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ABSTRACT

By implementing file system caching within the operating system, applications are required to

cede to the OS a degree of control over memory utilization andIO scheduling. This dissertation

explores ways in which applications can rediscoverinformationhidden by the file system buffer

cache and reclaim some of thecontrol ceded to it. We find that this can be achieved without a

wholesale redesign of either the operating systems or applications concerned.

We presentDusta tool to automatically determine the buffer cache replacement policy of an oper-

ating system. We describe a cache-aware web server. Using the information gained throughDust,

our cache-aware web server is able to infer the contents of the buffer cache. It uses this information

to schedule web connections on an in-cache-first basis, improving throughput and response time.

Implicit information can be imprecise. To address this limitation, we modify Linux and NetBSD to

expose a list of pages which are about to be evicted. Thisexplicit informationis always accurate.

We present InfoReplace, a user library which observes that list and touches pages that should

remain cached, allowing applications to transform the kernel policy into one of the application’s

choice.

Some applications, such as those that use write-ahead logging, require control over the order in

which data is written to disk. We propose two new interfaces by which applications can express

write ordering constraints to the operating system.File system barriersintroduce thebarrier()

system call. The operating system guarantees that no write operations will be reordered across a

barrier. Asynchronous graphsallows applications to specify ordering constraints on a per-write-

operation basis. Both would be difficult to implement with only information.
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Chapter 1

Introduction

1.1 Cache Management

On a typical system access time for data cached in main memoryis several orders of magnitude

lower than for data that is not cached, requiring a disk IO to access. Memory access times range

from 1 to 20 clock cycles depending whether the access hits inthe CPU caches, whereas the

latency of a disk access ranges in the tens to hundreds of milliseconds [26]. Access to storage over

a network is even slower. It is thus worthwhile to dedicate a portion of a system’s main memory to

caching file system data.

Since memory is a finite, and often constraining, resource that is shared among all applications

running on a system, file system caching is normally implemented within the operating system.

In this way, applications are provided with the benefits of caching transparently and the operating

system serves as an arbitrator to determine how much of main memory will be used for caching

and which data will be cached.

Implementing file system caching within the operating system requires applications to cede to

the OS a degree of control over memory utilization and IO scheduling. The operating system, not

the application, determines how much memory is devoted to file system caching. The operating

system, not the application, determines what data is cached. The operating system, not the appli-

cation, determines when updates to data are flushed to disk. Thankfully, most applications only

suffer minimally from this loss of control.

Applications that are file system intensive, however, can suffer greatly due this lack of con-

trol [2, 63, 79]. Web servers, file servers and data base management systems are a few examples.
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They each have knowledge about their workloads that the operating system lacks that can help op-

timize I/O. Web servers and file servers know the granularityat which requests can be rescheduled.

Database management systems know what data they are likely to access in the near future. If this

knowledge can be combined with the control that the operating system has over buffer manage-

ment, there is an opportunity for better cooperation between the application and the OS.

The situation is especially notable for servers, since theyare often the only large application

running on a machine. If there is only one application running on a machine, it makes sense to give

it the maximum amount of control over memory usage. At the same time, to enable application

portability, and simplify application development, it is desirable to leverage the existing, stan-

dardized interfaces that modern operating systems provideand to continue to use those operating

system facilities that adequately suit the applications inquestion.

For decades, operating systems have been designed to provide strong abstractions, such as

network sockets and the open/close/read/write interface to the storage subsystem, to user-level

applications. Abstractions provide a common framework forapplication development, enabling

portability between platforms. They hide operating systemdata structures and prevent applications

from seeing each other’s data, providing security through isolation. They also hide the details of

the underlying hardware, greatly simplifying applicationdevelopment.

These abstractions though, also hide a great deal of usefulinformationfrom applications. First,

user-level applications do not know what data of theirs is being cached, or even how much of it

is being cached. Second, they have no way of knowing which of their data is likely to be evicted

from the cache soon, and which can be expected to remain cached for a while. For applications

whose performance is bounded by the speed at which they can access data from the file system,

both pieces of information can be quite valuable.

In addition to hiding information, operating system abstractions also reduce the level ofcontrol

available to applications. The file system cache not only stores data that has been read, it buffers

updates to data. When an application updates data stored in the file system, that update is applied to

a cached copy of the data. At some later point determined by the operating system, the on-disk copy

of the data will be updated. Most applications don’t care when this happens, as long as it happens
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eventually. Some, however, care a great deal for data integrity reasons. User-level applications

normally have no control over, nor knowledge of when their data updates reach the disk. For

applications with strong data-integrity requirements, such as database management systems and

user-level file systems [37], this ordering is of critical importance.

