusion

Developers of file systems and related software utilities frequently rely on information

about file system usage in real settings. Such information isinvaluable for designing and

evaluating new and existing systems. In this chapter we presented our longitudinal study of

file-system metadata wherein we find significant temporal trends relating to the popularity

of certain file types, the origin of file content, the way the namespace is used, and the degree

of variation among file systems, as well as more pedestrian changes in sizes and capacities.

Wherever applicable, we gave examples of consequent lessons for designers of file system

software.

We have made our traces available to the community via the Storage Networking In-

dustry Association’s IOTTA repository. To obtain them, visit the URL http://iotta.

snia.org/traces/tracesStaticSnapshot/.
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Chapter 3

Generating Realistic Impressions for File-System Bench-
marking

One of the most important challenges in file-system benchmarking apart from creat-

ing representative benchmark workloads is to recreate the file-systemstatesuch that it is

representative of the target usage scenario. Several factors contribute to file-system state,

important amongst them are thein-memorystate (contents of the buffer cache), theon-disk

state (disk layout and fragmentation) and the characteristics of thefile-system image(files

and directories belonging to the namespace and file contents).

One well understood contributor to state is thein-memorystate of the file system. Pre-

vious work has shown that the contents of the cache can have significant impact on the

performance results [38]. Therefore, system initialization during benchmarking typically

consists of a cache “warm-up” phase wherein the workload is run for some time prior to the

actual measurement phase. Another important factor is theon-diskstate of the file system,

or the degree offragmentation; it is a measure of how the disk blocks belonging to the file

system are laid out on disk. Previous work has shown that fragmentation can adversely af-

fect performance of a file system [132]. Thus, prior to benchmarking, a file system should

undergoaging by replaying a workload similar to that experienced by a realfile system

over a period of time [132].

Surprisingly, one key contributor to file-system state has been largely ignored – the

characteristics of thefile-system image. The properties of file-system metadata and the
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Paper Description Used to measure

HAC [55] File system with 17000
files totaling 150 MB

Time and space needed to create
a Glimpse index

IRON [106] None provided Checksum and metadata replica-
tion overhead; parity block over-
head for user files

LBFS [95] 10702 files from
/usr/local, total size
354 MB

Performance of LBFS chunking
algorithm

LISFS [102] 633 MP3 files, 860 pro-
gram files, 11502 man
pages

Disk space overhead; perfor-
mance of search-like activities:
UNIX find and LISFS lookup

PAST [117] 2 million files, mean size
86 KB, median 4 KB,
largest file size 2.7 GB,
smallest 0 Bytes, total size
166.6 GB

File insertion, global storage uti-
lization in a P2P system

Pastiche [36] File system with 1641
files, 109 dirs, 13.4 MB to-
tal size

Performance of backup and re-
store utilities

Pergamum [139] Randomly generated files
of “several” megabytes

Data transfer performance

Samsara [37] File system with 1676 files
and 13 MB total size

Data transfer and querying per-
formance, load during querying

Segank [134] 5-deep directory tree, 5
subdirs and 10 8 KB files
per directory

Performance of Segank: vol-
ume update, creation of read-only
snapshot, read from new snapshot

SFS read-
only [48]

1000 files distributed
evenly across 10 directo-
ries and contain random
data

Single client/single server read
performance

TFS [33] Files taken from /usr to get
“realistic” mix of file sizes

Performance with varying contri-
bution of space from local file
systems

WAFL
backup [66]

188 GB and 129 GB vol-
umes taken from the Engi-
neering department

Performance of physical and log-
ical backup, and recovery strate-
gies

yFS [161] Avg. file size 16 KB, avg.
number of files per direc-
tory 64, random file names

Performance under various
benchmarks (file creation, dele-
tion)

Table 3.1 Choice of file system parameters in prior research.



59

actual content within the files are key contributors to file-system state, and can have a sig-

nificant impact on the performance of a system. Properties offile-system metadata includes

information on how directories are organized in the file-system namespace, how files are or-

ganized into directories, and the distributions for various file attributes such as size, depth,

and extension type. Consider a simple example: the time taken for a find operation to

traverse a file system while searching for a file name depends on a number of attributes of

the file-system image, including the depth of the file-systemtree and the total number of

files. Similarly, the time taken for agrep operation to search for a keyword also depends

on the type of files (i.e., binary vs. others) and the file content.

File-system benchmarking frequently requires this sort ofinformation on file systems,

much of which is available in the form of empirical studies offile-system contents [8,

41, 67, 94, 120, 128], such as the one presented in Chapter 2 that was conducted by us.

Such studies focus on measuring and modeling different aspects of file-system metadata

by collecting snapshots of file-system images from real machines. The studies range from

a few machines to tens of thousands of machines across different operating systems and

usage environments. Collecting and analyzing this data provides useful information on

how file systems are used in real operating conditions.

In spite of the wealth of information available in file-system studies, system designers

and evaluators continue to rely onad hocassumptions and often inaccurate rules of thumb.

Table 3.1 presents evidence to confirm this hypothesis; it contains a (partial) list of publica-

tions from top-tier systems conferences in the last ten years that required a test file-system

image for evaluation. We present both the description of thefile-system image provided in

the paper and the intended goal of the evaluation.

In the table, there are several examples where a new file system or application design

is evaluated on the evaluator’s personal file system withoutdescribing its properties in suf-

ficient detail for it to be reproduced [33, 66, 106]. In others, the description is limited to
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coarse-grained measures such as the total file-system size and the number of files, even

though other file-system attributes (e.g., tree depth) are relevant to measuring performance

or storage space overheads [36, 37, 55, 95]. File systems arealso sometimes generated

with parameters chosen randomly [139, 161], or chosen without explanation of the signif-

icance of the values [48, 102, 134]. Occasionally, the parameters are specified in greater

detail [117], but not enough to recreate the original file system.

The important lesson to be learnt here is that there is no standard technique to system-

atically include information on file-system images for experimentation. For this reason,

we find that more often than not, the choices made are arbitrary, suited for ease-of-use

more than accuracy and completeness. Furthermore, the lackof standardization and repro-

ducibility of these choices makes it near-impossible to compare results with other systems.

To address these problems and improve one important aspect of file system bench-

marking, we developImpressions, a framework to generate representative and statistically

accurate file-system images. Impressions gives the user flexibility to specify one or more

parameters from a detailed list of file system parameters (file-system size, number of files,

distribution of file sizes, etc.). Impressions incorporates statistical techniques (automatic

curve-fitting, resolving multiple constraints, interpolation and extrapolation, etc.) and uses

statistical tests for goodness-of-fit to ensure the accuracy of the image.

We believe Impressions will be of great use to system designers, evaluators, and users

alike. A casual user looking to create a representative file-system image without worrying

about carefully selecting parameters can simply run Impressions with its default settings;

Impressions will use pre-specified distributions from file-system studies to create a repre-

sentative image. A more sophisticated user has the power to individually control the knobs

for a comprehensive set of file-system parameters; Impressions will carefully work out the
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statistical details to produce a consistent and accurate image. In both cases, Impressions en-

sures complete reproducibility of the image, by reporting the used distributions, parameter

values, and seeds for random number generators.

In this chapter we present the design, implementation and evaluation of the Impressions

framework (§3.2). Impressions is built with the following design goals:

• Accuracy:in generating various statistical constructs to ensure a high degree of sta-

tistical rigor.

• Flexibility: in allowing users to specify a number of file-system distributions and

constraints on parameter values, or in choosing default values.

• Representativeness:by incorporating known distributions from file-system studies.

• Ease of use:by providing a simple, yet powerful, command-line interface.

Using desktop search as a case study, we then demonstrate theusefulness and ease of use

of Impressions in quantifying application performance, and in finding application policies

and bugs (§3.3).

3.1 Extended Motivation

We begin this section by asking a basic question: does file-system structure really mat-

ter? We then describe the goals for generating realistic file-system images and discuss

existing approaches to do so.

3.1.1 Does File-System Structure Matter?

Structure and organization of file-system metadata mattersfor workload performance.

Let us take a look at the simple example of a frequently used UNIX utility: find. Figure 3.1

shows the relative time taken to run “find /” searching for a file name on a test file system

as we vary some parameters of file-system state.
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Figure 3.1 Impact of directory tree structure. Shows impact of tree depth on time taken by
find. The file systems are created by Impressions using default distributions (Table 3.2). To exclude
effects of the on-disk layout, we ensure a perfect disk layout (layout score1.0) for all cases except
the one with fragmentation (layout score0.95). Theflat treecontains all100 directories at depth
1; thedeep treehas directories successively nested to create a tree of depth 100.

The first bar represents the time taken for the run on the original test file system. Subse-

quent bars are normalized to this time and show performance for a run with the file-system

contents in buffer cache, a fragmented version of the same file system, a file system created

by flattening the original directory tree, and finally one by deepening the original directory

tree. The graph echoes our understanding of caching and fragmentation, and brings out one

aspect that is often overlooked: structure really matters.From this graph we can see that

even for a simple workload, the impact of tree depth on performance can be as large as that

with fragmentation, and varying tree depths can have significant performance variations

(300% between the flat and deep trees in this example).
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Assumptions about file-system structure have often trickled into file system design, but

no means exist to incorporate the effects of realistic file-system images in a systematic

fashion. As a community, we well understand that caching matters, and have begun to

pay attention to fragmentation, but when it comes to file-system structure, our approach is

surprisinglylaissez faire.

3.1.2 Goals for Generating FS Images

We believe that the file-system image used for an evaluation should berealisticwith re-

spect to the workload; the image should contain a sufficient degree ofdetail to realistically

exercise the workload under consideration. An increasing degree of detail will likely re-

quire more effort and slow down the process. Thus it is usefulto know the degree sufficient

for a given evaluation. For example, if the performance of anapplication simply depends

on the size of files in the file system, the chosen file-system image should reflect that. On

the other hand, if the performance is also sensitive to the fraction of binary files amongst

all files (e.g., to evaluate desktop search indexing), then the file-systemimage also needs to

contain realistic distributions of file extensions.

We walk through some examples that illustrate the differentdegrees of detail needed in

file-system images.

• At one extreme, a system could be completely oblivious to both metadata and con-

tent. An example of such a system is a mirroring scheme (RAID-1 [103]) underneath

a file system, or a backup utility taking whole-disk backups.The performance of

such schemes depends solely on the block traffic.

Alternately, systems could depend on the attributes of the file-system image with different

degrees of detail:
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• The performance of a system can depend on the amount of file data (number of files

and directories, or the size of files and directories, or both) in any given file system

(e.g., a backup utility taking whole file-system snapshots).

• Systems can depend on the structure of the file system namespace and how files are

organized in it (e.g., a version control system for a source-code repository).

• Finally, many systems also depend on the actual data stored within the files (e.g., a

desktop search engine for a file system, or a spell-checker).

Impressions is designed with this goal of flexibility from the outset. The user is given

complete control of a number of file-system parameters, and is provided with an easy to use

interface. Transparently, Impressions seamlessly ensures accuracy and representativeness.

3.1.3 Existing Approaches

One alternate approach to generating realistic file-systemimages is to randomly select a

set of actual images from a corpus, an approach popular in other fields of computer science

such as Information Retrieval, Machine Learning and Natural Language Processing [97].

In the case of file systems the corpus would consist of a set of known file-system images.

This approach arguably has several limitations which make it difficult and unsuitable for

file systems research. First, there are too many parameters required to accurately describe

a file-system image that need to be captured in a corpus. Second, without precise control

in varying these parameters according to experimental needs, the evaluation can be blind

to the actual performance dependencies. Finally, the cost of maintaining and sharing any

realistic corpus of file-system images would be prohibitive. The size of the corpus itself

would severely restrict its usefulness especially as file systems continue to grow larger.

Unfortunately, these limitations have not deterred researchers from using their personal

file systems as a (trivial) substitute for a file-system corpus.
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3.2 The Impressions Framework

In this section we describe the design, implementation and evaluation of Impressions: a

framework for generating file-system images with realisticand statistically accurate meta-

data and content. Impressions is flexible enough to create file-system images with varying

configurations, guaranteeing the accuracy of images by incorporating a number of statisti-

cal tests and techniques.

We first present a summary of the different modes of operationof Impressions, and

then describe the individual statistical constructs in greater detail. Wherever applicable, we

evaluate their accuracy and performance.

3.2.1 Modes of Operation

A system evaluator can use Impressions in different modes ofoperation, with varying

degree of user input. Sometimes, an evaluator just wants to create a representative file-

system image without worrying about the need to carefully select parameters. Hence, in

theautomatedmode, Impressions is capable of generating a file-system image with min-

imal input required from the user (e.g., the size of the desired file-system image), relying

on default settings of known empirical distributions to generate representative file-system

images. We refer to these distributions asoriginal distributions.

At other times, users want more control over the images, for example, to analyze the

sensitivity of performance to a given file-system parameter, or to describe a completely

different file-system usage scenario. Hence, Impressions supports auser-specifiedmode,

where a more sophisticated user has the power to individually control the knobs for a com-

prehensive set of file-system parameters; we refer to these as user-specified distributions.

Impressions carefully works out the statistical details toproduce a consistent and accurate

image. In both the cases, Impressions ensures complete reproducibility of the file-system
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Parameter Default Model & Parameters
Directory count w/ depth Generative model
Directory size (subdirs) Generative model
File size by count Lognormal-body

(α1=0.99994, µ=9.48, σ=2.46)
Pareto-tail (k=0.91,Xm=512MB)

File size by containing Mixture-of-lognormals
bytes (α1=0.76, µ1=14.83, σ1=2.35

α2=0.24, µ2=20.93, σ2=1.48)
Extension popularity Percentile values
File count w/ depth Poisson (λ=6.49)
Bytes with depth Mean file size values
Directory size (files) Inverse-polynomial

(degree=2, offset=2.36)
File count w/ depth Conditional probabilities
(w/ special directories) (biases for special dirs)
Degree of FragmentationLayout score (1.0)

or Pre-specified workload

Table 3.2 Parameters and default values in Impressions.List of distributions and their
parameter values used in the Default mode.

image by reporting the used distributions, their parametervalues, and seeds for random

number generators.

Impressions can use any dataset or set of parameterized curves for theoriginal distribu-

tions, leveraging a large body of research on analyzing file-system properties [8, 41, 67, 94,

120, 128]. For illustration, in this dissertation we use thefindings presented in Chapter 2

from our study on file system metadata, and the correspondingsnapshot dataset that was

made publicly available. To briefly summarize the study presented in the previous chapter,

the snapshots of file-system metadata were collected over a five-year period representing

over60, 000 Windows PC file systems in a large corporation. These snapshots were then

used to study distributions and temporal changes in file size, file age, file-type frequency,
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directory size, namespace structure, file-system population, storage capacity, and degree of

file modification. The study also proposed a generative modelexplaining the creation of

file-system namespaces.

Impressions provides a comprehensive set of individually controllable file system pa-

rameters. Table 3.2 lists these parameters along with theirdefault selections. For example,

a user may specify the size of the file-system image, the number of files in the file system,

and the distribution of file sizes, while selecting default settings for all other distributions.

In this case, Impressions will ensure that the resulting file-system image adheres to the

default distributions while maintaining the user-specified invariants.

The default values listed in this table are derived from the corresponding data presented

in Chapter 2 for the year 2004. The models for directory countwith depth and directory

size with subdirectories correspond to the generative model previously discussed in Sec-

tion §2.3.5; the entries for file size by count and by containing bytes refer to Figures 2.3

and 2.5; extension popularity is based on the Figures 2.9 and2.10; the values for file count

with depth and bytes with depth are derived from the Figures 2.19 and 2.21; directory size

in the number of files is from the Figure 2.14; the biases for file counts with depth including

special directories corresponds to data from the Figure 2.17; the degree of fragmentation is

specified by the user arbitrarily, or according to pre-specified workloads that execute a set

number of iterations of a known workload.

3.2.2 Basic Techniques

The goal of Impressions is to generate realistic file-systemimages, giving the user

complete flexibility and control to decide the extent of accuracy and detail. To achieve this,

Impressions relies on a number of statistical techniques.

In the simplest case, Impressions needs to create statistically accurate file-system im-

ages with default distributions. Hence, a basic functionality required by Impressions is to



68

convert the parameterized distributions into real sample values used to create an instance

of a file-system image. Impressions uses random sampling to take a number of indepen-

dent observations from the respective probability distributions. Wherever applicable, such

parameterized distributions provide a highly compact and easy-to-reproduce representation

of observed distributions. For cases where standard probability distributions are infeasible,

a Monte Carlo method is used.

A user may want to use file system datasets other than the default choice. To enable

this, Impressions provides automatic curve-fitting of empirical data.

Impressions also provides the user with the flexibility to specify distributions and con-

straints on parameter values. One challenge thus is to ensure that multiple constraints spec-

ified by the user are resolved consistently. This requires statistical techniques to ensure

that the generated file-system images are accurate with respect to both the user-specified

constraints and the default distributions.

In addition, the user may want to explore values of file systemparameters, not cap-

tured in any dataset. For this purpose, Impressions provides support for interpolation and

extrapolation of new curves from existing datasets.

Finally, to ensure the accuracy of the generated image, Impressions contains a number

of built-in statistical tests, for goodness-of-fit (e.g., Kolmogorov-Smirnov, Chi-Square, and

Anderson-Darling), and to estimate error (e.g., Confidence Intervals, MDCC, and Standard

Error). Where applicable, these tests ensure that all curve-fit approximations and internal

statistical transformations adhere to the highest degree of statistical rigor desired.

3.2.3 Creating Valid Metadata

The simplest use of Impressions is to generate file-system images with realistic meta-

data. This process is performed in two phases: first, the skeletal file-system namespace is
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created; and second, the namespace is populated with files conforming to a number of file

and directory distributions.

3.2.3.1 Creating File-System Namespace

The first phase in creating a file system is to create the namespace structure or the

directory tree. We assume that the user specifies the size of the file-system image. The

count of files and directories is then selected based on the file system size (if not specified

by the user). Depending on the degree of detail desired by theuser, each file or directory

attribute is selected step by step until all attributes havebeen assigned values. We now

describe this process assuming the highest degree of detail.

To create directory trees, Impressions uses the generativemodel proposed by Agrawal

et al.[8] to perform a Monte Carlo simulation. According to this model, new directories are

added to a file system one at a time, and the probability of choosing each extant directory

as a parent is proportional toC(d) + 2, whereC(d) is the count of extant subdirectories

of directoryd. The model explains the creation of the file system namespace, accounting

both for the size and count of directories by depth, and the size of parent directories. The

input to this model is the total number of directories in the file system. Directory names

are generated using a simple iterative counter.