One of the primary challenges in designing a caching system is the management of the available

space. The cache has some finite amount of memory to manage; itmust determine which data to

keep in memory, and which to evict and when to evict it. The narrow interface that exists between

the operating system and applications often makes it difficult to determine what choices will yield

the greatest benefit to applications, both individually andcollectively. Information available to the

operating system to make cache management decisions is limited. In general, the operating system

knows when data is accessed, at the time it is accessed, and nothing more. In a perfect world, the

operating system would like to know the future access pattern of applications. Unfortunately, even

when this knowledge exists within the application, it is difficult to get that information into the OS

so it can be used. Some interfaces exist, such asmadvise() on some systems, but these tend to be

limited in that they are coarse grained and inconsistently implemented. For example,madvise(),

lets an application give the OSadvicesuch as whether to expect random or sequential accesses to a

file (to assist in prefetching) and allows the application tosay if a particular page will or will not be

needed in the future. It does not, however, allow the application to assign relative priority to data

pages. The difficulty in making good cache management decisions is evidenced by the enormous

body of work on how to make such decisions effectively [13, 14, 15, 18, 21, 27, 29, 34, 41, 42, 44,

45, 49, 53, 60, 75, 78, 79].

1.2 Information and Control

This dissertation explores ways in which applications can rediscoverinformationhidden by

the file system buffer cache and reclaim some of thecontrol ceded to it. We find that this can be

achieved without a wholesale redesign of either the operating systems or applications concerned.

Since one of our goals is to avoid large-scale changes to the operating system, we explore options
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for exposing information and gaining control in order of thedegree of alterations to the operating

system they require.

Some information, such as the contents of the buffer cache, can be discovered without any

modifications to the operating system at all by leveragingimplicit information. By its nature,

implicit information is sometimes inaccurate. Despite this inherent inaccuracy, we will show that

this information can still be leveraged for significant performance improvements.

In some situations, timely, accurate information is necessary. If by acting on incorrect infor-

mation, the application might significantly degrade its ownperformance, then implicit information

may be inadequate. In cases where implicit information isn’t enough, operating systems can be

modified to provide interfaces to exposeexplicit information. These modifications are surprisingly

simple and unintrusive to the overall structure of the OS.

Implicit and explicit information both allow applicationsto exerciseimplicit control over file

system caching. By knowing the policies the OS is using to manage the cache and the current state

of the cache, an application can both alter its behavior to better suit the policies of the OS and

game the operating system into changing its behavior to better fit the needs of the application.

Finally, sometimes it isn’t the application that needs moreinformation about the operating sys-

tem, but the OS that needs more information about the needs ofthe application. When implicit

control proves insufficient, it is possible to alter the OS toallow the application to applyexplicit

controlover the operating systems behavior. Explicit control can be seen as the reverse of explicit

information. Instead of moving information from the operating system into the application, we

provide an interface to move information from the application into the operating system. Mov-

ing information into the operating system is necessary whenthe mechanisms that can act on that

information exist only within the OS.

1.2.1 Implicit Information

Operating systems are large, complex pieces of software. Altering them is difficult, time con-

suming and error prone. Further, the operating systems we would most like to improve are those

that are the most widely deployed. These systems have large developer communities and larger
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numbers of users. Adding new functionality to popular operating systems is difficult precisely

because they are popular; a new feature must be accepted by a great many people before it will be

integrated into the codebase. So it is desirable to avoid modifying the operating system.

By not modifying the operating system, we limit ourselves toacquiring information about the

OSimplicitly. That is, we obtain information by probing and observing theOS through the existing

interface. For example, an application might issue aread() call to a particular piece of data. If the

application measures the execution time of that system call, it can implicitly determine whether or

not that data was cached at the time of the read. Chapter 2 describesDust, a tool which uses this

idea to determine the replacement policy that the buffer cache is using.

Once an application knows the replacement policy that the buffer cache is using, it can use

that knowledge to predict the behavior of the cache. Chapter2 also describes acache-aware web

serverthat using knowledge of cache behavior to predict which dataare currently cached. Our

cache-aware web server then uses those predictions for connection scheduling [17]. By servicing

those requests asking for cached data first, the web server improves its utilization of the buffer

cache and in turn, improves its own performance.

1.2.2 Explicit Information

Using only implicit techniques limits the accuracy of the information the application can ob-

tain. For some optimizations, such as scheduling HTTP requests, having somewhat inaccurate

information is acceptable. If the web server’s cache prediction is occasionally wrong, it simply

means that the scheduling decision will be slightly sub-optimal. On the whole the performance

will still be better than cache-oblivious scheduling. A tiny amount of performance improvement is

sacrificed to gain the portability benefits of using only implicit techniques.

If an application is using information for more aggressive optimizations, the consequences of

inaccurate information could be severe. Chapter 3 presentsa method by which applications can

alter the buffer cache replacement policy. Since this technique involves issuing additionalread()

calls, it is critical that the application know which data isin the buffer cache and only issue extra

reads to cached data. Some applications can predict their own IO patterns to a sufficient degree
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as to be able to determine a good caching strategy in advance,that is, before performing the IO.

Database management systems are one such example [16]. If anapplication is able to alter the

buffer cache’s replacement policy, better performance canbe achieved.

Most common caching policies base their decisions at least in part on how recently each buffer

has been accessed. Accessing a piece of data increases its priority in the cache and reduces its

chances of being evicted in the near future. Thus if the application knows that a particular portion

of its data should remain cached, those data’s priority can be raised by simply reading the data.

If an application uses this technique to manipulate the behavior of the cache, it could easily

degrade performance rather than improve it if care isn’t taken to avoid performing extra reads

on data that has already been evicted from the cache. Incurring even a small number of extra

disk IOs could outweigh the benefit of manipulating the cache. The missing component is, again,

information. The application needs to know what data is still cached, so extra reads to uncached

data can be avoided, and it needs to know what data is likely tobe evicted soon, so it knows

for what data extra read calls will be most productive. If theinformation the application has is

inaccurate, extra disk traffic and bad performance will be the result.

Chapter 3 introduces interfaces by which applications can learn the current state of the buffer

cache [5]. We provide an interface that exposes to the application a list of the nextN file system

pages that will be evicted to the cache, and an efficient measure of how quickly that list is changing.

These new interfaces allow applications to perform cache usage optimizations without fear that the

knowledge they have of the cache state is inaccurate. By onlyexposing information, rather than

providing new mechanisms, we reduce the changes that need tobe made to the operating system.

Most importantly, we avoid perturbing any of the OS’s pre-existing data structures, and thus reduce

the likelihood of introducing new bugs or performance problems into the kernel.

1.2.3 Explicit Control

Applications using explicit interfaces have access to precise information through the additional

interfaces provided. However, they still depend on the existing interfaces to exercise control over

the operating systems behavior. Utilizing this type of implicit control relies on making assumptions
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about the behavior of the operating system and may also make implicit assumptions about the usage

patterns of other applications running in the system. For instance, the example mentioned in the

previous section assumes that issuing a read to a piece of data will increase that data’s priority in

the buffer cache. If the operating system implements First-In-First-Out cache replacement, that

assumption doesn’t hold and attempts at manipulating cachereplacement will fail. In short, even

with exact information, control is still approximate.

Chapter 4 examines a situation where precise control is required. For applications that make

incremental updates to complex on-disk data structures, the order in which updates are written to

the disk can be important. A common example is write-ahead logging in database management

systems. For each transaction executed, the log entries describing the updates to the data must be

written to the disk strictly before the actual data is updated.

Traditional means of controlling write-ordering either utilize synchronous IO calls such as

fsync() which perform poorly [50], or use direct access to storage which has unsatisfactory impli-

cations for system management [28]. Chapter 4 proposes two new interfaces by which applications

can express write ordering constraints to the operating system. The first interface,file system barri-

ersallows the application to insert barriers into the write request stream. The operating system then

guarantees that no write operations will be reordered across a barrier. The second,asynchronous

graphsallows applications to specify for each write operation exactly which write operations, if

any, must have their data committed to diskbeforethe current one.

1.3 Contributions

The buffer cache provides a valuable service to applications. However, utilizing the buffer

cache requires applications to cede to the operating systemsome control over memory usage and

IO management. This dissertation shows that by examining the flow of information across the

OS/application interface, operating systems and applications can be made to cooperate more ef-

fectively.
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When possible, we useimplicit information, information gained through the existing interface,

and avoid modifying the operating system in any way. While the implicit approach has advan-

tages in that it is easily ported between operating systems and requires no OS modifications, the

information that can be acquired using implicit techniquesis limited. Specifically, it can be im-

precise. While this is sufficient for some optimizations, such as request scheduling based on cache

residency, it is ill suited for situations where bad information can lead to performance degradation.

Some of the limitations of implicit information can be overcome usingexplicit information,

information gained by an interface provided by the operating system. This technique provides

information that is always accurate and thus can be relied onfor more aggressive optimizations,

such as those which use extra IO calls to manipulate the buffer cache. Using implicit information

to manipulate OS behavior, however, requires that actions of the application have a predictable

effect on the OS behavior. Cache replacement policies fit into this category since most policies

react to theread() call by increasing the read buffers cache priority.