To ensure the accuracy of generated images, we compare the generated distributions

(i.e., created using the parameters listed in Table 3.2), with thedesired distributions (i.e.,

ones obtained from the dataset discussed previously in Chapter 2 corresponding to year

2004). Figures 3.2 and 3.3 show in detail the accuracy for each step in the namespace and

file creation process. For almost all the graphs, the y-axis represents the percentage of files,

directories, or bytes belonging to the categories or bins shown on the x-axis, as the case

may be.
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Figures 3.2(a) and 3.2(b) show the distribution of directories by depth, and directories

by subdirectory count, respectively. The y-axis in this case is the percentage of directories

at each level of depth in the namespace, shown on the x-axis. The two curves representing

the generated and the desired distributions match quite well indicating good accuracy.

3.2.3.2 Creating Files

The next phase is to populate the directory tree with files. Impressions spends most

of the total runtime and effort during this phase, as the bulkof its statistical machinery is

exercised in creating files. Each file has a number of attributes such as its size, depth in the

directory tree, parent directory, and file extension. Similarly, the choice of the parent direc-

tory is governed by directory attributes such as the count ofcontained subdirectories, the

count of contained files, and the depth of the parent directory. Analytical approximations

for file system distributions proposed previously [41] guided our own models.

First, for each file, the size of the file is sampled from a hybrid distribution describing

file sizes. The body of this hybrid curve is approximated by a lognormal distribution,

with a Pareto tail distribution (k=0.91, Xm=512MB) accounting for the heavy tail of files

with size greater than 512 MB. The exact parameter values used for these distributions are

listed in Table 3.2. These parameters were obtained by fitting the respective curves to file

sizes obtained from the file-system dataset previously discussed in Chapter 2. Figure 3.2(c)

shows the accuracy of generating the distribution of files bysize. We initially used a simpler

model for file sizes represented solely by a lognormal distribution. While the results were

acceptable for files by size (Figure 3.2(c)), the simpler model failed to account for the

distribution of bytes by containing file size; coming up witha model to accurately capture

the bimodal distribution of bytes proved harder than we had anticipated. Figure 3.2(d)

shows the accuracy of the hybrid model in Impressions in generating the distribution of

bytes. The pronounced double mode observed in the distribution of bytes is a result of the
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Figure 3.2 Accuracy of Impressions in recreating file system properties. Shows the
accuracy of the entire set of file system distributions modeled by Impressions. D: the desired distri-
bution; G: the generated distribution. Impressions is quite accurate in creating realistic file system
state for all parameters of interest shown here. We include aspecial abscissa for the zero value on
graphs having a logarithmic scale.
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Figure 3.3 Accuracy of Impressions in recreating file system properties. Shows the
accuracy of the entire set of file system distributions modeled by Impressions. D: the desired distri-
bution; G: the generated distribution. Impressions is quite accurate in creating realistic file system
state for all parameters of interest shown here. We include aspecial abscissa for the zero value on
graphs having a logarithmic scale.
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presence of a few large files; an important detail that is otherwise missed if the heavy-tail

of file sizes is not accurately accounted for.

Once the file size is selected, we assign the file name and extension. Impressions keeps

a list of percentile values for popular file extensions (i.e., top20 extensions by count, and

by bytes). These extensions together account for roughly 50% of files and bytes in a file

system ensuring adequate coverage for the important extensions. The remainder of files are

given randomly generated three-character extensions. Currently filenames are generated

by a simple numeric counter incremented on each file creation. Figure 3.3(e) shows the

accuracy of Impressions in creating files with popular extensions by count.

Next, we assign file depthd, which requires satisfying two criteria: the distribution

of files with depth, and the distribution of bytes with depth.The former is modeled by a

Poisson distribution, and the latter is represented by the mean file sizes at a given depth.

Impressions uses a multiplicative model combining the two criteria, to produce appropriate

file depths. Figures 3.3(f) and 3.3(g) show the accuracy in generating the distribution of

files by depth, and the distribution of bytes by depth, respectively.

The final step is to select a parent directory for the file, located at depthd−1, according

to the distribution of directories with file count, modeled using an inverse-polynomial of

degree2. As an added feature, Impressions supports the notion of “Special” directories

containing a disproportionate number of files or bytes (e.g., “Program Files” folder in the

Windows environment). If required, during the selection ofthe parent directory, a selection

bias is given to these special directories. Figure 3.3(h) shows the accuracy in supporting

special directories with an example of atypicalWindows file system having files in the web

cache at depth7, in Windows andProgram Files folders at depth2, andSystem files at

depth3.
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Parameter MDCC
Directory count with depth 0.03
Directory size (subdirectories) 0.004
File size by count 0.04
File size by containing bytes 0.02
Extension popularity 0.03
File count with depth 0.05
Bytes with depth 0.12 MB*
File count w/ depth w/ special dirs 0.06

Table 3.3 Statistical accuracy of generated images. Shows average accuracy of gener-
ated file-system images in terms of the MDCC (Maximum Displacement of the Cumulative Curves)
representing the maximum difference between cumulative curves of generated and desired distri-
butions. Averages are shown for20 trials. (*) For bytes with depth, MDCC is not an appropriate
metric, we instead report the average difference in mean bytes per file (MB). The numbers corre-
spond to the set of graphs shown in Figure 3.3 and reflect fairly accurate images.

Table 3.3 shows the average difference between the generated and desired images from

Figure 3.3 for20 trials. The difference is measured in terms of the MDCC (Maximum Dis-

placement of the Cumulative Curves). For instance, an MDCC value of 0.03 for directories

with depth, implies amaximumdifference of 3% on an average, between the desired and

the generated cumulative distributions. Overall, we find that the models created and used

by Impressions for representing various file-system parameters produce fairly accurate dis-

tributions in all the above cases. While we have demonstrated the accuracy of Impressions

for the Windows dataset, there is no fundamental restriction limiting it to this dataset. We

believe that with little effort, the same level of accuracy can be achieved for any other

dataset.

3.2.4 Resolving Arbitrary Constraints

One of the primary requirements for Impressions is to allow flexibility in specifying

file system parameters without compromising accuracy. Thismeans that users are allowed
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Figure 3.4 Resolving Multiple Constraints. (a) Shows the process of convergence of a set
of 1000 file sizes to the desired file system size of 90000 bytes. Each line represents an individual
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Num. files File sizes sum Avg. β Avg. β Avg. α Avg. D Avg. D Success
N S (bytes) Initial Final Count Bytes

1000 30000 21.55% 2.04% 5.74% 0.043 0.050 100%
1000 60000 20.01% 3.11% 4.89% 0.032 0.033 100%
1000 90000 34.35% 4.00% 41.2% 0.067 0.084 90%

Table 3.4 Summary of resolving multiple constraints. Shows average rate and accuracy
of convergence after resolving multiple constraints for different values of desired file system size
generated with a lognormal file size distributionD3 (µ=8.16, σ=2.46). β: % error between the
desired and generated sum,α: % of oversamples required,D is the test statistic for the K-S test
representing the maximum difference between generated anddesired empirical cumulative distri-
butions. Averages are for20 trials. Success is the number of trials having finalβ ≤ 5%, andD

passing the K-S test.

to specify somewhat arbitrary constraints on these parameters, and it is the task of Impres-

sions to resolve them. One example of such a set of constraints would be to specify a large

number of files for a small file system, or vice versa, given a file size distribution. Im-

pressions will try to come up with a sample of file sizes that best approximates the desired

distribution, while still maintaining the invariants supplied by the user, namely the number

of files in the file system and the sum of all file sizes being equal to the file system used

space.

Multiple constraints can also be implicit (i.e., arise even in the absence of user-specified

distributions). Due to random sampling, different sample sets of the same distribution

are not guaranteed to produce exactly the same result, and consequently, the sum of the

elements can also differ across samples. Consider the previous example of file sizes again:

the sum of all file sizes drawn from a given distribution need not add up to the desired file

system size (total used space) each time. More formally, this example is represented by

the following set of constraints:
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N = {Constant1 ∨ x : x ∈ D1(x)}

S = {Constant2 ∨ x : x ∈ D2(x)}

F = {x : x ∈ D3(x; µ, σ)}; |
N

∑

i=0

Fi − S | ≤ β ∗ S
(3.1)

whereN is the number of files in the file system;S is the desired file system used

space;F is the set of file sizes; andβ is the maximum relative error allowed. The first

two constraints specify thatN andS can be user specified constants or sampled from

their corresponding distributionsD1 andD2. Similarly, F is sampled from the file size

distributionD3. These attributes are further subject to the constraint that the sum of all file

sizes differs from the desired file system size by no more thanthe allowed error tolerance,

specified by the user. To solve this problem, we use the following two techniques:

• If the initial sample does not produce a result satisfying all the constraints, weover-

sampleadditional values ofF from D3, one at a time, until a solution is found, or the

oversampling factorα/N reachesλ (the maximum oversampling factor).α is the count of

extra samples drawn fromD3. Upon reachingλ without finding a solution, we discard the

current sample set and start over.

• The number of elements inF during the oversampling stage isN + α. For every

oversampling, we need to find if there existsFSub, a subset ofF with N elements, such

that the sum of all elements ofFSub (file sizes) differs from the desired file system size by

no more than the allowed error. More formally stated, we find if:
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∃ FSub = {X : X ⊆ P(F ), |X | = N , |F| = N + α,

|
N

∑

i=0

Xi − S | ≤ β ∗ S, α ∈ N ∧ α

N ≤ λ} (3.2)

The problem of resolving multiple constraints as formulated above, is a variant of the

more general “Subset Sum Problem” which is NP-complete [34]. Our solution is thus an

approximation algorithm based on an existingO(n logn) solution [107] for the Subset Sum

Problem.

The existing algorithm has two phases. The first phase randomly chooses a solution

vector which is valid (the sum of elements is less than the desired sum), and maximal

(adding any element not already in the solution vector will cause the sum to exceed the

desired sum). The second phase performslocal improvement: for each element in the so-

lution, it searches for the largest element not in the current solution which, if replaced with

the current element, would reduce the difference between the desired and current sums.

The solution vector is updated if such an element is found, and the algorithm proceeds with

the next element, until all elements are compared.

Our problem definition and the modified algorithm differ fromthe original in the fol-

lowing ways:

• First, in the original problem, there is no restriction on the number of elements in the

solution subsetFSub. In our case,FSub can have exactlyN elements. We modify the first

phase of the algorithm to set the initialFSub as the first random permutation ofN elements

selected fromF such that their sum is less thanS.

• Second, the original algorithm either finds a solution or terminates without success. We

use an increasing sample size after each oversampling to reduce the error, and allow the

solution to converge.
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• Third, it is not sufficient for the elements inFSub to have a numerical sum close to

the desired sumS, but the distribution of the elements must also be close to the original

distribution inF . A goodness-of-fit test at the end of each oversampling step enforces

this requirement. For our example, this ensures that the setof file sizes generated after

resolving multiple constraints still follow the original distribution of file sizes.

The algorithm terminates successfully when the differencebetween the sums, and between

the distributions, falls below the desired error levels. The success of the algorithm depends

on the choice of the desired sum, and theexpectedsum (the sum due to the choice of

parameters,e.g., µ andσ); the farther the desired sum is from the expected sum, the lesser

are the chances of success.

Consider an example where a user has specified a desired file system size of90000

bytes, a lognormal file size distribution (µ=8.16, σ=2.46), and1000 files. Figure 3.4(a)

shows the convergence of the sum of file sizes in a sample set obtained with this distribu-

tion. Each line in the graph represents an independent trial, starting at a y-axis value equal

to the sum of its initially sampled file sizes. Note that in this example, the initial sum differs

from the desired sum by more than a 100% in several cases. The x-axis represents the num-

ber of extra iterations (oversamples) performed by the algorithm. For a trial to succeed, the

sum of file sizes in the sample must converge to within 5% of thedesired file system size.

We find that in most casesλ ranges between0 and0.1 (i.e., less than10% oversampling);

and in almost all cases,λ ≤ 1.

The distribution of file sizes inFSub must be close to the original distribution inF .

Figure 3.4(b) and 3.4(c) show the difference between the original and constrained distri-

butions for file sizes (for files by size, and files by bytes), for one successful trial from

Figure 3.4(a). We choose these particular distributions asexamples throughout this paper

for two reasons. First, file size is an important parameter, so we want to be particularly

thorough in its accuracy. Second, getting an accurate shapefor the bimodal curve of files
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by bytes presents a challenge for Impressions; once we get our techniques to work for this

curve, we are fairly confident of its accuracy on simpler distributions.

We find that Impressions resolves multiple constraints to satisfy the requirement on the

sum, while respecting the original distributions. Table 3.4 gives the summary for the above

example of file sizes for different values of the desired file system size. The expected sum of

1000 file sizes, sampled as specified in the table, is close to60000. Impressions successfully

converges the initial sample set to the desired sum with an average oversampling rateα less

than 5%. The average difference between the desired and achieved sumβ is close to 3%.

The constrained distribution passes the two-sample K-S test at the0.05 significance level,

with the difference between the two distributions being fairly small (theD statistic of the

K-S test is around 0.03, which represents the maximum difference between two empirical

cumulative distributions).

We repeat the above experiment for two more choices of file system sizes, one lower

than the expected mean (30K), and one higher (90K); we find that even when the desired

sum is quite different from the expected sum, our algorithm performs well. Only for2 of

the20 trials in the 90K case, did the algorithm fail to converge. For these extreme cases,

we drop the initial sample and start over.

3.2.5 Interpolation and Extrapolation

Impressions requires knowledge of the distribution of file system parameters necessary

to create a valid image. While it is tempting to imagine that Impressions has perfect knowl-

edge about the nature of these distributions for all possible values and combinations of

individual parameters, it is often impossible.

First, the empirical data is limited to what is observed in any given dataset and may

not cover the entire range of possible values for all parameters. Second, even with an

exhaustive dataset, the user may want to explore regions of parameter values for which no
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Figure 3.5 Piecewise Interpolation of File Sizes.Piece-wise interpolation for the distribu-
tion of files with bytes, using file systems of 10 GB, 50 GB and 100 GB. Each power-of-two bin on
the x-axis is treated as an individualsegmentfor interpolation (inset). Final curve is the composite
of all individual interpolated segments.

data point exists, especially for “what if” style of analysis. Third, from an implementation

perspective, it is more efficient to maintain compact representations of distributions for a

few sample points, instead of large sets of data. Finally, ifthe empirical data is statistically

insignificant, especially for outlying regions, it may not serve as an accurate representation.

Impressions thus provides the capability for interpolation and extrapolation from available

data and distributions.

Impressions needs to generate complete new curves from existing ones. To illustrate

our procedure, we describe an example of creating an interpolated curve; extensions to

extrapolation are straightforward. Figure 3.5 shows how Impressions usespiece-wise in-

terpolationfor the distribution of files with containing bytes. In this example, we start with



82

(a) (b)

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12

8 2K 512K 128M 32G

%
 o

f f
ile

s

File Size (bytes, log scale, power-of-2 bins)

Interpolation (75 GB)

R
I

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12

8 2K 512K 128M 32G

%
 o

f b
yt

es

File Size (bytes, log scale, power-of-2 bins)

Interpolation (75 GB)

R
I

(c) (d)

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12

8 2K 512K 128M 32G

%
 o

f f
ile

s

File Size (bytes, log scale, power-of-2 bins)

Extrapolation (125 GB)

R
E

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12

8 2K 512K 128M 32G

%
 o

f b
yt

es

File Size (bytes, log scale, power-of-2 bins)

Extrapolation (125 GB)

R
E

Figure 3.6Accuracy of Interpolation and Extrapolation. Shows results of applying piece–
wise interpolation to generate file size distributions (by count and by bytes), for file systems of size
75 GB (a and b, respectively), and 125 GB (c and d, respectively).
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Distribution FS Region D K-S Test
(I/E) Statistic (0.05)

File sizes by count 75GB (I) 0.054 passed
File sizes by count 125GB (E) 0.081 passed
File sizes by bytes 75GB (I) 0.105 passed
File sizes by bytes 125GB (E) 0.105 passed

Table 3.5 Accuracy of interpolation and extrapolation. Impressions produces accurate
curves for file systems of size 75 GB and 125 GB, using interpolation (I) and extrapolation (E),
respectively.

the distribution of file sizes for file systems of size 10 GB, 50GB and 100 GB, shown in

the figure. Each power-of-two bin on the x-axis is treated as an individualsegment, and the

available data points within each segment are used as input for piece-wise interpolation;

the process is repeated for all segments of the curve. Impressions combines the individual

interpolated segments to obtain the complete interpolatedcurve.

To demonstrate the accuracy of our approach, we interpolateand extrapolate file size

distributions for file systems of sizes 75 GB and 125 GB, respectively. Figure 3.6 shows

the results of applying our technique, comparing the generated distributions with actual

distributions for the file system sizes (we removed this datafrom the dataset used for inter-

polation). We find that the simpler curves such as Figure 3.6(a) and (c) are interpolated and

extrapolated with good accuracy. Even for more challengingcurves such as Figure 3.6(b)

and (d), the results are accurate enough to be useful. Table 3.5 contains the results of con-

ducting K-S tests to measure the goodness-of-fit of the generated curves. All the generated

distributions passed the K-S test at the0.05 significance level.
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3.2.6 File Content

Actual file content can have substantial impact on the performance of an application.

For example, Postmark [70], one of the most popular file system benchmarks, tries to

simulate an email workload, yet it pays scant attention to the organization of the file system,

and is completely oblivious of the file data. Postmark fills all the “email” files with the

same data, generated using the same random seed. The evaluation results can range from

misleading to completely inaccurate, for instance in the case of content-addressable storage

(CAS). When evaluating a CAS-based system, the disk-block traffic and the corresponding

performance will depend only on the unique content – in this case belonging to the largest

file in the file system. Similarly, performance of Desktop Search and Word Processing

applications is sensitive to file content.

In order to generate representative file content, Impressions supports a number of op-

tions. For human-readable files such as.txt, .html files, it can populate file content with

random permutations of symbols and words, or with more sophisticated word-popularity

models. Impressions maintains a list of the relative popularity of the most popular words

in the English language, and a Monte Carlo simulation generates words for file content ac-

cording to this model. However, the distribution of word popularity is heavy-tailed; hence,

maintaining an exhaustive list of words slows down content generation. To improve per-

formance, we use a word-length frequency model [129] to generate the long tail of words,

and use the word-popularity model for the body alone.

According to the word-length frequency model the observed frequencies of word

lengths is approximated by a variant of the gamma distribution, and is of the general form:

fexp = a * Lb * cL , where fexp is the observed frequency for word-length L, and (a,b,c) are

language-specific parameters.

The user has the flexibility to select either one of the modelsin entirety, or a specific

combination of the two. It is also relatively straightforward to add extensions in the future to
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generate more nuanced file content. An example of such an extension is one that carefully

controls the degree of content similarity across files.