Information alone isn’t always enough. When the operating system behavior that we need to

modify is completely hidden from the application, such as the flushing of delayed writes, direct

modification of the operating system is our last resort. Thiscan be viewed either as providing

explicit control to applications or as a reversal of the previous techniques.Rather than moving

information from the operating system to the application, we move it from the application to the

operating system by providing an interface for the application to inform the operating system what

orderings are safe orderings in which to flush dirty buffers.

1.4 Organization

Chapter 2 describesDust, a tool that uses high level assumptions about operating system buffer

cache behavior, probes and observation to determine the buffer cache replacement algorithm, then

uses that information to predict the state of the buffer cache dynamically. Those predictions are

then given to a web server which uses them to schedule requests on an in-cache-first basis. In

this way, the application moulds its own behavior to better fit the policies of the operating system.

Chapter 3 presents interfaces by which cache state information is explicitly exposed to applications.
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Applications can use that information to not only change their own behavior to fit that of the

operating system, but alter the cache replacement policy tobetter fit their workload. Chapter 4

proposes two new interfaces, file system barriers and asynchronous graphs, by which application-

level write-ordering requirements can be explicitly expressed to the operating system. Chapter 5

reviews previous related work and Chapter 6 concludes.
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Chapter 2

Discovering Buffer Cache State with Implicit Information

2.1 Introduction

Operating systems are large, complex pieces of software. Changing them to suit a particular

application is time consuming and error prone. Further, getting proposed changes adopted and

integrated into an already popular OS isn’t easy. It requires convincing others of the value and

safety of the new code. In the case of an open-source system, apotentially large number of devel-

opers need to be convinced. In the case of a closed source system, major corporation needs to be

convinced that adding the new code is in their best interests. For these reasons, it is advantageous

to find ways to extend the system without actually modifying it.

Knowing what is currently in the buffer cache can be useful toapplications that make heavy use

of the file system. We will describe a storage server we have modified to serve requests for cached

data first, thus improving throughput and response time. Theprimary challenge in using this sort

of performance optimization is determining which data is currently cached. In this chapter we

demonstrate that discovering this information is possiblewithout any modification to the operating

system whatsoever.

We observe that an application can model (or simulate) the state of the buffer cache if it knows

the replacement policy used by the OS and can see most file accesses. The application can then use

such a model to infer the current contents of the buffer cacheand make application-level decisions

based on that information.

Server applications typically dominate the use of the file system. Often, they are the only

application running, apart from the various system maintenance daemons. Thus, these applications
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already see most of the file accesses on the system. If they also know the size of the buffer cache

and the policy used to manage it, they would, by inference, have complete knowledge of the buffer

cache contents.

Although the specific algorithms used to manage the buffer cache can significantly impact

the performance of I/O-intensive applications [14, 34, 60], this knowledge is usually hidden from

user processes. Currently, to determine the behavior of thebuffer cache, implementors are forced

to rely on available documentation, access to source code, or general knowledge of how buffer

caches behave.

Rather than relying on thesead hocmethods, we propose the use offingerprinting to auto-

matically uncover characteristics of the OS buffer cache. This chapter describesDust, a simple

fingerprinting tool that is able to identify the buffer-cache replacement policy; specifically, we

identify whether it uses initial access order, recency of access, frequency of access, or historical

information.

Fingerprinting can be described as the use of microbenchmarking techniques to identify the

algorithms and policies used by the system under test. The idea behind fingerprinting is to insert

probesinto the underlying system and to observe the resulting behavior through visible outputs.

By carefully controlling the probes and matching the resulting output to the fingerprints of known

algorithms, one can often identify the algorithm of the system under test. The key challenge is to

inject probes to create distinctive fingerprints such that different algorithmic characteristics can be

isolated.

There are several significant advantages to using fingerprints for automatically identifying in-

ternal algorithms. First, fingerprinting eliminates the need for a developer to obtain documentation

or source code to understand the underlying system. Second,fingerprinting enables all program-

mers, not just those with sophisticated experience, to use algorithmic knowledge and thus improve

performance. Third, fingerprinting can uncover bugs, or hidden complexities, in systems either

under development or already deployed. Finally, fingerprinting can be used at run-time, allowing

an adaptive application to modify its own behavior based on the characteristics of the underlying

system.
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We investigate a new use of algorithmic knowledge: its use inexposing the current contents

of the OS buffer cache. Recent work has shown that I/O-intensive applications can improve their

performance given information about the contents of the filecache [4, 71]; specifically, applications

that can handle data from disk in a flexible order should first access those blocks in the buffer cache

and then those on disk. However, current approaches suffer from one of two limitations: they either

require changes to the underlying OS to export this information or cannot accurately identify the

presence of small files in the buffer cache.

A dedicated web server can greatly benefit from knowing the contents of the buffer cache and

servicing first those requests that will hit in the buffer cache. We have implemented a cache-aware

web server based on the NeST storage appliance [9] and show that this web server improves both

average response time and throughput.

This chapter describes the following contributions:

• We introduceDust, a fingerprinting tool that automatically identifies cache replacement poli-

cies based upon how they prioritize between initial access order, recency of access, frequency

of access, and historical information.

• We demonstrate through simulations thatDustcan distinguish between a variety of replace-

ment policies found in the literature: FIFO, LRU, LFU, Random, Clock, Segmented FIFO,

2Q, and LRU-K.

• We use our fingerprinting software to identify the replacement policies used in several oper-

ating systems: NetBSD 1.5, Linux 2.2.19 and 2.4.14, and Solaris 2.7.

• We show that by knowing the OS replacement policy, a cache-aware web server can first

service those requests that can be satisfied within the OS buffer cache and thereby obtain

substantial performance improvements.
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2.2 Fingerprinting Methodology

We now describeDust, our software for identifying the page replacement policy employed by

an operating system. By manipulating how blocks are accessed, forcing evictions, and then ob-

serving which blocks are replaced,Dustcan identify the parameters used by the page replacement

policy and the corresponding algorithm.

Dustrelies upon probes to infer the current state of the buffer cache. By measuring the time to

read a byte within a file block, one can determine whether or not that block was previously in the

buffer cache. Intuitively, if the probe is “slow”, one infers that the block was previously on disk; if

the probe is “fast”, then one infers that the block was already in the cache.

For Dust to correctly distinguish between different replacement polices, we must first identify

the file block attributes used by existing policies to selecta victim block for replacement. From

a search of the OS and database research literature and the documentation of existing operating

systems, we have identified four attributes that are often used for replacement: the order of initial

access to the block (e.g., FIFO), the recency of accesses (e.g., LRU), the frequency of accesses

(e.g., LFU) and historical accesses to blocks (e.g., 2Q [29]). Thus, we can correctly identify the

use of combinations of these four attributes within a replacement policy.

We note that some operating systems use replacement policies that consider attributes beyond

whatDustconsiders. For example, some replacement policies consider whether or not pages are

dirty [39], the size of the file the page is from, or replacement cost [21]. Further, replacement of

pages can be performed on either a global or per process basis[35]. Finally, in real systems, not

only are file pages cached, but file meta-data as well, and somesystems prefer to evict pages from

files whose meta-data is no longer cached. It is also possiblethat future replacement policies may

use new attributes that we do not currently fingerprint. AlthoughDust cannot currently identify

these parameters, we believe that the basic framework within Dustcan be extended to do so.

Given our goal of identifying replacement policies, there are three primary components toDust.

First, the size of the buffer cache is measured with a simple microbenchmark; this value is used as

input to the remaining steps. Second, the short-term replacement algorithm is fingerprinted, based
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upon initial access, recency of access, and frequency of access. Third,Dustdetermines whether or

not long-term history is used by the replacement algorithm.

2.2.1 Microbenchmarking Buffer Cache Size

To manipulate the state of the buffer cache and interpret itscontents,Dustmust first know the

sizeof the buffer cache. Since this information is not readily available through a common interface

on most systems,Dustcontains a simple microbenchmark. The algorithm is shown inFigure 2.1.

Dustaccesses progressively larger amounts of file data until it notices that some blocks no longer

fit the cache. For each increase in the tested size, there are two steps. In the first step,Dusttouches

the file blocks up through the newly increased size to fetch them into the buffer cache. In the

second step,Dustprobes each block again, measuring the time per probe to verify if the block is

still in the cache. This technique is similar to the technique used to determine available memory in

NOW-Sort [6].

There are two important features of this approach. First, byprobingeveryfile block in the sec-

ond step, this algorithm is independent of the replacement policy used to manage the buffer cache.

Second, this algorithm works even when the buffer cache is integrated with the virtual memory

system, assuming thatDustuses little memory and the buffer cache is able to grow to its maximum

size. Further, as we will show, our fingerprinting algorithmis robust to slight inaccuracies in our

estimation of the buffer cache size.

2.2.2 Fingerprinting Replacement Attributes

Once the buffer cache size is known,Dustdetermines the attributes of file blocks that are used

by the OS short-term replacement policy. This fingerprinting stage involves three simple steps.