In order to generate content for typed files, Impressions either contains enough infor-

mation to generate valid file headers and footers itself, or calls into a third-party library or

software such as Id3v2 [96] formp3; GraphApp [57] forgif, jpeg and other image files;

Mplayer [93] formpeg and other video files; asciidoc forhtml; and ascii2pdf forPDF files.

3.2.7 Disk Layout and Fragmentation

To isolate the effects of file system content, Impressions can measure the degree of on-

disk fragmentation, and create file systems with user-defined degree of fragmentation. The

extent of fragmentation is measured in terms oflayout score[132]. A layout score of1

means all files in the file system are laid out optimally on disk(i.e., all blocks of any given

file are laid out consecutively one after the other), while a layout score of0 means that no

two blocks of any file are adjacent to each other on disk.

Impressions achieves the desired degree of fragmentation by issuing pairs of tempo-

rary file create and delete operations, during creation of regular files. When experimenting

with a file-system image, Impressions gives the user complete control to specify the overall

layout score. In order to determine the on-disk layout of files, we rely on the informa-

tion provided by debugfs. Thus currently we support layout measurement only for Ext2

and Ext3. In future work, we will consider several alternatives for retrieving file layout

information across a wider range of file systems. On Linux, the FIBMAP and FIEMAP

ioctl()s are available to map a logical block to a physical block [69]. Other file system-

specific methods exist, such as the XFSIOC GETBMAP ioctl for XFS.

The previous approach however does not account for differences in fragmentation

strategies across file systems. Impressions supports an alternate specification for the de-

gree of fragmentation wherein it runs a pre-specified workload and reports the resulting



86

layout score. Thus if a file system employs better strategiesto avoid fragmentation, it is

reflected in the final layout score after running the fragmentation workload.

There are several alternate techniques for inducing more realistic fragmentation in file

systems. Factors such as burstiness of I/O traffic, out-of-order writes and inter-file layout

are currently not accounted for; a companion tool to Impressions for carefully creating

fragmented file systems will thus be a good candidate for future research.

Time taken (seconds)
FS distribution (Default) Image1 Image2

Directory structure 1.18 1.26
File sizes distribution 0.10 0.28
Popular extensions 0.05 0.13
File with depth 0.064 0.29
File and bytes with depth 0.25 0.70
File content (Single-word) 0.53 1.44
On-disk file/dir creation 437.80 1394.84
Total time 473.20 1826.12

(8 mins) (30 mins)

File content (Hybrid model) 791.20 –
Layout score (0.98) 133.96 –

Table 3.6 Performance of Impressions. Shows time taken to create file-system images with
break down for individual features.Image1: 4.55 GB,20000 files,4000 dirs. Image2: 12.0 GB,
52000 files,4000 dirs. Other parameters are default. The two entries for additional parameters are
shown only forImage1 and represent times in addition to default times.

3.2.8 Performance

In building Impressions, our primary objective was to generate realistic file-system im-

ages, giving top priority to accuracy, instead of performance. Nonetheless, Impressions
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does perform reasonably well. Table 3.6 shows the breakdownof time taken to create a de-

fault file-system image of 4.55 GB. We also show time taken forsome additional features

such as using better file content, and creating a fragmented file system. Overall, we find

that Impressions creates highly accurate file-system images in a reasonable amount of time

and thus is useful in practice.

3.3 Case Study: Desktop Search

In this section, we use Impressions to evaluate desktop searching applications. Our

goals for this case study are two-fold. First, we show how simple it is to use Impressions

to create either representative images or images across which a single parameter is varied.

Second, we show how future evaluations should report the settings of Impressions so that

results can be easily reproduced.

We choose desktop search for our case study because its performance and storage re-

quirements depend not only on the file system size and structure, but also on the type of

files and the actual content within the files. We evaluate two desktop search applications:

open-source Beagle [21] and Google’s Desktop for Linux (GDL) [54]. Beagle supports a

large number of file types using52 search-filters; it provides several indexing options, trad-

ing performance and index size with the quality and feature-richness of the index. Google

Desktop does not provide as many options: a web interface allows users to select or exclude

types of files and folder locations for searching, but does not provide any control over the

type and quality of indexing.

3.3.1 Representative Images

Developers of data-intensive applications frequently need to make assumptions about

the properties of file-system images. For example, file systems and applications can of-

ten be optimized if they know properties such as the relativeproportion of meta-data to
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Figure 3.7 Tree Depth and Completeness of Index.Shows the percentage of files indexed
by Beagle and GDL with varying directory tree depths in a given file-system image
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App Parameter & Value Comment on Validity
GDL File content< 10 deep 10% of files and 5% of bytes> 10 deep

(content in deeper namespace is growing)
GDL Text file sizes< 200 KB 13% of files and 90% of bytes> 200 KB
Beagle Text file cutoff< 5 MB 0.13% of files and 71% of bytes> 5 MB
Beagle Archive files< 10 MB 4% of files and 84% of bytes> 10 MB
Beagle Shell scripts< 20 KB 20% of files and 89% of bytes> 20 KB

Figure 3.8 Debunking Application Assumptions.Examples of assumptions made by Beagle
and GDL, along with details of the amount of file-system content that is not indexed as a conse-
quence.

data in representative file systems. Previously, developers could infer these numbers from

published papers [8, 41, 120, 128], but only with considerable effort. With Impressions,

developers can simply create a sample of representative images and directly measure the

properties of interest.

Table 3.8 lists assumptions we found in GDL and Beagle limiting the search indexing

to partial regions of the file system. However, for the representative file systems in our data

set, these assumptions omit large portions of the file system. For example, GDL limits its

index to only those files less than ten directories deep; our analysis of typical file systems

indicates that this restriction causes 10% of all files to be missed.

Figure 3.7 shows one such example: it compares the percentage of files indexed by

Beagle and GDL for a set of file-system images. The topmost graph shows the results

for deepfile-system trees created by successively nesting a new directory in the parent

directory; a file system withD directories will thus have a maximum depth ofD. The

y-axis shows the % of files indexed, and the x-axis shows the number of directories in

the file system. We find that GDL stops indexing content after depth 10, while Beagle

indexes 100% of the files. The middle graph repeats the experiment on flat trees, with

all directories at depth1. This time, GDL’s percentage completeness drops off once the
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number of directories exceeds 10. For regular file system trees, shown in the lowermost

graph, we find that both Beagle and GDL achieve near 100% completeness. Since the

percentage of user-generated content deeper in the namespace is growing over the years, it

might be useful to design search indexing schemes which are better suited for deeper name

spaces.

This strange behavior further motivates the need for a tool like Impressions to be a

part of any application designer’s toolkit. We believe thatinstead of arbitrarily specifying

hard values, application designers should experiment withImpressions to find acceptable

choices for representative images.

We note that Impressions is useful for discovering these application assumptions and for

isolating performance anomalies that depend on the file-system image. Isolating the impact

of different file system features is easy using Impressions:evaluators can use Impressions

to create file-system images in which only a single parameteris varied, while all other

characteristics are carefully controlled.

This type of discovery is clearly useful when one is using closed-source code, such as

GDL. For example, we discovered the GDL limitations by constructing file-system images

across which a single parameter is varied (e.g., file depth and file size), measuring the

percentage of indexed files, and noticing precipitous dropsin this percentage. This type of

controlled experimentation is also useful for finding non-obvious performance interactions

in open-source code. For instance, Beagle uses theinotify mechanism [68] to track each

directory for change; since the default Linux kernel provides8192 watches, Beagle resorts

to manually crawling the directories once their count exceeds8192. This deterioration in

performance can be easily found by creating file-system images with varying numbers of

directories.
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3.3.2 Reproducible Images

The time spent by desktop search applications to crawl a file-system image is significant

(i.e., hours to days); therefore, it is likely that different developers will innovate in this area.

In order for developers to be able to compare their results, they must be able to ensure they

are using the same file-system images. Impressions allows one to precisely control the

image and report the parameters so that the exact same image can be reproduced.

For desktop search, the type of files (i.e., their extensions) and the content of files has

a significant impact on the time to build the index and its size. We imagine a scenario in

which the Beagle and GDL developers wish to compare index sizes. To make a meaning-

ful comparison, the developers must clearly specify the file-system image used; this can

be done easily with Impressions by reporting the size of the image, the distributions listed

in Table 3.2, the word model, disk layout, and the random seed. We anticipate that most

benchmarking will be done using mostly default values, reducing the number of Impres-

sions parameters that must be specified.

An example of the reporting needed for reproducible resultsis shown in Figure 3.9.

In these experiments, all distributions of the file system are kept constant, but only either

text files (containing either a single word or with the default word model) or binary files

are created. These experiments illustrate the point that file content significantly affects the

index size; if two systems are compared using different file content, obviously the results

are meaningless. Specifically, different file types change even the relative ordering of index

size between Beagle and GDL: given text files, Beagle createsa larger index; given binary

files, GDL creates a larger index.

Figures 3.10 gives an additional example of reporting Impressions parameters to make

results reproducible. In these experiments, we discuss a scenario in which different de-

velopers have optimized Beagle and wish to meaningfully compare their results. In this
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scenario, the original Beagle developers reported resultsfor four different images: the de-

fault, one with only text files, one with only image files, and one with only binary files.

Other developers later create variants of Beagle:TextCacheto display a small portion of

every file alongside a search hit,DisDir to disable directory indexing, andDisFilter to in-

dex only attributes. Given the reported Impressions parameters, the variants of Beagle can

be meaningfully compared to one another.

In summary, Impressions makes it extremely easy to create both controlled and rep-

resentative file-system images. Through this brief case study evaluating desktop search

applications, we have shown some of the advantages of using Impressions. First, Impres-

sions enables developers to tune their systems to the file system characteristics likely to be

found in their target user populations. Second, it enables developers to easily create images

where one parameter is varied and all others are carefully controlled; this allows one to
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Figure 3.10 Reproducible images: impact of content.Using Impressions to make results
reproducible for benchmarking search. Vertical bars represent file systems created with file content
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text-cache of documents used for snippets. DisDir – don’t add directories to the index. DisFilter –
disable all filtering of files, only index attributes.
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assess the impact of a single parameter. Finally, Impressions enables different developers

to ensure they are all comparing the same image; by reportingImpressions parameters, one

can ensure that benchmarking results are reproducible.

3.4 Other Applications

Besides its use in conducting representative and reproducible benchmarking, Impres-

sions can also be handy in other experimental scenarios. In this section we present two

examples, the usefulness of Impressions in generating realistic rules of thumb, and in test-

ing soundness of hypothesis.

3.4.1 Generating Realistic Rules of Thumb

In spite of the availability of Impressions, designers of file systems and related software

will continue to rely on rules of thumb to make design decisions. Instead of relying on old

wisdom, one can use Impressions to generate realistic rulesof thumb. One example of such

a rule of thumb is to calculate the overhead of file-system metadata – a piece of information

often needed to compute the cost of different replication, parity or check summing schemes

for data reliability. Figure 3.11 shows the percentage of space taken by metadata in a file

system, as we vary the distribution of file sizes. We find that the overhead can vary between

2 and 14% across the file size distributions in this example. Similarly, Impressions can be

used to compute other rules of thumb for different metadata properties.

3.4.2 Testing Hypothesis

In our experience, we found Impressions convenient and simple to use for testing hy-

pothesis regarding application and file system behavior, hiding away the statistical com-

plexity of the experiment from the end-user. To illustrate this, we describe our experience

with a failedexperiment.
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in parentheses for the two extremes).

It was our hypothesis that the distribution of bytes and filesby namespace depth would

affect the time taken to build the search index: indexing filecontent in deeper namespace

would be slower. To test our hypothesis, all we had to do was use Impressions to create

file-system images, and measure the time taken by Beagle to build the index, varying only

a single parameter in the configuration file for each trial: theλ value governing the Poisson

distribution for file depth. Although our hypothesis was notvalidated by the results (i.e.,

we didn’t find significant variation in indexing time with depth), we found Impressions to

be suitable and easy to use for such experimentation.
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3.5 Related Work

We discuss previous research in three related areas. First,we discuss existing tools for

generating file-system images; second, we present prior research on improving file sys-

tem benchmarking; finally, we discuss existing models for explaining file system metadata

properties.

3.5.1 Tools for Generating File-System Images

We are not aware of any existing system that generates file-system images with the level

of detail that Impressions delivers; here we discuss some tools that we believe provide some

subset of features supported by Impressions.

FileBench, a file system workload framework for measuring and comparing file system

performance [112] is perhaps the closest to Impressions in terms of flexibility and attention

to detail. FileBench generates test file system images with support for different directory

hierarchies with namespace depth and file sizes according tostatistical distributions. We

believe Impressions includes all the features provided by FileBench and provides additional

capabilities; in particular, Impressions allows one to contribute newer datasets and makes

it easier to plug in distributions. FileBench also does not provide support for allowing

user-specified constraints.

The SynRGen file reference generator by Ebling and Satyanarayan [44] generates syn-

thetic equivalents for real file system users. Thevolumesor images in their work make use

of simplistic assumptions about the file system distributions as their focus is on user access

patterns.

File system and application developers in the open-source community also require file-

system images to test and benchmark their systems, tools forwhich are developed in-house,

often customized to the specific needs of the system being developed.
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Genbackupdata is one such tool that generates test data setsfor performance testing of

backup software [155]. Like Impressions, but in a much simplified fashion, it creates a

directory tree with files of different sizes. Since the tool is specifically designed for backup

applications, the total file system size and the minimum and maximum limits for file sizes

are configurable, but not the file size distribution or other aspects of the file system. The

program can also modify an existing directory tree by creating new files, and deleting,

renaming, or modifying existing files, inducing fragmentation on disk.

Another benchmarking system that generates test file systems matching a specific pro-

file is Fstress [12]. However, it does contain many of the features found standard in Im-

pressions, such as popularity of file extensions and file content generation according to

file types, supporting user-specified distributions for filesystem parameters and allowing

arbitrary constraints to be specified on those parameters.

3.5.2 Tools and Techniques for Improving Benchmarking

A number of tools and techniques have been proposed to improve the state of the art

of file and storage system benchmarking. Chen and Patterson proposed a “self-scaling”

benchmark that scales with the I/O system being evaluated, to stress the system in mean-

ingful ways [32]. Although useful for disk and I/O systems, the self-scaling benchmarks

are not directly applicable for file systems.

TBBT is a NFS trace replay tool that derives the file-system image underlying a

trace [162]. It extracts the file system hierarchy from a given trace in depth-first order

and uses that during initialization for a subsequent trace replay. While this ensures a con-

sistent file-system image for replay, it does not solve the more general problem of creating

accurately controlled images for all types of file system benchmarking.

The Auto-Pilot tool [159] provides an infrastructure for running tests and analysis tools

to automate the benchmarking process. Auto-Pilot can help run benchmarks with relative
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ease by automating the repetitive tasks of running, measuring, and analyzing a program

through test scripts.

3.5.3 Models for File-System Metadata

Several models have been proposed to explain observed file-system phenomena.

Mitzenmacher proposed a generative model, called the Recursive Forest File model [90]

to explain the behavior of file size distributions. The modelis dynamic as it allows for the

creation of new files and deletion of old files. The model accounts for the hybrid distribu-

tion of file sizes with a lognormal body and Pareto tail.

Downey’s Multiplicative File Size model [43] is based on theassumption that new files

are created by using older files as templates e.g., by copying, editing or filtering an old file.

The size of the new file in this model is given by the size of the old file multiplied by an

independent factor.

The HOT (Highly Optimized Tolerance) model provides an alternate generative model

for file size distributions. These models provide an intuitive understanding of the underly-

ing phenomena, and are also easier for computer simulation.In future, Impressions can be

enhanced by incorporating more such models.

3.6 Conclusion

File system benchmarking is in a state of disarray. One key aspect of this problem is

generating realistic file-system state, with due emphasis given to file-system metadata and

file content. To address this problem, we have developed Impressions, a statistical frame-

work to generate realistic and configurable file-system images. Impressions provides the

user flexibility in selecting a comprehensive set of file system parameters, while seamlessly

ensuring accuracy of the underlying images, serving as a useful platform for benchmarking.



99

In our experience, we find Impressions easy to use and well suited for a number of

tasks. It enables application developers to evaluate and tune their systems for realistic file

system characteristics, representative of target usage scenarios. Impressions also makes it

feasible to compare the performance of systems by standardizing and reporting all used

parameters, a requirement necessary for benchmarking. We believe Impressions will prove

to be a valuable tool for system developers and users alike; we have made it publicly avail-

able for download. Please visit the URLhttp://www.cs.wisc.edu/adsl/Software/

Impressions/ to obtain a copy.
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Chapter 4

Practical Storage System Benchmarking withCompressions

File and storage systems are currently difficult to benchmark. So far we have discussed

two important challenges in file-system benchmarking: recreating benchmarking state rep-

resentative of real-world conditions, and ensuring reproducibility of the benchmarking state

to allow fair comparison. The time and effort required to ensure that the above conditions

are met often discourages developers from using benchmarksthat matter, settling instead

for the ones that are easy to set up and use. These deficienciesin benchmarking point to

a thematic problem – when it comes to actual usage, ease of useand practicality often

overshadow realism and accuracy.

In practice, realistic benchmarks (and realistic configurations of such benchmarks) tend

to be much larger and more complex to set up than their trivialcounterparts. File system

traces (e.g., from HP Labs [113]) are good examples of such workloads, often being large

and unwieldy. In many cases the evaluator has access to only amodest storage capacity,

making it harder still to employ large, real workloads.

Two trends further exacerbate the problems in file and storage benchmarking. First,

storage capacities have seen a tremendous increase in the past few years; Terabyte-sized

disks are now easily available for desktop computers; enterprise systems are now frequently

working with Petabyte-scale storage. The problem with using large file-system images for

experimentation is that creating and running workloads on them can be time consuming.

Second, real applications and benchmarks that developers and evaluators care about are
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taking increasingly longer to run. Examples of such applications include file-system in-

tegrity checkers likefsck, desktop search indexing, and backup software, taking anywhere

from several hours to a few days to run on a Terabyte-sized partition.

Benchmarking with such applications on large storage devices is a frequent source of

frustration for file-system evaluators; the scale alone acts as a strong deterrent against us-

ing larger albeit realistic benchmarks [146]. Given the rate at which storage capacities are

increasing, running toy workloads on small disks is no longer a satisfactory alternative.

One obvious solution is to continually upgrade one’s storage capacity. However, this is an

expensive, and perhaps an infeasible solution, especiallyto justify the costs and adminis-

trative overheads solely for benchmarking.

In order to encourage developers of file systems and related software to adopt larger,

more realistic benchmarks and configurations, we need meansto make them practical to

run on modest storage infrastructure. To address this problem, we have developed Com-

pressions, a “scale down” benchmarking system that allows one to run large, complex

workloads using relatively small storage capacities byscaling downthe storage require-

ments transparent to the workload. Compressions makes it practical to experiment with

benchmarks that were otherwise infeasible to run on a given system.

Our observation is that in many cases, the user does not care about the contents of

individual files, but only about the structure and properties of the metadata that is being

stored on disk. In particular, for the purposes of benchmarking, many applications do not

write or read file contents at all (e.g., fsck); the ones that do, often do not care what the

contents are as long assomevalid content is made available (e.g., a backup software). Since

file data constitutes a significant fraction of the total file system size, ranging anywhere

from 90 to 99% depending on the actual file-system image (Chapter 2), avoiding the need to

store file data has the potential to save a lot of time and storage space during benchmarking.
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The key idea in Compressions is to create a “compressed” version of the original file-

system image for the purposes of benchmarking. In the compressed image, unneeded user

data blocks are omitted and file system metadata blocks (e.g., inodes, directories and in-

direct blocks) are laid out more efficiently on disk; in the simplest case, metadata blocks

are written out consecutively from the beginning of the disk. To ensure that applications

and benchmark workloads remain unaware of this interposition, whenever necessary, Com-

pressions synthetically produces file data using a suitablymodified version of Impressions;

metadata reads and writes are redirected and accessed appropriately. Compressions uses an

in-kernel model of the disk and storage stack to determine the runtime of the benchmark

workload on the original uncompressed image. The storage model calculates the run times

of all individual requests as they would have executed on theuncompressed image.

In our evaluation of Compressions with workloads like PostMark,mkfs (a tool to build

a file system on a storage device) and other microbenchmarks,we find that Compressions

delivers on its promise and reduces the required storage size and the runtime. Depending

on the workload and the underlying file-system image, the size of the compressed image

can range anywhere from1 to 10% of the original, a huge reduction in the required disk

size for benchmarking. Compressions also reduces the time taken to run the benchmark

by avoiding a significant fraction of disk I/O and disk seeks.The storage model within

Compressions is fairly accurate in spite of operating in real-time, and imposes an almost

negligible overhead on the workload execution.

Compressions supports two modes of operation – in the first mode, the storage model

returns instantaneously after computing the time taken to run the benchmark workload on

the uncompressed disk; in the second mode, Compressions models the runtime and intro-

duces an appropriate delay before returning to the application. Compressions thus allows

one to run benchmark workloads that require file-system images orders of magnitude larger
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than the available disk, and to run much faster than usual if needed, all this while still re-

porting the runtime as it would have taken on the original image; we believe Compressions

provides a practical approach to run large, real workloads with a modest overhead and

virtually no extra expense in frequently upgrading storageinfrastructure for benchmarking.

In this chapter we present the design, implementation and evaluation of the Compres-

sions benchmarking system. We start with a background on thestorage stack and modeling

storage systems in§4.1 and then present the design details of Compressions in§4.2; the

storage model developed for Compressions is discussed separately in§4.3. We present the

evaluation results for Compressions in§4.4, discuss related research in§4.5, and conclude

in §4.6.

4.1 Background
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Figure 4.1 The storage stack.We present a schematic of the entire storage stack. At the top
is the file system; beneath are the many layers of the storage subsystem. Gray shading implies
software or firmware, whereas white (unshaded) is hardware.
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This section provides a background on the components of the storage stack and how to

model each of them. We first provide a brief overview of the storage stack in a computer

system, and then present an overview on modeling disk drivesand the storage stack.

4.1.1 Storage Stack

A storage stack consists of many different layers each providing an abstraction of the

layer beneath to the layer above. Figure 4.1 shows the storage stack in a typical computer

system with the disk drive at the bottom of the stack. The drive can be a traditional rotating

hard disk, or a solid-state disk [10]. A hard disk contains magnetic storage media which

stores the data and numerous other electrical and mechanical components to provide access

to the media for reading and writing data. Most disks also have a small amount of on-board

cache serving as a buffer for writes and for prefetching reads. Solid-state disks (SSDs) are

constructed using some form of cell-based non-volatile memory such as NAND or NOR

flash as the storage media. In addition, SSDs also contain some amount of RAM and a

controller to maintain logical to physical mappings and process requests.

Another important component present in disk drives is the firmware: complex embed-

ded code to control and manage the disk, and provide higher-level functions. A transport

medium connects the drive to the host. SCSI, IDE and SATA are some common forms of

bus transport protocols.

At the host, a hardware device controller provides a communication pathway to the

external device. Higher up in the storage hierarchy are software components starting with

the device driver that controls the hardware. The file systemand the generic block I/O layer

form the next set of layers. The generic block I/O layer provides functionality common to

all (or several) file systems, such as prefetching, block reordering and even some error

handling. The file system sits on top of the block I/O layer, managing its internal data

structures and providing specific functionalities. A generic file system layer is commonly
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used to provide a standard interface to the applications using the file system (e.g., POSIX).

The generic file system layer maps generic operations to file system specific operations

through another standardized interface (e.g., Vnode/VFS [73]).

4.1.2 Storage Systems

When evaluators wish to benchmark a system for which a prototype does not exist or

one that is otherwise difficult to obtain and set up, a model ofthe system can be used

instead. In order to model any system we must first understandits behavior. In this section

we present a brief overview of storage systems . Since the focus of this dissertation is on

evaluating performance and not other aspects of a system such as reliability, the discussions

on modeling a storage system are geared towards the components and features that are

crucial for measuring performance. We start with a primer ondisk drives and then briefly

discuss the remainder of the storage stack.

4.1.2.1 Disk Drives

Modern disk drives are extremely complex; modeling a disk drive requires a thorough

understanding of its internal structure and interactions between various components. A

typical hard disk consists of magnetic media, electrical and mechanical components. In

addition, most disks have a small amount of memory, and firmware to manage the disk. A

hard disk contains one or moreplattersof magnetically coated media to record data, with

each platter having two surfaces to hold data. A dedicated read/write head is provisioned

for each surface of a platter. An arm assembly moves the read/write heads into position

for individual request, with an actuator servo mechanism providing precise control over the

placement of the head.

Data is laid out on the platter in concentric circular tracks. A single platter may contain

tens of thousands of tracks, each further subdivided intosectors, the smallest addressable
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unit of data storage. Sectors are usually 512 bytes in size, however their real physical size

is sometimes expanded (520 bytes) to provide some extra space to store error correcting

codes (ECC). The outer tracks in modern disk drives are denser and therefore have higher

transfer rate than the inner tracks. This phenomenon is often called diskzoningand is

utilized to improve performance by laying out frequently accessed data on the outer tracks.

To the host system the disk appears as a linear array of addressable blocks. The file

system can choose the block size at the time of volume creation and is usually between 512

and 4096 bytes. Each individual block is identified by a logical address (block number)

and the disk internally maintains a mapping to corresponding disk sectors.

4.1.2.2 Storage Stack

The disk drive is perhaps the single most complex entity to model in the storage stack

but other components of the stack also need to be modeled for overall accuracy. Important

amongst them from a performance perspective are the transport and the request queues at

each layer in the storage stack.

The transport is usually a bus protocol for lower-end systems (e.g., ATA or SCSI),

whereas networks are common in higher-end systems (e.g., FibreChannel). Modeling the

transport requires modeling the bus transfer bandwidth andits command and communica-

tion protocol.

Each block device driver in a system also maintains arequest queuethat contains the

list of all requests pending submission to the corresponding device. The request queues

act as containers for performing I/O scheduling operationslike request re-ordering and

request merging to improve disk performance. A newly created I/O request is not serviced

immediately but instead gets added to the appropriate request queue.
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4.2 The Compressions Framework

In this section we present the design and implementation of Compressions: a bench-

marking system that makes it practical to run large, real workloads using a relatively mod-

est storage capacity. We first present the design goals for Compressions, then discuss its

overall architecture, and finally describe in detail all itsconstituent subsystems.

4.2.1 Design Goals

The design of Compressions is influenced by the following goals:

• Scalability: Running large, real benchmarks with a modest storage capacity requires

Compressions to maintain additional data structures and mimic several operations on

its own; our goal is to ensure that Compressions works well asdisk capacities scale.

• Accuracy: Compressions needs to model a large number of I/Os concurrent with

workload execution; our goal is to be able to accurately predict application runtime

without slowing the system down.

• No application modification: In building Compressions our goal is to avoid the need

to change applications or benchmarks. A benchmark workloadshould be able to run

unmodified on Compressions without knowing that the storagesystem underneath

has significantly less capacity than advertised.

• Easy to use: In our experience with developing and benchmarking file system and

storage technologies we have observed that the importance of ease of use is often

under-estimated. In designing Compressions, one of our goals is to provide an intu-

itive, easy to use interface to the user.

• Speedier benchmarking: System design is often an iterative process and bench-

marking the systems can be time consuming. If the application under test does not
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have strict timing dependencies, Compressions can speedupworkload execution if

desired and act as a catalyst for benchmarking.

4.2.2 Basic Architecture

Compressions consists of four primary components: a mechanism for block classifica-

tion and elimination of writes to data blocks; the MetaMap for remapping metadata blocks,

the DataGenerator for generating synthetic file content, and the Storage Model to compute

the actual runtime of an application on a storage system of choice.

The different components of Compressions are used in tandemto allow large workloads

to run on a storage system with limited capacity. First, Compressions intercepts and dis-

cards all non-essential writes (i.e., writes to file data blocks) to reduce the amount of storage

space and I/O traffic to the disk. Second, a small fraction of writes to essential blocks (i.e.,

metadata blocks) are passed on to the real device. These writes are suitably remapped so

as to lay them out more efficiently on disk, requiring a smaller storage capacity. Third, in

order to deliver accurate timing statistics, a model of the underlying storage stack and disk

is maintained. Finally, synthetic content is generated in order to service read requests to

data blocks that were previously discarded.

Figure 4.2 shows the basic architecture of Compressions andits placement in the stor-

age stack as a software layer directly beneath the file systemand above the storage disk

(i.e., as a pseudo-device). This pseudo-device appears as a regular disk to the file system

and interposes on all I/O requests to the real storage device.

The pseudo-device driver is responsible for classifying blocks addressed in a request

as data or metadata and preventing I/O requests to data blocks from going to the real disk

(i.e., squashing). The pseudo-device driver intercepts all writes to data blocks, records the

block address if necessary, and discards the actual write. I/O requests to metadata blocks

are passed on to the MetaMap.
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The MetaMap module is responsible for laying out metadata blocks more efficiently on

the disk. It intercepts all write requests to metadata blocks, generates a remapping for the

set of blocks addressed in the request, and writes out the metadata blocks to the remapped

locations. The remapping is stored in the MetaMap to servicesubsequent reads to these

metadata blocks.

By performing the above mentioned tasks, the pseudo-devicedriver and the MetaMap

modify the original I/O request stream by altering the location of metadata blocks on disk

and discarding data blocks altogether. These modificationsin the disk traffic substantially

change the application runtime, rendering it less useful for benchmarking. The Storage

Model in Compressions provides an extrication from this predicament by carefully simu-

lating a potentially different storage subsystem underneath to model the time taken to run.

By doing so in an online fashion with little overhead, the Storage Model makes it feasible

to run large workloads in a space and time-efficient manner.

Writes to data blocks are not saved on disk, but reads to theseblocks could still be issued

by the application; in order to allow applications to run transparently, the DataGenerator

is responsible for generating synthetic content to servicesubsequent reads to data blocks

that were written earlier during benchmarking and discarded. The DataGenerator contains

a number of built-in schemes to generate different kinds of content and also allows the

application to provide hints to generate more tailored content.

The details of the individual components are discussed nextin this section, except the

disk model, which is discussed separately in Section 4.3.

4.2.3 Block Classification and Data Squashing

One of the primary requirements for Compressions to operateis the ability to classify

a block as metadata or data. Compressions leverages prior work on Semantically-smart
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Disk Systems [130] to implement block classification insidethe pseudo-device driver; each

block read or written to the pseudo-device can be classified as data or metadata.

For file systems belonging to the FFS family, such as Ext2 and Ext3, the majority of the

blocks are statically assigned for a given file system size and configuration at the time of file

system creation; the allocation for the statically assigned blocks doesn’t change during the

lifetime of the file system. Blocks that fall in this categoryinclude the super block, group

descriptors, inode and data bitmaps, inode blocks and blocks belonging to the journal.

Dynamically allocated blocks include directory, indirect(single, double, or triple indirect)

and data blocks. Unless all blocks contain some self-identification information, in order

to accurately classify a dynamically allocated block, the system needs to track the inode

that points to the particular block and infer its current status. Compressions tracks writes to
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inode blocks, inode bitmaps and data bitmaps to infer when a file or directory is allocated

and deallocated; it uses the content of the inode to enumerate the indirect and directory

blocks that belong to a particular file or directory. This classification is used subsequently

to either squash or remap a given block in atype-awarefashion [106] based on its current

status as a data or metadata block.

There are two benefits to data squashing. First, the total storage capacity required in

absence of data blocks is substantially lower than before. Second, avoiding writes to data

blocks reduces the number of disk I/Os and correspondingly the disk seeks, improving the

runtime.

Figure 4.3 shows the relative ratio of metadata to data blocks with varying file-size

distributions. As seen in the figure, file systems typically have a much higher percentage

of data blocks as compared to metadata, ranging anywhere from 90 to 99%; the higher

the ratio of data writes, the greater the advantages of data squashing. Having such a high

fraction of blocks as data makes data squashing an especially attractive feature to have for

benchmarking applications where file contents are not read subsequent to being written. A

good example of such an application is a file system integritychecker such asfsck.

4.2.3.1 Data Cache

In Compressions the classification of dynamically allocated blocks depends on observ-

ing a write to the corresponding inode entry. It is often the case that the blocks pointed to

by an inode are written out before the corresponding inode block; if a classification attempt

is made at this time, an indirect or directory block will be misclassified as an ordinary data

block. Eventually the inode block is written, such as due to aperiodic flush of the buffer

cache, and the misclassification can be rectified. This is unacceptable for Compressions

since a transient error leads to the “data” block being discarded prematurely and could
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cause irreparable damage to the file system. For example, if adirectory or indirect block is

accidentally discarded, it could lead to file system corruption.

To rectify this problem, Compressions temporarily buffersall data blocks in theData

Cacheuntil an accurate classification can be made or a pre-specified time quanta expires,

whichever happens first. The design of the Data Cache is relatively straightforward – all

dynamically allocated blocks for which a corresponding inode entry has not yet been writ-

ten are added to the Data Cache. When an inode does get written, blocks that are classified

as directory or indirect are passed on to the MetaMap for remapping and are written out to

persistent storage, whereas blocks classified as data are discarded at that time; all entries

corresponding to that inode are then removed. To prevent data blocks from indefinitely

occupying space, the Data Cache periodically cleans out data block entries for which no

inode write has been observed for some time; this time quantais usually set equal to or

greater than the frequency with which contents of the file system buffer cache are flushed

out to disk which is typically less than a minute.
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4.2.4 Metadata Remapping

With data squashing turned on, disk I/O is issued only for metadata blocks and leads

to sparse block allocation over the entire disk. In order to make efficient use of the avail-

able storage, Compressions reclaims the space meant for the(unused) data block locations

through the MetaMap, wherein metadata blocks are remapped to a contiguous region of the

disk, typically starting at the beginning of the disk partition. Figure 4.4 shows how Com-

pressions makes use of metadata remapping to free up a large percentage of the required

disk space; a much smaller disk can now service the requests of the benchmark workload.

Compressions creates a remap entry for each metadata block (e.g., super block, indi-

rect block etc) or range of metadata blocks (e.g., group descriptors, inode block table etc)

in the MetaMap; by allowing an arbitrary range of blocks to beremapped together, the

MetaMap provides an efficient translation service for blockallocation, lookup and deallo-

cation. Range remapping also preserves sequentiality of the blocks on disk. In addition,

a remap bitmapis maintained to keep track of block allocation and deallocation for the

compressed disk image represented by the MetaMap; the remapbitmap supports allocation

both of a single remapped block and a range of remapped blocks. For the Ext3 file system,

since most of the blocks are statically allocated, the remapping for these blocks can also

be done statically. Subsequent writes to other metadata blocks are remapped dynamically;

when metadata blocks are deallocated, corresponding entries from the MetaMap and the

remap bitmap are removed.

The MetaMap thus has the following two advantages. First, bycompacting the sparsely

allocated blocks, a large portion of the disk space is freed up, paving the way for a smaller

disk to suffice the requirements. Second, by laying out metadata blocks more efficiently

on disk (e.g., sequentially), MetaMap improves performance of metadataoperations by

requiring fewer disk seeks.
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4.2.5 Synthetic Content Generation

Compressions services the requirements of systems oblivious to file content with data

squashing and metadata remapping alone. However, many realapplications and bench-

marks care about file content; the DataGenerator component of Compressions is respon-

sible for generating synthetic content to service read requests to data blocks that were

previously discarded. Different systems can have different requirements for the file content

and the DataGenerator has various options to choose from.

Many systems (or benchmarks) that read back previously written data do not care about

the specificcontent within the files as long as there issomecontent (e.g., a file-system

backup utility, or the Postmark benchmark). For such systems it is sufficient to return

garbage or randomly generated content in lieu of what was originally written; the simplest

data generation schema in Compressions does precisely that.

Systems can read file contents and expect it to have valid syntax and semantics; the per-

formance of these systems depend on the actual content beingread (e.g., a desktop search

engine for a file system, or a spell-checker). For such systems, naive content generation

would either crash the application or give poor benchmarking results. Compressions lever-

ages our prior work on building the Impressions framework togenerate suitable file content,

using a number of existing analytical models for natural language content as discussed ear-

lier in Chapter 3; Compressions contains a very limited in-kernel port of the file content

generation capabilities of Impressions.

Finally, systems can expect to read back data exactly as theywrote earlier (i.e., a read-

after-write or RAW dependency) or expect a precise structure that cannot be generated

arbitrarily (e.g., a binary file). We have provided additional support to run more demanding

applications as well; theRAW cacheprovides the necessary functionality to service appli-

cations with strict RAW requirements for file data, and theProfile Storesupports means for

applications to select or download a custom content profile specifying how Compressions
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should generate content suitable for the current application. We next discuss the RAW

cache and the profile store in greater detail.

4.2.5.1 The RAW Cache

While Compressions is best suited for applications that do not read file data at all or

require data to be read back but not necessarily match what was written, we provide support

to run applications that require more precise semantics fordata blocks. We term these

applications as having a read-after-write (RAW) dependency for data blocks; Compressions

provides a cache for storing some or all data belonging to applications that have a RAW

dependency.

The RAW cache is implemented as a fixed-size circular on-disklog, the size of which

can be specified by the application during initialization. Subsequently, writes to data blocks

with RAW dependency are not squashed but instead written to the RAW cache; reads to

these data blocks are serviced from the RAW cache instead of being synthetically gener-

ated.