First,Dustreads file blocks into the buffer cache while simultaneouslycontrolling the replacement

attributes of each block (e.g., by accessing blocks in different initial access, recency,and frequency

orders). Second,Dustforces some of these blocks to be evicted from the buffer cache by accessing

additional file data. Finally, the contents of the buffer cache are inferred by probing random sets of
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fd = open("some_huge_file", O_RDONLY, 0);

mean = 0;

for (i = min; i < max; i+=blocksize) {

for (j = 0; j < i; j +=blocksize) {

read(fd, c, blocksize);

}

gettimeofday(&tp1,NULL);

lseek(fd, 0, SEEK_SET);

for (j = 0; j < i; j +=blocksize) {

read(fd, c, blocksize);

}

lseek(fd, 0, SEEK_SET);

gettimeofday(&tp2,NULL);

elapsed = timedif(&tp1, &tp2);

if( elapsed > mean*10) {

slowcount++;

}

mean = (mean*samples + elapsed)/(++samples);

if (slowcount > 5) {

fprintf(stderr,"Effective Cache Size is: %ld\n", i*blocksize);

exit(0);

}

}

close(fd);

Figure 2.1 Psuedocode for cache size algorithm.The algorithm opens a file that is known to be larger
than the buffer cache. On each iteration, a larger section ofthe file is read twice. When the measured
bandwidth drops, the cache size has been found.
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stripe_size = cache_size/10;

leftseek = 0;

freqleft = 1;

rightseek = cache_size/2;

freqright = 10;

open(filename, O_RDONLY, 0);

/* an initial scan of the file to set a FIFO distribution

that differs from the LRU distribution */

lseek(fd,0,SEEK_SET);

for (i = 0; i < cache_size; i += READSIZE) {

read(fd, c, READSIZE);

}

lseek(fd, 0, SEEK_SET);

/* set up the frequency/recency distribution */

for (i = 0; i < cache_size/2; i+= stripe_size) {

/* do the left side reads */

for (j = 0; j < freqleft; j++) {

pos = lseek(fd, leftseek, SEEK_SET);

for (k = 0; k < stripe_size; k += READSIZE) {

read(fd, c, READSIZE);

}

}

leftseek += stripe_size;

freqleft++;

/* do the right side reads */

for (j = 0; j < freqright; j++) {

pos = lseek(fd, rightseek, SEEK_SET);

for (k = 0; k < stripe_size; k += READSIZE) {

read(fd, c, READSIZE);

}

}

rightseek += stripe_size;

freqright--;

}

Figure 2.2Dust short-term attribute setting algorithm. This algorithm performs a series of reads to set
the initial access order, access recency and access frequency of each block in the buffer cache.
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/* fill the cache and cause evictions */

page_size = getpagesize();

scansize = ((cache_size - size) + (cache_size * 0.5));

for (i = 1; i <= (scansize/page_size); i++) {

pos = lseek(fd, size + (i * page_size), SEEK_SET);

for (j = 0; j < freqleft * 1.5; j++) {

read(fd, c, 1);

lseek(fd, -1, SEEK_CUR);

}

}

/* sample parts of the file to determine the cache state */

newpos = ((double)rand()/RAND_MAX)*(size/20);

pos = lseek(fd, newpos, SEEK_SET);

for (i = 0; i < 20; i++) {

gettimeofday(&tp1, NULL);

read(fd,c,1);

gettimeofday(&tp2, NULL);

etime = timedif(&tp1, &tp2);

printf("%d %ld\n", pos, etime);

pos = lseek(fd, size/20, SEEK_CUR);

}

exit(0);

}

Figure 2.3 Dust eviction and cache probing algorithm. This algorithm evicts half of the data in the
buffer cache by reading in the appropriate amount of new data. The new data is read multiple times to
ensure eviction in the case of a frequency based replacementpolicy. The algorithm then issues probe reads
to determine which of the original data is still cached.
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Figure 2.4 Short-Term Attributes of Blocks. The three graphs show the priority of each block within
the test region according to the three metrics: order of initial access, recency of access, and frequency of
access. The x-axis indicates the block number within the fileforming the test region. The y-axes indicates
the initial accesses order (left), recency of access (center) and frequency of access (right).

blocks; the cache state of these file blocks is then plotted toillustrate the replacement policy. We

now describe each of these three steps in detail.

2.2.2.1 Configuring Attributes

The first step moves the buffer cache into a known and well-controlled state – both the data

blocks that are resident and the initial access, recency, and frequency attributes of each resident

block. This control is imposed by performing a pattern of reads over blocks within a single file;

we refer to these blocks as thetest region. To ensure that all of this data is resident, the size of this

test region is set slightly smaller than the estimate of the buffer cache size (precisely, we use only

90% of the estimated cache size and adjust the size such that each of ten stripes discussed below

are page aligned).