The RAW cache is designed as a cooperative resource visible to the user and config-

urable to suit the needs of different applications. In orderto decide which blocks need to be

stored in the RAW cache, the application has several optionsto chose from with different

tradeoffs for space requirement and performance:

• All Data : If the largest working set of the application is small enough to fit in the

RAW cache in its entirety, all data blocks are written to the RAW cache. Note that this

is not the same as allowing all data writes to go through to thedisk (i.e., no squashing)

since the size of the RAW cache is fixed and data blocks do get remapped, reusing

the circular log over the course of the workload execution; this is the default option

in Compressions.
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• Memoization: An optimization over the previous approach is tomemoizeor remem-

ber what previously written blocks looked liked, a concept popular in AI systems

and compilers wherein the results of a set of calculations are tabulated to avoid re-

peating those calculations [82]. A “memoizing” DataGenerator stores the contents

of previously read or written data blocks and uses them to service future requests.

Memoization works best when a small set of data blocks can mimic a larger set of

data blocks as used by the application to reduce the size of the RAW cache. For

example, if all binary files used by an application have a similar internal structure,

saving all the blocks corresponding to one file can help regenerate blocks for all other

files.

• Modified Applications: If the application requires complete control over the file data

blocks that need to be stored, it can specify so to Compressions either by providing

the relevant block addresses or by placing a knownmagic numberin the contents

of the relevant data blocks. This approach provides efficiency in storing only the

data blocks that are deemed relevant at the cost of modifyingthe application. For

example, repeated in-house benchmarking of an applicationcan get the most benefit

out of Compressionsthrough a one-time cost of customization.

4.2.5.2 The Profile Store

Applications can require precisely structured data blockswithout necessarily requiring

the block being read to be exactly the same as the one written.Examples include applica-

tions working with file types that have a well defined structure that is publicly known (e.g.,

HTML, XML, audio and video files), or ones that are specific to the application under test.

In both these cases the profile store can contain a profile describing the structure of the

particular file type, either selected from a built-in set of profiles, or as downloaded by the
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application prior to the start of benchmarking; the DataGenerator interprets the profile and

generates file content accordingly.

4.3 The Storage Model

Not having access to the real storage system requires Compressions to precisely capture

the behavior of the entire storage stack with all its dependencies through a model. In this

section we first discuss the design goals of the model and thenpresent the details of our

disk and storage stack model.

4.3.1 Model Expectations and Goals

The usage scenario in Compressions has strongly influenced the development of our

storage model; we focused on the following design goals:

• Accuracy: The foremost requirement for the model is to accurately predict perfor-

mance for a storage device. The model should not only characterize the physical

characteristics of the disk drive and other hardware components, but also the interac-

tions of these components under different workload patterns.

• Model overhead: Equally important to being accurate is the requirement thatthe

model imposes minimal overhead; since the model is in the operating system kernel

and runs concurrently with workload execution, it is required to be fairly fast.

• Portability: The model should also be reasonably portable across different disks

and storage systems. Having a generic model applicable to many different systems

is hard, instead we aimed for one that required minimal manual tuning when porting

across disk systems.

As a general design principle, to support low-overhead modeling without compromis-

ing accuracy, we avoided using any technique that either relies on storing empirical data
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to compute statistics or requires table-based approaches to predict performance [13]; the

overheads for such methods are directly proportional to theamount of runtime statistics be-

ing maintained which in turn depends on the size of the disk. Instead, wherever applicable,

we adopted and developed analytical approximations that did not slow the system down;

our resulting models are sufficiently lean while still beingfairly accurate.

The Storage Model is designed to run as a separate thread of execution concurrent with

the workload execution; calls to the model are non-blockingand return immediately so as

to not stall the foreground workload. The Storage Model harnesses idle CPU cycles to

perform model computations in the background.

To ensure portability of our models, we have refrained from making device specific

optimizations to improve accuracy. We believe our current models are fairly accurate for

classes of disks and are adaptive enough to be easily configured for changes in disk drives

and other parameters of the storage stack.

4.3.2 The Device Model

The device model in Compressions takes into account the following drive components

and mechanisms based on a detailed model of disk drives proposed by Ruemmler and

Wilkes [119]:

• Seek, rotation and transfer from disk media

• Disk caches (track prefetching, write-through and write-back)

Throughout the rest of this chapter, we will refer to the model proposed by Ruemmler

and Wilkes as the RW model.
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4.3.2.1 Drive Parameter Extraction

The device model requires a number of drive-specific parameters as input, for example,

the disk size, rotational speed and number of cylinders; Table 4.1 contains a list of param-

eters modeled in the device model of Compressions. Most of the parameters are extracted

from the drive itself by running a suite of carefully controlled microworkloads. When

available, the drive manual serves as a useful resource bothto corroborate our parameter

extraction process and to get accurate values for parameters that are hard to obtain using

microworkloads; we try to keep the reliance on the manual to aminimum.

Note that the above mentioned process is applicable only when the original higher ca-

pacity disk is available to the evaluator; Compressions is envisioned for use in environments

when the originally desired drive itself may not be available, rather a smaller capacity drive

is used as a substitute. In the latter case, it is left to the evaluator to supply the configuration

of the original drive to the device model.

4.3.2.2 Modeling Seek, Rotation and Transfer

We model disk seeks, rotation time and transfer times much inthe same way as pro-

posed in the RW model. A seek in the device model is composed ofaspeedupphase, where

the disk arm accelerates from the source track until it reaches half of the seek distance, a

coastphase for long seeks, where the disk arm moves at a constant speed, aslowdown

phase, where the arm comes to a rest near the destination disktrack after deceleration,

and finally asettlephase, where the disk controller settles the disk head onto the desired

location.

As per the RW model, very short seeks (few cylinders) are modeled using only the

settle time, and short seeks (few hundred seeks) are modeledprimarily by the constant

speedup phase. The time for short seeks is proportional to the square root of the distance

between the source and destination cylinders plus the settle time. The actual parameter
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Parameter Value

Disk size 80 GB
Rotational Speed 7200 RPM

Number of cylinders 88283
Number of zones 30
Blocks per track 567 to 1170

Cylinders per zone 1444 to 1521
On-disk cache size 2870 KB

Disk cache segment size 260 KB
Disk cache number of segments 11
Disk cache read/write partition Varies

Transfer bandwidth 133 MBps
Seek profile (long seeks; cyl≥ 14000) 3800 + (cyl * 116)/1000
Seek profile (short seeks; cyl< 14000) 300 +

√

(cyl ∗ 2235)
Head switch time 1.4 ms

Cylinder switch time 1.6 ms

Table 4.1 Device Model Parameters in Compressions.List of important parameters used
to model a disk drive extracted from the drive or pre-configured by the user.

Parameter Value

Device driver request queue size 128 to 160 requests
Request scheduling policy FIFO (can vary across workloads)
Delay period for timeout 3 ms

Table 4.2 Non-device Storage Model Parameters in Compressions.List of important
parameters used to model other parameters in the storage stack obtained through microbenchmarks
or pre-configured by the user.
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values defining the above properties are specific to a drive, which we refer to as theseek

profileof a disk drive.

For an available disk, our device model determines the actual seek profile by running

a series of controlled reads to different locations on disk and measures the time taken to

complete the read, varying the source and destination address pair each time in a stepwise

fashion. To account for time spent in rotation, we delay the start of a subsequent read until

it matches the time taken to perform one full rotation, whichis subtracted out to determine

the contribution of seek alone.

Rotation time is controlled by the disk rotational speed in RPM (rotations per minute);

the transfer bandwidth is based on the time taken to read and write one sector from the disk

media. For most cases involving random I/O, seek times dominate the rotation and transfer

times; sustained transfer bandwidth becomes more relevantfor sequential reads and writes.

4.3.2.3 Disk Cache Modeling

The device model also incorporates the cache resident on thedisk drive. The drive

cache is usually small (few hundred KB to a few MB at most in current drives) and serves

to cache reads from the disk media to service future reads, orto buffer writes.

The disk drive can also “pre-fetch” disk blocks into the cache to service anticipated read

requests through read-ahead from the currently read location. Disk caching can dramati-

cally alter the timing for a disk request since the request can be serviced almost immediately

as compared to an expensive seek; modeling the read cache is acrucial component of a disk

model. Unfortunately, the drive cache is one of the least specified components as well; the

cache management logic is low-level firmware code which is not easy to model.

To model the disk cache (a segmented cache), we found out the number and size of

segments in the disk drive cache and the number of disk sector-sized slots in each segment

using a set of simple microbenchmarks. By writing an increasing number of sectors to
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spatially separated locations, and observing when the timetaken to complete the writes

shows a sharp increase, we can identify the number of individual segments in the cache.

By writing to spatially adjacent locations, and again increasing the number of writes till

a sharp increase in time is observed, we can identify the sizeof an individual segment.

Partitioning of the cache segments into read and write caches, if any, can be found out

similarly by issuing a controlled mix of read and write operations.

We model the read cache as one with a least-recently-used eviction policy. The disk

cache can also serve as a write buffer to temporarily hold incoming write requests before

being written to the media (i.e., a write-back cache). However, since the cache is volatile,

the contents of the cache are subject to being lost on a power failure. For this reason,

most system administrators prefer to turn off write buffering, or use write-through caches

instead, where a write is written to the buffer but not reported complete until it is written to

the media; the write buffer in that case can service future reads without reading it from the

media.

To model the effects of write caching in the device model, we maintain statistics on

the current size of writes pending in the cache and the time needed to flush these writes

out to the media. Write buffering is simulated by periodically emptying a fraction of the

contents of the write cache during idle periods in between successive foreground requests;

the amount of writes flushed in any iteration are modeled in accordance with the statistics

on the flush rate and the available idle time.

4.3.3 Storage Stack Model

The drive is perhaps the single most complex component to be modeled in the storage

stack, but by no means is the only component that needs to be modeled. As discussed

previously, the storage stack contains a number of hardwareand software layers; every I/O

request must flow through these layers before reaching the disk drive. Our Storage Model
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includes support for modeling a few other performance critical components of the stack

such as the transport, and software components such as request queues. Table 4.2 contains

a list of parameters modeled outside the device model in the Storage Model.

The transport is modeled rather simplistically using a constant transfer speed for the bus

protocol connecting the device to the host controller. The initial “handshake” or connection

setup as in SCSI is modeled using a constant time overhead. Since most drives transfer

data at a slower rate than the maximum supported by the transport, the transport is rarely a

performance bottleneck.

While developing the Storage Model, we found that the behavior of the request queue

in the storage stack is crucial to performance, and especially tricky to model correctly. For

applications that issue bursty I/O, the time spent by a request in the request queue can

outweigh the time spent at the disk by several orders of magnitude.

We followed two approaches to model request queues. The firstapproach emulates

a queue simply by maintaining the free and busy times for the disk drive as it serves a

stream of request; the free and busy times are computed usingthe device model discussed

previously. The second approach maintains a replica request queue structure, similar to the

one inside a real storage stack. We discuss the two approaches in more detail next.

In the first approach, which we call the time based approach, the request queue is mod-

eled by maintaining timing information for free and busy periods. By keeping track of

when the disk will be free to service the next request in the queue, we can model the wait

and service times for that request. The next free period for the disk is computed using

the set of requests the disk has seen so far and computing their individual service times as

modeled by the device model. Since we know when every requestarrives at the disk, once

we know when the disk will be free to service a particular request, we can compute the wait

time and service time for that request.
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We found that this approach works well for FIFO-based scheduling of I/O request,

and for cases when the request stream is already optimally reordered prior to arrival at

the request queue. The simple approach is also extremely efficient, requiring only a few

arithmetic operations to model the wait times.

In the second approach, which we call the replica queue approach, a replica request

queue structure in the Storage Model mimics the actual request queue. In this approach, the

requests that arrive at the Storage Model are enqueued into the replica queue, and eventually

get dispatched to the device model to obtain the disk servicetime. The replica request queue

uses the same request scheduling policy as the original queue, and also supports “merging”

of several requests into one, a common optimization found inmost storage systems.

One important aspect to model a request queue accurately is potential congestion of

requests. The model maintains a list of read and write requests that are waiting to be

serviced; these requests are the ones that were issued subsequent to the request queue

getting filled up. The list of waiting requests contains the id of the process that originally

submitted a given request along with the time of the request submission. When the request

queue is deemed available, the requests from the waiting list are submitted to the request

queue in order of their original arrival according to the submitting process.

Both the approaches are available as part of the Storage Model and can be selected

according to the needs of the experiment; the replica queue approach is more generic and

models request queues more accurately than the time-based approach, while the time-based

approach is relatively light weight and imposes little overhead.

4.4 Evaluation

In this section we evaluate the performance and fidelity of Compressions. We seek to

answer two important questions about Compressions. First,what are the savings in terms of

storage space and application runtime for benchmark workloads? Second, how accurately
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does the Storage Model predict the runtime and what is the overhead of storage modeling?

Before proceeding with the evaluation, we first describe ourexperimental platform.

4.4.1 Experimental Platform

To prototype Compressions, we develop a pseudo-device driver that is inserted into

the kernel; the pseudo-device driver exports itself as a “regular” disk and interposes on all

traffic between the file system and the underlying hard drive.Since the driver appears as a

regular device, a file system can be created and mounted on it.

We have developed Compressions for the Linux operating system with ext3 as

the default file system. The hard disks that we currently model are Hitachi deskstar

HDS721010KLA330 and HDS728040PLAT20 with 7200 RPM and a capacity of 1 TB

and 80 GB respectively.

The Storage Model in Compressions leverages prior work on building a detailed disk

simulator based on the RW model [74].

4.4.2 Performance Evaluation

We start the evaluation by answering the first question – whatare the space and time

savings with Compressions? The workloads that we use for this evaluation are a few mi-

crobenchmarks,mkfs, and PostMark. All the experiments described next were performed

on the 80 GB Hitachi disk.

We first present the results of a simple experiment using the PostMark benchmark. The

configuration of PostMark chosen for this experiment writesout roughly one Gigabyte

of data and metadata. Figure 4.5 shows the savings in storagespace required to sustain

the workload; we find that the compressed file-system image provides a 10-fold reduction

over the original image. Figure 4.6 shows the savings in application runtime for the same

experiment; PostMark runs about 30% faster with remapping alone, and about 75% faster
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when both remapping and data squashing are turned on. The twobars in the figure represent

the total time taken by PostMark and the time spent in PostMark transactions alone.

Our second set of experiments usemkfs as the benchmark workload.mkfs is a file

system utility to create a linux file system on a disk partition; we measure the time and

storage space required to create Ext3 file systems on empty partitions, both with and with-

out Compressions.

Figure 4.7 shows the size of the compressed disk partition required to sustain the cre-

ation of a 15 GB file system with Compressions providing substantial savings in storage

space. Compressions exports a “fake” partition size and tricks mkfs into creating a file

system larger than the available disk capacity.

Figure 4.8 shows the time taken to runmkfs with and without Compressions. Themkfs

workload represents the worst case scenario for Compressions for two reasons. First,mkfs

writes only metadata blocks and not any file data; applications that write to data blocks
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Figure 4.8 Execution speedup formkfs.

can expect significant savings in runtime. Second,mkfs does not read back metadata;

the sequentially laid out remapped metadata blocks thus do not provide any performance

improvement for themkfs workload, in spite of already having incurred the cost of block

classification and remapping in Compressions.

4.4.3 Fidelity Evaluation

In the second part of the evaluation, we answer the followingquestion – how accurately

does the Storage Model predict the runtime and what is the overhead of storage modeling?

In order to provide accurate results for benchmarking, Compressions models the time

taken to run a workload on the original system. We call the actual time taken by the work-

load to run without Compressions as theoriginal or measuredtime, and the time predicted

by Compressions as themodeledtime. Figures 4.9 and 4.10 show the accuracy of mod-

eling the runtimes by the Storage Model for four microworkloads: sequential and random
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Workload Original (sec) Modeled (sec)

Sequential Read 0.96 30.8
Random Read 133.7 139.1

Sequential Write 28.6 15.7
Random Write 74.6 75.9

Postmark 72 72
FileBench Webserver 130 130
FileBench Varmail 139 139

Tar 57 58

Table 4.3 Accuracy of runtime modeling. The table shows the accuracy of modeling the
total runtime of a workload. Listed here are the original measured and modeled runtimes for micro
and macro workloads.

reads, and sequential and random writes, respectively. Thetwo lines on each graph repre-

sent the cumulative distribution of runtimes as measured for the original workload, and as

modeled by Compressions. We find that the Storage Model performs quite well for simple

workloads.

Figures 4.11 and 4.12 show the accuracy of modeling the runtimes by the Stor-

age Model for four different macro workloads and application kernels: Postmark, web-

server (generated using FileBench [112]), Varmail (mail server workload generated using

FileBench), and a Tar workload (copy and untar of the linux kernel of size 46MB).

The FileBench Varmail workload is a NFS mail server emulation, following the work-

load of postmark, but multi-threaded instead. The Varmail workload consists of a set of

open/read/close, open/append/close and deletes in a single directory, in a multi-threaded

fashion. The FileBench webserver workload comprises of a mix of open/read/close of

multiple files in a directory tree. In addition, to simulate awebserver style log, a file ap-

pend operation is also issued. The configuration of the workload consists of 100 threads

issuing 16 KB appends to the web-log for every 10 reads.
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Overall, we find that storage modeling inside Compressions is quite accurate for all

workloads used in our evaluation. The total modeled time as well as the distribution of

the modeled times during workload execution are close to theobserved total time and the

distribution of the observed times. Table 4.3 compares the measured and modeled runtimes

for the workloads described above; except for sequential reads and writes, all workload

runtimes are predicted fairly accurately. The reason for the inaccuracy in our sequential

workloads is a limitation of the Storage Model’s disk cache modeling; we expect to resolve

this issue in future versions of the Storage Model.

We now present results formkfs as the workload. Figure 4.13 compares the actual

runtime ofmkfs measured without Compressions with the one predicted by theStorage

Model; Figure 4.14 shows the overhead of the Storage Model itself. We find that the

Storage Model of Compressions provides high fidelity modeling of benchmark workloads

and imposes an almost negligible overhead.
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Finally, we show the accuracy of modeling individual requests formkfs. We investigate

the Storage Model one step further by comparing individual requests instead of aggregate

times; Figure 4.15 shows the time taken by each individual request, and the corresponding

modeled time. Although the goal of Compressions is to predict the total runtime of the

application workload on the original storage system, each individual request is also mod-

eled fairly consistently by the Storage Model. Figure 4.16 shows the accuracy of modeling

the request queues; Compressions not only accurately models the total runtime but also the

time spent in individual components of the storage stack.

4.5 Related Work

In this section we discuss related research in two areas: storage system modeling and

emulation, and synthetic content generation.
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4.5.1 Storage System Modeling and Emulation

The classic text on disk drive modeling by Ruemmler and Wilkes [119] describes the

different components of a disk drive in detail, and evaluates the ones that are necessary to

model in order to achieve a high level of accuracy. While diskdrive technology and ca-

pacity have changed a lot since the paper was originally published, much of the underlying

phenomena discussed then are still relevant.

Extraction of disk drive parameters has also been the subject of previous research to

facilitate more accurate storage emulation. Skippy [142],developed by Talagalaet al., is a

tool for microbenchmark-based extraction of disk characteristics. Skippy linearly increases

the stride while writing to the disk to factor out rotationaleffects, and thereby extracts a

more accurate profile for seeks. Our device model uses a similar technique but is optimized

to run for large disks by introducing artificial delays between successive requests; a linear

increase in stride is unacceptably slow for extracting parameters of large disks.

Worthingtonet al.describe techniques to extract disk drive parameters such as the seek

profile, rotation time, and detailed information about disklayout and caching [158]. How-

ever, their techniques and the subsequent tool DIXtrac thatautomates the process, rely on

the SCSI command interface [121], a limitation that is not acceptable since the majority of

high capacity drives today use non-SCSI interfaces like IDE, ATA and SATA.

An orthogonal approach for disk modeling is to maintain runtime statistics in the form

of a table, and use the information on past performance to predict the service times for

future requests [13]. Popoviciet al. develop the Disk Mimic [104], a table-based disk

simulator that is embedded inside the I/O scheduler; in order to make informed scheduling

decisions, the I/O scheduler performs on-line simulation of the underlying disk. One major

drawback of table-based approaches is the amount of statistics that need to be maintained

in order to deliver acceptable accuracy of prediction.
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Memulator is a “timing-accurate” storage emulator from CMU[59]; timing-accurate

emulation allows a simulated storage component to be plugged into a real system running

real applications. Memulator can use the memory of either a networked machine or the

local machine as the storage media of the emulated disk, enabling full system evaluation

of hypothetical storage devices; Compressions can benefit from the networked emulation

capabilities of the Memulator in scenarios when either the host machine has limited CPU

and memory resources, or when the interference of running Compressions on the same

machine competing for the same resources is unacceptable.

Similar to our emulation of scale in a storage system, Guptaet al. from UCSD pro-

pose a technique calledtime dilation for emulating network speeds orders of magnitude

faster than available [62]. Time dilation allows one to experiment with unmodified applica-

tions running on commodity operating systems by subjectingthem to much faster network

speeds than actually available.

4.5.2 Synthetic Content Generation

Much in the same way as Compressions generates values for reads to invalid disk lo-

cation, failure-oblivious computing uses the concept of synthetically generating values to

service reads to invalid memory, while ignoring invalid writes [115]. The usage scenario

is entirely different for failure-oblivious computing – enabling computer programs to re-

main oblivious to memory errors and continue unaffected, noattempt is made to inform the

program that an error occurred upon memory access.

The importance of accurately generating synthetic test data has also been recognized

in the database community. Houkjaeret al. develop a relational data generation tool for

databases [64]. Their tool can generate realistic data for OLTP, OLAP and streaming ap-

plications using a graph model to represent the database schema, satisfying inter-table and

intra-table relationships while producing synthetic row and column entries.
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Aboulnagaet al.develop a data generator for synthetic complex-structuredXML data

that allows for a high level of control over the characteristics of the generated data; their

tool allows the user to specify a wide range of characteristics by varying a number of

input parameters [1]. Other examples of generating synthetic data include the Wisconsin

benchmark [40], TPC-C and TPC-H benchmarks [148, 149], and synthetic data from the

OO7 benchmark for object-oriented databases [27].

4.6 Conclusion

Motivated by our own experience (and consequent frustration) in doing large-scale,

realistic benchmarking, we have developed Compressions, abenchmarking system that al-

lows one to run large, complex workloads using relatively smaller storage capacities. Com-

pressions makes it practical to experiment with benchmarksthat were otherwise infeasible

to run on a given system by transparently scaling down the storage capacity required to

run the workload. The required disk size under Compressionscan be orders of magnitude

smaller than the original while also allowing the benchmarkto execute much faster. Com-

pressions ensures the accuracy of benchmarking results by using a model of the disk and

the storage system to compute the runtime of an application on the original unmodified

system.
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Chapter 5

Generating File-System Benchmark Workloads

Another crucial requirement for benchmarking apart from the benchmark state is the

benchmark workload, without which no benchmarking can proceed. Like benchmarking

state, the benchmark workload should also be representative of the target usage scenario,

in this case the real-world applications running on the system. While creating a benchmark

workload, care must be taken to ensure that the workload is easy to reproduce so as to

enable comparison across systems.

To evaluate the performance of a file and storage system, developers have a few different

options, each with its own set of advantages and disadvantages.

• Real Applications: One option for evaluating a file or storage system is to directly

measure its performance when running real I/O-intensive applications. The obvious advan-

tage of benchmarking with real applications is that the performance results can correspond

to actual scenarios in which the system will be used and that users care about. However,

the problem is that real I/O-intensive applications can be difficult to obtain, to setup, and to

configure correctly [144].

Some systems have used production workloads to evaluate performance, mostly ones

developed in large corporate environments where production workloads are available in-

house. Examples of such systems include the Google File System [51], IBM GPFS [122]

and NetApp Data ONTAP GX [45]. Often system evaluators compromise by running “real

applications” that they are the most familiar with, such as compiling an operating system
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kernel or untarring a source tree. While these workloads areeasier to setup, they may not

be fully representative of the end applications.

• Microbenchmarks of Application Kernels: A second option is to run application

kernels instead of the full applications themselves. For example, instead of configuring and

stressing a mail server, one can instead run the PostMark [70] benchmark, which attempts

to produce the same file system traffic as a real mail server. Other examples of kernels

include the original [65] and modified Andrew Benchmarks [99], SPC-1,2 [138], and the

TPC Suite [147, 148]. The disadvantage of using kernels is the loss of representativeness.

While these kernels are simpler to run, they have the fundamental problem that their simpli-

fications both may make them no longer representative of the original workload and enable

system designers to artificially optimize to specific kernels.

• Trace replay: A third option is to replay file system traces that have been previously

gathered at various research and industrial sites. Examples of traces include file system

traces from HP Labs [114] and a collection of I/O and file system traces available through

SNIA’s IOTTA Repository [133]. Replaying file system traceseliminates the need to setup

and recreate the original applications. Trace replay however has challenges of its own.

In particular, replaying the trace while accurately preserving the original timing [14]

and accounting for dependencies across I/O requests [85] are non-trivial problems. In

addition, traces are often large, unwieldy, and difficult touse.

• Synthetic workloads: A final option is to run synthetic benchmark workloads that

are designed to stress file systems appropriately, even as technologies change. Synthetic

workloads, such as IOZone [98], SPECsfs97 [157], SynRGen [44], fstress [12], and Chen’s

self-scaling benchmark [31], contain a mix of POSIX file operations that can be relatively

scaled to stress different aspects of the system.
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The major advantages of synthetic applications is how simple they are to run and that

they can be adapted as desired. However, the major drawback of synthetic workloads is

that they may not be representative of any real workloads that users care about.

In practice, we find that evaluators often use a combination of different types of work-

loads and that there is significant diversity in the choices.A detailed survey of file system

benchmarks used in publications from top systems conferences such as SOSP, OSDI and

FAST was conducted by Traegeret al. [145]; the survey contains details on benchmark us-

age, including descriptions of the workload characteristics and their configurations. Here

we summarize some of the important findings from the survey.

On the whole, synthetic benchmark workloads are much more popular than using real

applications or trace replay. We suspect that this can be attributed to the ease of use

with which synthetic workloads can be employed. The most popular individual bench-

mark workload according to the survey is PostMark [70], written at Network Appliance.

PostMark strives to measure performance for email, netnewsand web-based commerce

applications. Other popular benchmarks include the Andrewbenchmark and its variants,

first developed in 1988 at CMU; and the Cello disk traces [118]collected at HP Labs in

early 90’s. Benchmarks from the TPC suite [147, 148] released in 1990 and 1992, and

specSFS [157] from 1993 are also used often.

Any synthetic benchmark workload referred to in the survey has one or more of the fol-

lowing drawbacks: the benchmark workload can be obsolete and not representative of any

real application the user cares about, the benchmark workload is not easily reproducible,

the parameters for various workload properties can be incorrect or outdated, and finally, the

default or primary configuration of the benchmark workload can be unsuitable or mislead-

ing.

As noted earlier, most of the popular benchmark workloads appearing in this survey

were written over a decade ago, for different operating environments. Usage and access
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patterns evolve over time and also vary with different environments [77, 116, 153]; im-

provements need to be made to these workloads to reflect the changes. In general, it is hard

to maintain the authenticity of a benchmark workload once itis deployed. A periodic over-

haul of the workload is needed to prevent it from getting outdated; no automated means

exist to keep a given synthetic workload in-sync with its real counterpart.

Benchmark workloads can also be hard to reproduce, much likethe difficulty in gen-

erating reproducible file-system images for benchmarking.Trace replays and production

applications used as benchmark workloads are especially hard to reproduce; they require

preserving the original timing information and accountingfor dependencies across I/O re-

quests. Ill-defined and incompletely specified workloads are also not accurately repro-

ducible.

Additionally, distributions for commonly used file system attributes like file sizes have

changed over time as well; most benchmark workloads have notkept pace with recent

trends. One example is the Postmark benchmark workload, a single threaded application

that works on many short-lived, relatively small files. The workload consists of several

transactionswhere each transaction is one of a file create or delete; or a file read or append

operation. The benchmark begins by creating a random pool oftext files with uniform

distribution of sizes between high and low bounds. The file create operation creates a

new file and writes random text to it. File delete operation deletes a randomly chosen

file. File read reads a random file in its entirety and a file write appends a random amount

of data to a randomly chosen file. Distribution of email file sizes has changed over the

years. One indicator of this trend is the size of Personal Storage Table (or.pst) files in

Microsoft Windows used to store Outlook messages locally, as observed in our metadata

study (Chapter 2); PostMark has not kept pace with this trend.

Finally, a poor workload configuration is often the cause formisleading results. Given

a choice of workload, it is left to the evaluator to choose a configuration suitable for the
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benchmarking experiment. The configuration can control various parameters of the work-

load such as its working set size, number of I/O operations ortransactions, options for I/O

modes (e.g., buffered and non-buffered), and number of concurrent threads. A poor config-

uration choice can defeat the purpose of benchmarking even for a workload that is perfectly

reasonable otherwise. Synthetic workloads and application kernels are especially prone to

misconfiguration. A continuing example of such a workload isPostmark. Through our own

evaluation and as noted by others [125, 145], we find that PostMark has several shortcom-

ings. One glaring example is the default configuration of PostMark. Not only it is obsolete,

the amount of I/O traffic generated is not nearly enough to stress modern computer and I/O

systems, the entire working set easily fitting in memory for any modern machine.

Given the popularity of synthetic benchmarks and their consequent misuse in staking

claims about performance, we believe that the ideal benchmark for file and storage sys-

tems combines theease of useof synthetic benchmarks with therepresentativenessof real

workloads. While we have not perfected a complete system capable of creating realistic

benchmark workloads, we have made a promising start. The goal of this chapter is to de-

scribe how one might create realistic synthetic benchmarksusing our proposed technique.

Specifically, our approach is to provide a tool that enables one to create a synthetic

benchmark that is functionally equivalent to a given real application or a workload com-

prising of a mix of applications; that is, the synthetic benchmark stresses the underlying

system in the same way as the original set of applications.

In this chapter, we first describe our initial steps in this direction by building a tool,

CodeMRI (an “MRI” for Code, if you will) in Section 5.1, and second, in Section 5.2,

we discuss future work in designing automated workload generators using CodeMRI as a

building block. To bring the chapter to an end, we discuss related work in Section 5.3.
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5.1 Generating Realistic Synthetic Benchmarks with CodeMRI

Determining whether or not two workloads stress a system in the same way is a chal-

lenging question; certainly, the domain of the system undertest has a large impact on which

features of the two workloads must be identical for the resulting performance to be iden-

tical. For example, if the system under test is a hardware cache, then the two workloads

might need to have identical addresses for all issued instructions and referenced data; on

the other hand, if the system under test is a network protocol, the two workloads might

need to have the same timing between requests to/from the same remote nodes. Therefore,

the specific features of the real workload that must be captured by the synthetic benchmark

depend on the system. For file and storage systems, one might believe that an equivalent

synthetic workload could be created by simply mimicking thesystem calls through the file

system API (e.g., read, write, open, close, delete, mkdir, rmdir). Given that tools such as

strace [140] already exist to collect system call traces, creating such a synthetic workload

would be relatively straight-forward. The problem is that system calls that appear identical

(i.e., have the exact same parameters) can end up exercising the file system in very different

ways and having radically different performance.

File systems are complex pieces of system code containing hundreds of thousands of

lines of code spread across many modules and source files. Modern file systems contain

code to perform caching, prefetching, journaling, storageallocation, and even failure han-

dling; predicting which of these features will be employed by a given system call is not

straight-forward. Furthermore, the storage devices that are physically storing the data have

complex performance characteristics; accesses to sequential blocks have orders of magni-

tude better performance than accesses to random blocks.

Consider the example of aread operation issued through the API. This read might be

serviced from the file-system buffer cache, it might be part of a sequential stream to the

disk or a random stream, or could involve reading additionalfile system meta-data from
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the disk. Similarly, awrite operation might allocate new space, overwrite existing data,

update file-system metadata, or be buffered as part of a “delayed write”. In each of these

cases, the exercised code and the resulting performance will be significantly different.

Our hypothesis is that to create an equivalent synthetic benchmark for file and storage

systems, one must mimic not the system calls, but thefunction callsexercised in the file

system during workload execution, in order to be functionally equivalent. We believe that

if two workloads execute roughly the same set of function calls within the file system, that

they will be roughly equivalent to one another.

CodeMRI uses detailed analysis of the source code for the filesystem under test to

understand how a workload is stressing it. Specifically, CodeMRI measures function-call

invocation patterns and counts to identify internal systembehavior. Our initial results in

applying CodeMRI to macro-workloads and benchmarks such asPostMark [70] on the

Linux ext3 [150] file system are promising.

First, CodeMRI is able to deconstruct complex workloads into micro-workloads; each

micro-workload contains system calls (e.g., read and write) with known internal behavior

(e.g., hitting in the file buffer cache or causing sequential versus random disk accesses). In

other words, with good accuracy, we are able to identify thata “real” workload, such as

PostMark, performs the same set of file system function callsas a combination of system

calls with certain parameters. Second, to a limited extent,we are able to predict the runtime

of the workload based on this set of constituent micro-workloads.

5.1.1 Experimental Platform

CodeMRI was developed and tested on a dual core Intel PentiumIII-Xeon machine

with 512K Cache and 1GB of main memory with Ext3 as the test filesystem on the Linux

operating system. The hard drive was an IBM 9LZX SCSI disk with a rotational speed of

10000 RPM, on-disk cache of 4MB, and a capacity of 9GB.
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CodeMRI requires tracing function invocations during workload execution, we

used a statically instrumented version of the linux kernel compiled using thegcc

-finstrument-functions option. The instrumentation insertshooksto special profiling

functions for each entry and exit point of a function in the file system. The hook func-

tions are called with the addresses of the caller and callee functions, a timestamp, and any

additional information that needs to be captured at runtime.

5.1.2 Micro-workloads and Microprofiles

The goal of CodeMRI is to be able to construct synthetic equivalents of real workloads,

but there are two challenges in solving this problem. First,we need to accurately decon-

struct real workloads into constituentmicro-workloads. A micro-workload is a simple, easy

to understand workload such as theread system call in its many forms, each with the same

behavior (cached or not, sequential or random). Second, we need to be able to use the set

of micro-workloads to compose a synthetic equivalent of theoriginal workload.

We plan to approach this problem by leveraging two sources ofinformation. First, we

leverage domain knowledge about the system under test. Second, we use tracing to obtain

useful information about the workload execution and the system under test.

Domain knowledge about file systems consists of basic knowledge about the different

features that it provides, such as caching and prefetching.This is useful to know because

different workloads can exercise different system features that CodeMRI needs to identify.

The domain knowledge guides the tracing of execution profiles for micro-workloads. For

example, we need to have an execution profile for acached read. The execution profile is

simply a list of unique functions and their invocation counts during a particular workload

execution.
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For tracing the workload execution, we believe function invocation patterns and invoca-

tion counts provide the amount of detail necessary to understand the benchmark workload

and the functionality that it exercises. This constitutes theexecution profileof the workload.

In order to address the first challenge – to breakdown real workloads into simpler micro-

workloads, we compare the execution profile of a real workload with the set of execution

profiles of individual micro-workloads. We call the execution profile of a micro-workload

a microprofile. To address the second challenge – to synthesize a syntheticequivalent, we

intend to compose the microprofiles together, along with timing and ordering information.

Microprofiles are thus the building blocks for achieving both our objectives.

5.1.3 Building Microprofiles

The first step in building CodeMRI is to identify a comprehensive set of micro-

workloads and build their microprofiles. We achieve this by running all the system calls

through the file system API, under the effect of various file-system features. For example,

in the case of aread system call, we identify two features that matter: whether the read is

cached or not, and whether it is random or sequential; we thenlook at all four combinations

of the workload as a function of the request size and build microprofiles for uncached read,

cached read, sequential read, and random read.

Through our experiments we find that keeping track of sets of function invocations and

their counts, during a workload execution, allows us to build accurate microprofiles. We

also observe that it is cumbersome and unnecessary to keep the entire execution profile –

instead we select a small set of function invocations that uniquely characterize a micropro-

file. We call this thepredictor setof a microprofile, and consequently the corresponding

micro-workload. A predictor set typically consists of one to few tens of function calls,

depending on the number of micro-workloads. The intuition behind this approach is that

each function contributes towards completion of a higher level workload such as aread.



151

Each function thus serves as the smallest unit of “useful work”. The goal is to identify a

set of functions that uniquely represent the higher level workload.

For example, in the absence of any other workload, aread system call can be identified

simply by observing calls to thesys read function. However, if we need to distinguish

between sequential and random reads, thensys read will be shared by both and useless

to distinguish; in that case, an extra function callext3 readpages helps us differentiate

the two. The reason behind that is sequential reads trigger block prefetching and a fraction

of blocks do not need to be explicitly requested for from the disk thereby altering the

invocation count of the function for the two workload patterns.

The larger the number of micro-workloads, the greater the number of predictor sets

needed to differentiate amongst them; consequently, the size of the predictor set is directly

proportional to the number of micro-workloads that need to be separately accounted for.