Controlling the initial access parameter of each block allowsDustto identify replacement poli-

cies that are based on the initial access order of blocks (e.g., FIFO). To exert this control, our access

pattern begins with a sequential scan of the test region. Theresulting initial access queue ordering

is shown in the first graph of Figure 2.4; specifically, the blocks at the end of the file are those that

are given priority (i.e., remain in the buffer cache) given a FIFO-based policy.

Dust is able to identify replacement policies that are based on temporal locality (e.g., LRU) by

controlling how recently each block is accessed and ensuring that this ordering does not match the

initial access ordering. To ensure this criteria, a patternof reads across tenstripeswithin the file
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are performed. Specifically, two indices into the file are maintained: a left pointer, which starts

at the beginning of the file, and a right pointer, which startsat the center of the test region. The

workload alternates between reading one stripe as indicated by the left pointer and then one stripe

as indicated by the right pointer. The pattern continues until the left pointer reaches the center of

the test region and the right pointer reaches the end. This controlled pattern of access induces the

recency queue order shown in the middle graph of Figure 2.4; specifically, the blocks at the end of

the left and right regions are those given priority with an LRU-based policy.

Finally, to identify policies that have a frequency based component,Dustensures that stripes in

the test region have distinctive frequency counts. When reading stripes for recency ordering,Dust

touches each stripe multiple times for a frequency orderingas well. In our pattern, stripes near

the center of the test region are read the most often, and those near the beginning and end of the

test region are read the least. The number of reads for each area of the test region is shown in the

right-most graph of Figure 2.4, where blocks in the middle are given priority with an LFU-based

policy.

The need to impose different frequencies on different partsof the file is part of the motivation

for dividing the test region into a fixed number of stripes. If, for instance, each block of the test

region were given a different frequency count, the runtime of Dust would be exponential in the

size of the file. In our simulation experiments, we determined ten to be a good number. The more

stripes used, the more precise the fingerprint becomes sincethere is a greater variety of frequency

and recency regimes. However, a greater number of stripes makes each stripe smaller thus making

the data more susceptible to noise.

2.2.2.2 Forcing Evictions

Once the state of the buffer cache is configured,Dustperforms aneviction scanin which more

file data is read to cause some portion of the test region to be evicted from the cache. Since the goal
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of evicting pages is to give us the most information and ability to differentiate across replacement

policies,Dusttries to evict approximately half of the cached data.1

We note that the eviction scan must read each page multiple times such that the frequency

counts of its pages are higher than those of the pages in the test region. Otherwise,Dust would

not able to identify frequency-based replacement policiessince the eviction region would replace

its own pages. This illustrates one of the limitations of ourapproach: we do not differentiate

between LIFO, MRU, and MFU replacement policies, since all replace the eviction region with

itself. However, we feel that this limitation is acceptable, given that such policies are used when

streaming through large files and all tend to behave similarly under such conditions.

2.2.2.3 Probing File-Buffer Contents

To determine the state of the buffer cache after the evictionscan, we perform several probes,

measuring the time to read one byte from selected pages. If the read call returns quickly, we assume

the block of the file was resident in the cache; if the read returns slowly, we assume that a disk

access was required. As noted elsewhere [4], it is not possible to perform a probe of every block

to determine its state since this changes the state of the buffer cache; specifically, ifDustprobes a

block that was on disk, then this block will replace a block previously in the buffer cache, changing

its state. Thus, we perform probes selectively.

To obtain an appropriate number of samples, we probe each stripe two times, for a total of

twenty probes. The probes are spaced evenly across the test region, but the location of the first is

chosen randomly from the first half of the first stripe. By keeping the probes relatively far apart, we

ensure that they do not interfere with a later probe due to prefetching. Choosing a random offset

for the probes allows one to run the benchmark multiple timesto generate a better picture of the

cache state. By runningDustmultiple times on a platform, one is then able to accurately determine

how the cache replacement policy chooses victim pages basedon initial access, recency of access,

and frequency of access.

1Precisely, the size of the eviction scan is set equal to the difference between the size of the cache and the size of
the test region (i.e., 0.1*cache size) plus one half the size of the cache.
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Figure 2.5 Access Pattern to Fingerprint History. Four distinct regions of file blocks (i.e., hot, cold,
evict1, and evict2) are accessed to set attributes and causeevictions in order to identify whether or not
history is being used by the replacement algorithm. Each arrow indicates a region that is being accessed;
reads later in time move down the page. The width of each arrowalong with a number beside it, indicates
the number of times each block is read to set the frequency attributes.