In order to identify the set of function calls that constitute the predictor set for a workload

from amongst all the possible functions that contribute, wedefine some metrics to help

automate the task.

We have three quantitative metrics associated with a predictor set –slope, uniqueness

andstability. Two of these, uniqueness and stability (both on a scale of0 to 1), are used

in the selection of predictor sets. Each member function in apredictor set has aslope

which characterizes the rate of change of invocation count with change in some workload

parameter (such as request size). We define theuniquenessof a predictor set towards a

micro-workload (such asread) as its affinity with the micro-workload. A uniqueness of

1 implies that the particular predictor set is invoked exclusively during this workload’s

execution, while0.5 implies that it has an equal affinity with another workload, and 0

makes it irrelevant for that workload. Thestability of a predictor set is a measure of the

variability of function-invocation counts as some workload parameter is varied. A perfectly

stable predictor set (i.e., with stability equal to1) will scale proportional to theslope, as
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Figure 5.1 Predictor Set for Sequential Reads.Having two member functions with scaling
slopes equal to0.85 and0.895, uniquenessof 1, andstability very close to1

the request size of the workload is increased, for instance.A stability of 0 means that the

predictor set scales in a completely uncorrelated fashion and is useless for prediction. Thus,

an ideal predictor set for a given workload is one having bothuniqueness and stability equal

to 1.

Figure 5.1 shows a simple example of the predictor set for sequential reads having

two member functions with scalingslopesequal to0.85 and0.895, uniquenessof 1, and

stabilityvery close to1. This makes it a good candidate for being a predictor set to identify

sequential reads.

To compute the slope for member functions in a predictor set,we keep track of their

invocation counts, as we vary a workload parameter. This is done for a small “training

range” to create a model. For example, in Figure 5.1, the training range for the request

size model is from200 to 1200 file system blocks. Figure 5.2 repeats the experiment for

random reads. Notice that the slope of the invocation count for random reads is different as
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Figure 5.2 Predictor Set for Random Reads. Having two member functions with scaling
slopes equal to0.98 and0.97, uniquenessof 1, andstability very close to1

compared to sequential, and is used to distinguish the two. Figure 5.3 shows accuracy of

prediction for writes.

In our (limited) experimental evaluation, we found that thepredictor sets identified by

CodeMRI are stable beyond the training-model range. In practice, stability can be affected

by “cliffs” for different regimes of workload execution where linear interpolation will be

insufficient.

The predictor set allows us to accurately predict the extentof the corresponding

micro-workload. For example, if we observe a call to the function ext3 readpages and

ext3 block to path a certain number of times, we can infer the corresponding bytes of

random read being performed. Similarly the predictor set for cached reads will correspond,

as shown in Figure 5.4, to the amount of bytes being serviced from the buffer cache during

aread operation.
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Figure 5.3 Predictor Set for Writes. Having two member functions with scaling slopes equal
to 0.97 and0.93, uniquenessof 1, andstability very close to1

In Figure 5.5 we show few function calls that are not good predictors for the above

example,i.e., distinguishing amongst sequential and random reads. These functions are

either not invoked at all during a read call, or are invoked but their invocation count does

not change predictably with the amount of data being read, rendering them useless.

The choice of a predictor set for any workload is not constant. For a single micro-

workload, it is easy to find a predictor set with uniqueness equal to1. However, for a real,

complex workload, consisting of potentially tens to hundreds of micro-workloads, there

can be significant overlap in the set of function invocationsamongst the different micro-

workloads, such that finding a predictor set for each of them is not straightforward. The

size of the predictor sets depends on the number of micro-workloads to be deconstructed

from the real workload. The more complex the real workload, the greater the number of

functions required to construct predictor sets for each of the micro-workload.
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CodeMRI consists of an algorithm based on linear-programming (LP) to select predic-

tor sets, attempting to maximize the uniqueness for each of the micro-workloads. The LP

problem constraints are in the form of minimum acceptable values for slope and stability,

wherein the predictor set consists of the top-K functions that satisfy the given criteria, with

K being the number of micro-workloads under consideration.In the absence of any func-

tion that satisfies the given slope and stability criteria, the conditions are relaxed until a

match is found.

During our experiments with the micro-workloads and in understanding the structure

of the file system source code, we find that in practice, micro-workloads exhibit a natural

division of function invocations, making it feasible to select predictor sets even for a mix

of applications; if each workload is run in isolation it is relatively straightforward to select

a good quality predictor, but as more workloads get added to the mix, finding predictors

becomes harder. We have not tested CodeMRI for complex workloads and it is likely that

our techniques will need refinement for use in such scenarios.
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Micro Workload Variations Parameter Extent or Count
Read sequential or random degree of randomness

cached or not cached degree of caching
Write sequential or random degree of randomness
POSIX open, mkdir, rmdir, count
calls create, delete, close

cached calls degree of caching
e.g., open after create

Table 5.1 List of Micro-Workloads Tested. The table lists the various micro-workloads and
their variations that were deconstructed with CodeMRI, along with the parameter of interest that
was successfully predicted.

5.1.4 Using Microprofiles for Deconstruction

We now describe the use of microprofiles to deconstruct workloads. We present our

discussion with increasing complexity of benchmark workloads:

• micro-workload, such as aread or write

• macro-workload consisting of micro-workloads

• macro-workload under caching

• application kernel: PostMark

Table 5.1 shows the list of micro-workloads that we have experimented with and are

able to predict with good accuracy.

The accuracy continues to be good for macro-workloads. Figure 5.6 shows the accuracy

of prediction for a macro-workload consisting ofreads, writes and system calls such

asopen andclose, as we vary the request size. The leftmost graph shows the accurate

prediction of random writes, and the middle one shows the ratio of writes to sequential

and random reads as predicted. The rightmost graph in Figure5.6 shows the accuracy of

prediction of reads under caching. In these graphs, the “Model” line represents the training

range on which the slope for prediction was computed.
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Figure 5.6 Accuracy for Macro-Workloads. The leftmost graph shows the accurate pre-
diction of random writes in a macro-workload consisting of writes and reads (both random and
sequential). The middle graph shows the ratio of random writes (WR) to read sequential (RS) and
random (RR) as predicted by CodeMRI. These ratios show that the relative counts across workloads
are also accurate. The rightmost graph shows the shows the accuracy of prediction under caching.
The Model line represents the training range on which the slope was computed.
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CodeMRI is thus able to accurately identify workloads well beyond the small training

range of request sizes for which the slope model was computed. Only for larger deviations

from this range do we observe inaccuracy.

In order to verify whether this deconstructed workload has any correlation with actual

performance, we use it to predict performance and compare with the actual measured per-

formance. The hypothesis is that if the deconstruction is accurate, then the sum of time

taken by the individual micro-workloads should be close to the actual measured time. To

predict performance once we have identified the set of micro-workloads, we simply add

the time it takes to run them individually. This is a coarse estimate, as it does not take into

account dependencies amongst the micro-workloads.

Figure 5.7 shows an example of this for a macro-workload consisting of random and

sequential reads,mkdir, create, anddelete operations. The left graph highlights that

the primary contributor(s) to performance can be differentfrom the expected ones, and

CodeMRI can identify the real contributors. The “issued operations” are the ones issued

through the file system API. The “actual operations” are the ones being actually issued by

the file system to the disk, and not serviced from cache. The “predicted operations” are the

ones identified through CodeMRI.

In order to predict the runtime, we need to know the time it takes to run the individ-

ual micro-workloads (or the predicted operations in this case); this timing information is

collected during the initial fingerprinting phase of every micro-workload as it is run with

varying request sizes. To compute the predicted runtime, wesimply add the individual

runtimes of all micro-workloads.

In this example, random reads contribute much less to overall runtime than sequential

reads and mkdir. The stacked bar graph on the right shows the predicted runtime contri-

butions from individual micro-workloads. We see that the predicted cumulative runtime

matches closely with the measured runtime, demonstrating the accuracy of CodeMRI.
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CodeMRI thus not only deconstructs workloads accurately, but the deconstructed work-

load is useful in predicting performance. We find that the actual runtime of the workload is

in accordance with the predicted workload.

We next deconstruct a popular file-system benchmark, PostMark [70]. Figure 5.8 shows

the breakdown of PostMark’s workload under varying cache sizes. In the top graph, as the

size of cache decreases, CodeMRI is able to identify the effect on the workload; the pre-

dicted operations contain fewer cached reads and the fraction of random reads starts to

increase as well. In the bottom graph, we see the correspondence of the increased ran-

dom reads and fewer cached reads on the runtime. The total runtime of the benchmark is

proportional to the predicted workload, making it a useful performance indicator.

5.2 Future Work

Creating useful synthetic benchmarks is a hard problem. We have presented our first

steps in building CodeMRI – a tool that enables the construction of realistic synthetic

benchmarks from real workloads and file-system traces. Our initial results in applying

CodeMRI to simple workloads have been promising; we intend to continue improving its

accuracy for more real-world workloads. In this section we outline possible future work in

deconstructing real workloads and synthesizing their realistic equivalents using CodeMRI.

5.2.1 Workload Deconstruction

Our initial attempts in deconstructing simple workloads has demonstrated the applica-

bility of CodeMRI. However, several challenges remain to beaddressed in deconstructing

more complex real workloads. We discuss some future avenuesto improve CodeMRI.

First, our current implementation is meant to illustrate the benefits of CodeMRI and

is not optimized for production environments. In practice,we find that the small amount

of tracing doesn’t slow down the system appreciably, but optimizations for performance
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and accuracy are certainly possible. One possible approachis to reduce the code paths that

need to be instrumented. The instrumentation overhead itself can be substantially reduced

by tracing only the necessary minimum predictors. Since a few unique predictors serve as

accurate indicators of a workload characteristic, being selective in tracing their execution

profile can improve runtime performance. In future, heuristics for predictor selection can

be developed and applied.

Once the size of the instrumented code base is reduced, opportunities exist for im-

proving the accuracy of CodeMRI’s deconstruction by collecting more information per

instrumentation point. For example, CodeMRI currently does not trace the different flows

possible within a function body. In practice, we find that at least in open-source systems,

the code base is fairly modular and most of the functionalityis broken down into separate

routines. However, depending on predicate values, the samefunction might behave in dif-

ferent ways and in the extreme case, have all the code for a single functionality contained

within. Fine-grained instrumentation for each predictor would allow us to capture these

flows within a function.

Second, CodeMRI currently relies on information obtained through runtime profiling.

An orthogonal approach would be to make greater use of staticanalysis techniques. Static

analysis alone would not capture all possible regimes of operation, but together with run-

time tracing, can provide stronger guarantees on code coverage during the execution of a

particular workload.

Currently, CodeMRI is oblivious to the task performed by a set of predictors. It operates

solely on matching a given workload with sets of micro-workloads without understanding

the overall nature of the workload. Static analysis has the potential to capture semantic

information about a particular predictor function which can help CodeMRI understand at

a higher level what the workload is trying to get done. This information will be invaluable
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later on in constructing a synthetic workload which matchesthe desired real workload not

only in terms of the execution profile, but also in its “intent”.

Third, in its current form, CodeMRI needs source code for analysis, which can some-

what limit its scope. However, there is nothing fundamentally limiting CodeMRI to require

instrumented source code, and in future work, CodeMRI can bemade to work on executa-

bles. In order to collect the execution profile of a workload,tools such as Kerninst [143] can

be used. These tools have the advantage of tracing unmodifiedbinaries, without requiring

source code access.

Fourth, the degree of domain knowledge needed to apply CodeMRI especially to a

broader domain than file systems, is of particular concern. While understanding the domain

is critical to constructing a benchmark that is representative of real workloads, obtaining

the necessary domain knowledge can be challenging, particularly for new systems.

One approach is to use standard tools, such as strace, to understand a typical system

better before building the benchmark. However, it is important to profile a number of exist-

ing systems so that the benchmark is generic, and applicableto new systems. In future, we

need to extend CodeMRI to work well without explicit dependence on domain knowledge

for new systems.

Finally, factors such as configuration parameters, hardware settings and real-time traffic

can also affect the performance of a system. Large and important server applications, such

as DB2, are quite complicated, and their performance or workload patterns are dependent

not only on the application, but also on these external factors. These factors cannot be

captured by analyzing the application source code alone. Infuture, CodeMRI needs to be

able to identify the contribution to performance from non-workload elements in the running

system.

In addition, in order to minimize runtime variability due toconcurrent activity and non-

reproducible events (e.g., interrupts), CodeMRI needs to be resilient to noise and be able
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to filter out the contribution of all factors extraneous to the workload. In future, we can

explore use of statistical techniques similar to ones used in bug isolation [78] to improve

accuracy and stability of predictions.

5.2.2 Workload Synthesis

The eventual goal of workload deconstruction is to provide enough information to con-

struct realistic synthetic benchmarks. The microprofiles previously deconstructed now need

to be used in automatically synthesizing an equivalent workload. Such a synthesis is not

straightforward for several reasons. In addition to building the microprofiles, we now need

to preserve timing and ordering information. Dependenciesin I/O requests also need to

be preserved. Although accurately determining the dependence between the timing of I/Os

can be a problem for trace-driven emulations, it can be a challenge for CodeMRI as well,

because micro-workloads also need to be grouped together tostress the system, at a differ-

ent granularity.

Combining the microbenchmarks, in general, to make up the final benchmark is perhaps

the greatest challenge in making CodeMRI useful. The question we seek to ask in future

is whether any standard mathematical techniques can be applied to compose benchmarks.

One approach would be to use some type of standard structure or algebra to describe the

possible ways of combining the micro-workloads, since thismay allow the reconstruction

problem to be converted into an optimization problem. However, one requirement of this

approach is that the different parts of the model, in this case, the micro-workloads, be com-

posable, which is not always the case; for example, if one micro-workload is a foreground

write, while another is a daemon that periodically writes out dirty buffers (e.g., pdflush).

The reconstruction of workloads from the micro-workloads is complex because of the

interactions of the different components of a file-system, especially in multi-threaded en-

vironments. One limitation of the method of deconstructionof workloads used to create
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the micro-workloads in the current approach is its simplified assumption of the existence

of linear models to select the subset of predictors. Multiple threads, caching and applica-

tions may create non-linear dependencies in the workload functions that are exercised. In

future, these restrictions need to be relaxed to make CodeMRI more broadly applicable in

constructing composable benchmark workloads.

5.3 Related Work

In CodeMRI we leverage system profiling and file system domainknowledge to under-

stand internal system behavior during execution of real workloads, and use that to create

synthetic equivalents of the workload. Several tools already exist for instrumenting and

profiling systems, such as, Kerninst [143], Dtrace [26], IBM’s Rational PurifyPlus [108]

and gprof [56]. These include features for memory corruption detection, application perfor-

mance profiling, code coverage analysis and threading bugs.For our analysis, we needed

a simple tracing functionality and the level of instrumentation provided by static instru-

mentation was sufficient since almost all of CodeMRI’s logiclies outside of the tracing

infrastructure. In the future, more sophisticated profiling tools can be integrated.

An alternate approach to CodeMRI as previously mentioned would be to use tools such

as strace [140] to collect system calls for real applications and replay the trace. This alone

will not be useful, since similar calls through the API can end up exercising the file system

in very different ways and have radically different performance due to effects of caching

and prefetching.

A more effective solution will be to obtain both system call and disk traces to account

for file system policies and mechanisms. But there is a limitation to that approach as

well. First, it is no less intrusive as compared to CodeMRI. Second, correlating strace

and disk trace information is not entirely straightforwarddue to timing issues, especially

in presence of buffering and journaling. Furthermore, the disk I/O might be reordered
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or delayed, and be affected by file system daemons such aspdflush. Semantic Block

Analysis [105] is another means to infer file system level behavior, but requires detailed

file system knowledge. CodeMRI has the added advantage of being oblivious of the file

system in question.

Similar to our work, performance debugging of complex distributed systems [11, 19,

30] also uses tracing at various points to infer causal paths, diagnose and tune performance

bottlenecks, and even to detect failures using runtime pathanalysis. In addition, a num-

ber of tools have been developed to understand, deconstructand debug complex software

systems such as Simpoint [127] and Shear [39]. Delta debugging is another technique that

uses an automated testing framework to compare program runsand access the state of an

executable program to prove the causes of program failures [160].

Mesnieret al. have proposed “relative fitness” models for predicting performance dif-

ferences between a pair of storage devices [86]. A relative model captures the workload-

device feedback, and the performance and utilization of onedevice can be used in predict-

ing the performance of another device. This shifts the problem from identifying workload

characteristics to device characteristics. In the future,it will be interesting to explore the

use of CodeMRI together with relative fitness models.

Finally, in outlining the limitations of current benchmarkworkloads, we benefited from

opinions expressed in previously published position papers on systems benchmarking [92,

124].



168

Chapter 6

Conclusions and Future Work

In this chapter, we first summarize each of the three components of our work, then

discuss general lessons learned, and finally outline directions for future research.

6.1 Summary

In this section we summarize the important contributions ofthis dissertation. First,

we discuss our findings from the five-year study of file-systemmetadata, and demonstrate

its necessity in generating representative and reproducible benchmarking state. Second, we

review our methodology to allow large, real benchmark workloads to be run in practice with

a modest storage infrastructure. Finally, we discuss challenges in generating representative,

reproducible, and practical file-system benchmark workloads, and present our initial steps

in creating an automated workload synthesizer.

6.1.1 Representative and Reproducible Benchmarking State

Developers of file systems and data-centric applications frequently need to make as-

sumptions about the properties of file-system images. For example, file systems and appli-

cations can often be optimized if they know properties such as the relative proportion of

metadata to data or the frequency of occurrence of various file types, in representative file

systems. Getting pertinent information about representative file systems requires access to

usage information about file-system metadata.
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To develop an understanding of file-system metadata in desktop computers, we ana-

lyzed the static and longitudinal properties of metadata byconducting a large-scale study

of file-system contents. To generate file-system images thatare representative of such real-

world characteristics in a reproducible fashion, we developed a statistical framework that

allows one to incorporate realistic characteristics of filesystem metadata and file data.

6.1.1.1 Characteristics of File-System Metadata

For five years, from 2000 to 2004, we collected annual snapshots of file-system meta-

data from over 60,000 Windows PC file systems at Microsoft Corporation. We used these

snapshots to study temporal changes in file size, file age, file-type frequency, directory size,

namespace structure, file-system population, storage capacity and consumption, and degree

of file modification. We presented a generative model that explains the namespace structure

and the distribution of directory sizes. We found significant temporal trends relating to the

popularity of certain file types, the origin of file content, the way the namespace is used,

and the degree of variation among file systems, as well as morepedestrian changes in sizes

and capacities. We gave examples of consequent lessons for designers of file systems and

related software. Here, we summarize again the important observations from our study:

• The space used in file systems has increased over the course ofour study, not only

because mean file size has increased (from 108 KB to 189 KB), but also because the

mean number of files has increased (from 30K to 90K).

• Eight file-name extensions account for over 35% of files, and nine file-name exten-

sions account for over 35% of the bytes in files. The same sets of extensions including

cpp, dll, exe, gif, h, htm, jpg, lib, mp3, pch, pdb, pst, txt, vhd, andwma have

remained popular for many years.
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• The fraction of file-system content created or modified locally has decreased over

time. In the first year of our study, the median file system had 30% of its files created

or modified locally, and four years later this percentage was22%.

• Directory size distribution has not notably changed over the years of our study. In

each year, directories have had very few sub directories anda modest number of

entries. 90% of them have had two or fewer sub directories, and 90% of them have

had 20 or fewer total entries.

• The fraction of file system storage residing in the namespacesubtree meant for user

documents and settings has increased in every year of our study, starting at 7% and

rising to 15%. The fraction residing in the subtree meant forsystem files has also

risen over the course of our study, from 2% to 11%.

• File system capacity has increased dramatically during ourstudy, with median capac-

ity rising from 5 GB to 40 GB. One might expect this to cause drastic reductions in

file system fullness, but instead the reduction in file systemfullness has been modest.

Median fullness has only decreased from 47% to 42%.

• Over the course of a single year, 80% of file systems become fuller and 18% become

less full.

Our measurements revealed several interesting propertiesof file systems and offered

useful lessons. While the present study offers a thorough analysis of metadata represen-

tative of one corporate desktop environment, it is anythingbut representative of the many

different usage scenarios in the field. We certainly hope that it encourages others to collect

and analyze data sets in different environments, contributing them to a public repository

such as the one maintained by SNIA [133]; our understanding of file-system metadata

properties and trends from this study certainly provided the impetus, and much of the basis

for our work on Impressions.
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6.1.1.2 Generating File-System Benchmarking State

Motivated by the knowledge gained from our metadata study, we developedImpres-

sions, a framework to generate statistically accurate file-system images with realistic meta-

data and content. Impressions is flexible, supporting user-specified constraints on vari-

ous file-system parameters using a number of statistical techniques to generate consistent

images. In this dissertation, we presented the design, implementation and evaluation of

Impressions.

Developers frequently require representative file-systemimages to test a new feature

or make comparisons with existing ones. Previously no tool existed that allowed creation

of file-system images with accurate approximation of real data and attention to statistical

details; developers often ended up writing limited in-house versions for generating test

cases, something that Impressions strives to standardize.

Impressions makes it extremely easy to create both controlled and representative file-

system images. First, Impressions enables developers to tune their systems to the file sys-

tem characteristics likely to be found in their target user populations. Second, it enables

developers to easily create images where one parameter is varied and all others are carefully

controlled; this allows one to assess the impact of a single parameter. Finally, Impressions

enables different developers to ensure they are all comparing the same image; by reporting

Impressions parameters, one can ensure that benchmarking results are reproducible.

Impressions also proved useful in discovering applicationbehavior. For example, we

found that Google Desktop for Linux omits certain content from indexing based on spec-

ified hard values for file depth in the file system tree; contentomission also happens for

varying organizations of the file system tree. This strange behavior further motivates the

need for a tool like Impressions to be a part of any application designer’s toolkit. We

believe that instead of arbitrarily specifying hard values, application designers should ex-

periment with Impressions to find acceptable choices for representative images. We note
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that Impressions is useful for discovering these application assumptions and for isolating

performance anomalies that depend on the file-system image.

In informal conversations with developers of open-source software, and with re-

searchers and academicians, we found that Impressions was of immediate benefit to the

file and storage community. In particular, open-source development projects on desktop

search [21] and data backup [156], commercially available concurrent visioning file sys-

tem [71] and software for management of SAN storage in vitalized environments [81], and

several academic research groups [49, 72, 76, 109, 123, 151,163] have expressed interest

in the Impressions framework for conducting their testing and benchmarking; we hope and

expect it to evolve into a useful platform for benchmarking.

6.1.2 Practical Benchmarking for Large, Real Workloads

Motivated by our own experience (and consequent frustration) in doing large-scale, re-

alistic benchmarking, we developed Compressions, a “scale-down” benchmarking system

that allows one to run large, complex workloads using relatively smaller storage capacities.

Compressions makes it practical to experiment with benchmarks that were otherwise infea-

sible to run on a given system by transparently scaling down the storage capacity required

to run the workload.

In practice, realistic benchmarks (and realistic configurations of such benchmarks) tend

to be much larger and more complex to set up than their trivialcounterparts. File system

traces (e.g., from HP Labs [113]) are good examples of such workloads, often being large

and unwieldy. In many cases the evaluator has access to only amodest infrastructure,

making it harder still to employ large, real workloads.

We started with the hypothesis that evaluators would appreciate having the means to

run benchmarks without having to spend time, effort and expense on continually upgrading

their storage capacities for benchmarking. In building Compressions, we soon realized that
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since our compressed version could run much faster than the native workload execution

on the original storage system, we could actually speedup the runtime of the benchmark

itself without sacrificing the authenticity of the benchmark experiment. The storage model

within Compressions interposes on all I/O requests and computes the time taken to run

the benchmark on the original system. We believe this is a useful feature since most large

benchmarks also take a long time to run (often several hours to days) which reduces their

practical application.

There were two primary challenges we faced in developing Compressions. First, having

a model instead of the real system required us to precisely capture the behavior of the

entire storage stack with all its complex dependencies. Since our model is in line with

workload execution, it needed to be extremely fast so as to not slow down the workload

itself. Second, Compressions discards writes to file data and thus needs to synthetically

generate it for subsequent reads while adhering to the semantics of the application issuing

the I/Os.

We have addressed both these challenges in Compressions. First, our model framework

is sufficiently lean while still being fairly accurate. In building the model, we stayed away

from any table-based approaches that required us to maintain runtime statistics. Instead

wherever applicable, we adopted and developed analytical approximations that did not slow

the system down and still maintained accuracy. Second, synthetic content generation in

Compressions leverages our prior work in building Impressions; we use a combination of

built-in content generation modules with some hints from the application where necessary

to generate suitably tailored file content.

With storage capacity growth showing no signs of leveling off, we expect the trend

towards larger benchmarks and application working sets to continue. Compressions can

serve as an effective substitute to capacity upgrades and provide a test bed for answering

questions about performance that were previously infeasible.
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6.1.3 Representative, Reproducible and Practical Benchmark Work-
loads

Apart from the file-system image, benchmark workloads are the other important re-

quirement for a benchmark. To evaluate the performance of a file and storage system,

developers have a few different options including real applications, microbenchmarks of

application kernels, trace replay, and synthetic workloads; each choice comes with its own

set of advantages and disadvantages.

In a survey of benchmark workloads conducted by us, we found that synthetic bench-

marks are the ones most popular in the file systems community.Synthetic workloads are

designed to stress file systems appropriately, containing amix of POSIX file operations

that can be relatively scaled to stress different aspects ofthe system; some examples in-

clude IOZone [98], SPECsfs97 [157], SynRGen [44], fstress [12], and Chen’s self-scaling

benchmark [31]. The major advantages of synthetic applications is how simple they are

to run and that they can be adapted as desired. However, the major drawback of synthetic

workloads is that they may not be representative of any real workloads that users care about.

Given the popularity of synthetic benchmark workloads, we believed that an ideal

benchmark for file and storage systems combines theease of useof a synthetic workload

with the representativenessof a real workload; our hypothesis was that if two workloads

execute roughly the same set of function calls within the filesystem, that they will be

roughly equivalent to one another.

While creating representative benchmark workloads is not an entirely solved problem,

significant steps have been taken by others towards this goal. Empirical studies of file-

system access patterns [17, 58, 100] and file-system activity traces [113, 133] have had led

to work on synthetic workload generators [12, 44] and methods for trace replay [14, 85].

However, automated workload synthesizers are hard to write. Current methods for creating
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synthetic benchmark workloads were largely based on the benchmark writer’s interpreta-

tion of the real workload, and how it exercised the system API.

We believed that in order to create an equivalent synthetic workload for file and stor-

age systems, one must mimic not the system calls, but thefunction callsexercised during

workload execution, in order to befunctionally equivalent. With this approach in mind, we

developed CodeMRI, a tool to create synthetic benchmarks that are functionally equivalent

to and representative of real workloads.

Our initial experiences with CodeMRI were positive; we wereable to deconstruct some-

what complex workloads into simpler micro-workloads and also accurately predict perfor-

mance. CodeMRI’s eventual success depends on its ability todeconstruct complex, real

workloads, and more importantly to be able to create an equivalent synthetic workload; we

outlined steps for future work on CodeMRI in Chapter 5.

6.2 Lessons Learned

In this section, we briefly discuss the general lessons we learned while working on this

thesis; we classify them into two broad categories:

Principles and Design

Benchmarks are crucial, yet overlooked

Benchmarks are crucial to the file and storage system community but the amount of

time and effort spent in developing benchmarking technologies is not commensurate.

It is often concluded that research on benchmarking is focused on measurement and

not on system building, and thus not enough system developers consider participat-

ing.
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While working on this thesis, we found that several challenges in benchmarking

require new systems to be designed and built for carrying outthe benchmarking,

much in the same way a new file or storage system is built.

Real-world statistics are hard to get, but invaluable

Statistics on real-world usage of file and storage systems ishard to obtain. Often the

underlying data is hard to collect as system administratorsare paranoid about setting

up probes in production systems (perhaps rightfully so); atother times, the data is

relatively easy to collect, but privacy concerns prevent itfrom being publicly visible.

By provisioning the storage systems with externally visible probe points, and by de-

veloping techniques to ensure that the collected data is easy to share without compro-

mising privacy, we believe storage developers can gain access to valuable statistics

on how their systems actually get used. We learnt a lot from our five-year study of

file-system metadata and encourage others to follow suit.

We can all be better practitioners

Current benchmarks and tools for benchmarking are not perfect, but as users of these

technologies, we are responsible for judiciously using them to get the best possible

results.

By using relevant configurations for benchmarks, by reporting all benchmark param-

eters in detail, and by making the resulting software and experimental data publicly

available, we can improve the quality of benchmarking even with the available re-

sources.

Ease of use cannot be underestimated

However naive it might seem, ease of use is often a critical factor in the popularity

and adoption of a benchmark; we have thus built our tools withease of use as a

primary objective.
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Long-term Sustainability

No benchmark can be future proof

Technology trends, new applications, and changes in usage patterns can all render

a benchmark irrelevant over time. Improvements need to be periodically applied to

any benchmark to account for such changes; benchmarks thus must be made freely

available with the source code.

Postmark is a classic example of a benchmark that when written was perhaps an

adequate representation of mail-server workloads, but is inadequate by any current

standards. In order to keep Postmark relevant, one needs to account for changes in

mail-server usage, the different storage schema availablefor storing emails, and sizes

for the email files.

Community involvement is critical

For a benchmark to be authentic and remain such, community involvement is critical.

The file and storage community needs to define a broader set of guidelines on how to

use a given benchmark including appropriate set of configuration parameters, develop

best practices to be followed while benchmarking, and most importantly encourage

participation of the community in following the standardized guidelines; more details

on some recent initiatives are available elsewhere [28, 75,146].

6.3 Future Work

In this section, we outline various avenues for future research. First, we discuss possible

studies of various file-system attributes. Second, we outline future extensions to Impres-

sions in generating file system and disk state. Third, we discuss extending Compressions

to include storage models for storage devices such as SSDs. Finally, we propose our vision

towards a unified benchmarking platform.
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6.3.1 Empirical File-System Studies

Future efforts to understand different properties of file-system metadata, file content,

and on-disk layout can augment our own findings and answer questions that our study does

not focus on.

File content is an interesting and complex attribute to study. In our work we have

used analytical language models and dictionary-based approaches for generating natural

language content. A large-scale study of file content would certainly be useful to ex-

tend Impressions and Compressions, particularly to address questions on data redundancy,

content-addressability, and compressability.

Another interesting study would be to look at fragmentationin real systems. While

fragmentation can definitely affect performance, how much fragmentation really is there in

current disk-based systems? How would this change with the advent of solid-state storage

that does not suffer from fragmentation in the same way as a rotating disk?

The findings from our metadata study are bound to get outdatedin the future, if not

already. Repeats of such a study will help keep the information up-to-date. While our study

focused on one corporate environment, in the future, similar studies can be performed in

other environments of interest such as data-centers, university laboratories and home users.

6.3.2 Generating Realistic File System and Disk State

Impressions currently provides minimal support for layingout the files on disk in a

realistic fashion; in particular, fragmented file systems are generated by creating and delet-

ing temporary files during the creation of the long-term files. In future, more work can

be done to induce realistic fragmentation by considering out-of-order file writes, or writes

with long delays between them. Another factor affecting fragmentation is that, in many

cases, the majority of the file system is created all at once atfile system creation time (e.g.,
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during OS installation), while the rest is written more slowly and burstily. Dividing file

system creation into two phases with separate parameters would be helpful.

One more factor for fragmentation is that many file systems allocate blocks differently

if the writes come all at once, as in quick creation of file system images, or trickle slowly, as

a result of delayed allocation. Approximation of this effect can be achieved by interspersing

syncs during creation. All this can perhaps be part of a companion tool to Impressions,

aptly namedDepressions.

Impressions itself can be extended in many ways, we list three important ones here.

First, Impressions currently supports creation of local file systems on a single machine; in

future, support for creation of distributed file systems andfile systems for other storage

devices such as SSDs can also be included. Second, content generation in Impressions is

rather simplistic and does not capture application requirements for more complex file data

and file types; support for more realistic content generation can be developed in the future,

somewhat along the lines of the profile store and RAW cache in Compressions. Third, a

desirable feature in Impressions is to allow it to traverse an existing file system and generate

the necessary statistics on-the-fly to be used later on, allowing developers to easily share

the details of their file-system images.

6.3.3 Benchmarking Storage Beyond Hard Drives

Although our work on Impressions and Compressions has focused on developing sys-

tems that are applicable for rotating hard drives and file systems developed for these de-

vices, it is not fundamentally limited to benchmark hard drives alone.

In future, Compressions can certainly be augmented with models for more complex

storage systems such as RAID arrays and storage clusters. The underlying device itself

can be replaced by a flash-based solid state drive (SSD); a model for an SSD can be built

into Compressions by leveraging our previous work on understanding the properties of
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such devices [10]. The policies for the metadata layout and the synthetic generation of

file content in Compressions can also be extended to include environments that use SSDs

instead.

6.3.4 Holistic Storage Benchmarking Platform

In this dissertation we designed and developed three systems, Impressions, Compres-

sions, and CodeMRI, with the goal of simplifying file and storage benchmarking; we be-

lieve our attempts have been fruitful and encouraging. Our vision is to combine these, or

other incarnations of such systems into a unified benchmarking platform that serves as a

community resource. While this vision might be too grand to achieve in the short term, we

believe it is in the right direction.
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APPENDIX
Analytical Distributions

A.1 Continuous Distributions

Binary log-normal, x> 0:

f1(x; µ, σ) =
1

xσ
√

2πln2
e

−(lgx−µ)2

2σ2 (A.1)

Inverse-polynomial of degreeN , offsetα, x > 0:

fp(x; N, α) = (N − 1)αN−1(x + α)−N (A.2)

R-stage hyperexponential, x> 0:

fh(x;R, α, µ) =

R
∑

i=1

αiµie
−µix (A.3)

Pareto, k≤ x:

fp(n; k, α) = αkαx−α −1 (A.4)

A.2 Discrete Distributions

Poisson, n≥ 0:

fp(n; λ) =
λne−λ

n!
(A.5)

Generalized Zipf, 1≤ n ≤ N:

fz(n; N, b, θ) =
(−1)θΓ(θ)

Ψ(θ−1)(b + 1) − Ψ(θ−1)(N + b + 1)
(n + b)−θ (A.6)
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Generalized Lotka, n≥ 1:

fz(n; θ) =
1

ζ(θ)
n−θ (A.7)
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APPENDIX
Statistical Techniques and Terminology

Some of the following are derived from standard statistics text books [47, 60].

Generative Model: Model for randomly generating observable data typically given

some hidden parameters. Generative models specify a joint probability distribution over

observed values.

Monte Carlo Method: Class of computational algorithms that rely on repeated

random sampling to compute their results, often used when simulation is being performed

by a computer due to their need for repeateded generation of pseudo-random numbers.

Particularly useful when deterministic solutions are infeasible.

Null hypothesis: The hypothesis that an observed difference (such as one between

observed and modeled values, or between two sets of observedvalues) just reflects chance

variation.

Alternative hypothesis: The hypothesis that the observed difference is real,i.e., the

opposite of the null hypothesis.
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Test statistic: Used to measure the difference between observed data and theexpected

data under the null hypothesis.

P-value: For a hypothesis test, the p-value is the probability computed under the null

hypothesis. In other words it is the chance of getting the test statistic as extreme as or more

extreme than the observed one [47].

Goodness-of Fit:Quantitative means to describe how well a statistical modeldistribu-

tion fits observed data. A distance metric (ortest statistic) usually specifies the discrepancy

between observed and modeled values.

Kolmogorov-Smirnov test: Goodness-of-fit test for checking whether a given distri-

bution is not significantly different from a hypothesized distribution, used for continuous

probability distributions. The test is as follows:

If X1, X2, ..., Xn be independent and identically-distributed random variables from a

continuous cumulative density function F, letFn be the empirical cumulative density

function.

Dn(F ) = supx∈R|(Fn(x) − F (x)| is the distance betweenFn and F,ρ∞(Fn, F ).

Dn is the test statistic for the K-S test and is small if the null hypothesis is true,

H0 : F = F0.

Tests of the formDn(F0) > c where null hypothesis is rejected if the D statistic is greater

than c are called Kolmogorov-Smirnov tests.

Chi-Square test: Goodness-of-fit test for checking whether a given distribution is

not significantly different from a hypothesized distribution, used for discrete probability

distributions. The test is as follows:
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Let (O1, O2, ..., On) and(E1, E2, ..., En) be observed and expected frequencies. The test

statistic

χ2 =
∑N

i=0
(Oi−Ei)

2

Ei
, which cannot be negative. Larger values ofχ2 indicate a greater

discrepancy between the observed and expected distributions. Similar to the K-S test,

a p-value is computed under the null hypothesis to test whether the hypothesis can be

rejected.

Linear Interpolation: For known coordinates given by(x0, y0) and(x1, y1), a linearly

interpolated value for y for x∈ (x0, x1) is given by:y = y0 + (x − x0)
y1−y0

x1−x0

Heavy-tailed distribution: The distribution of a random variable X with distribution

function F is said to be heavy-tailed iflimx→∞ eλx Pr[X > x] = ∞ for all λ > 0