2.2.3 Fingerprinting History

The fingerprinting tool described thus far can identify replacement policies containing a single

queue ranking blocks based upon the three attributes. However, the previous step controls only the

short-term attributes of blocks and thus cannot identify algorithms that track references to blocks

that are no longer in memory (e.g., 2Q [29]) or that track the recency of references other than the

last reference to each block (e.g., LRU-K [45]). We describe the LRU-K and 2Q algorithms in

Section 2.3.4 when we present the fingerprints for these algorithms. To determine if long-term

tracking is performed,Dustobserves if preference is given to pages that have been referenced and

then evicted before.

We now describe how the use of long-term history is identified. As shown in Figure 2.5, there

are four regions of file blocks that are now accessed. The testregion is divided into two separate

regions that are one half the total cache size, ahot and acold portion. The algorithm, shown in

Figure 2.7, begins by touching all of the hot pages and then evicting them by twice touching the

evict1region; theevict1region contains sufficient blocks to entirely fill the buffercache. Thus, the

hot pages are no longer in the cache, but historical information about them is tracked.Dust then

touches thehot andcold regions three times and then touchescold two more times. At this point,

evict1has been evicted entirely andcold is preferred whether initial access, recency or frequency

attributes are being used by the replacement policy. Thencold is touched twice. This causes the

cold region to be preferred by traditional LRU and LFU.Hot is then retouched, this additional
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Figure 2.6 Fingerprints of Basic Replacement Policies (FIFO, LRU, LFU). The three graphs show the
time required to probe blocks within the test region of a file depending upon the buffer cache replacement
policy. The x-axis shows the offset of the probed block. The y-axis shows the time required for that probe;
where low times (2µs) indicate the block was in cache, whereas high times (7ms) indicate the block was
not in cache. From left to right, the graphs simulate FIFO, LRU, and LFU.
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/* read hot */

lseek(fd, 0, SEEK_SET);

for (i = 0; i < size/2; i += READSIZE)

read(fd, c, READSIZE);

/* read evict1 */

lseek(fd, cache_size, SEEK_SET);

for (i = 0; i < cache_size; i += page_size) {

for (j = 0; j < 2; j++) {

read(fd, c, 1); lseek(fd, -1, SEEK_CUR);

}

lseek(fd, page_size, SEEK_CUR);

}

/* hot - cold */

lseek(fd, 0, SEEK_SET);

for (i = 0; i < size; i += READSIZE) {

for (j = 0; j < 3; j++) {

read(fd, c, 1); lseek(fd, -1, SEEK_CUR);

}

lseek(fd, page_size, SEEK_CUR);

}

/* cold twice */

lseek(fd, size/2, SEEK_SET);

for (i = 0; i < size/2; i += READSIZE) {

for (j = 0; j < 2; j++) {

read(fd, c, 1); lseek(fd , -1, SEEK_CUR);

}

lseek(fd, page_size, SEEK_CUR);

}

/* hot */

lseek(fd, 0, SEEK_SET);

for (i = 0; i < size/2; i += READSIZE) {

read(fd, c, READSIZE);

}

/* hot - cold */

lseek(fd, 0, SEEK_SET);

for (i = 0; i < size; i += READSIZE) {

read(fd, c, READSIZE);

}

/* evict2 times 7 */

lseek(fd, cache_size*2, SEEK_SET);

for (i = 0; i < (cache_size/2) + (cache_size * 0.1); i += READSIZE) {

for (j = 0; j < 7; j++) {

read(fd, c, 1); lseek(fd, -1, SEEK_CUR);

}

lseek(fd, page_size, SEEK_CUR);

}

}

Figure 2.7 Dust long-term history algorithm.
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Figure 2.8 Fingerprints of Random and Segmented FIFO.The left-most graph shows that a Random
page replacement policy has a distinctive fingerprint; thateach run of the fingerprint causes different pages
to be evicted from the buffer cache. The middle graph shows Segmented FIFO with 30% of the buffer
cache devoted to the secondary queue; the resulting fingerprint is a cyclic shift of the FIFO fingerprint. The
right-most graph shows Segmented FIFO with at least 50% of the buffer cache devoted to the secondary
queue; since this queue is managed with LRU, the fingerprint is identical to LRU.

reference gives thehot region preference in policies which use history. The last step prior to

eviction is to re-reference both thehot andcold regions sequentially. Notice that at this point the

hot region has been touched the same number of times as thecold region but, it has been touched

in such a way that it will have migrated into the long-term queue of a 2Q or LRU-2 cache, while

thecold region will have not.

As in the short-term fingerprint, the next phase ofDust is to probe the test region to determine

which blocks have been kept in the file cache. If the hot regionremains in the cache, then we infer

that history is being used. If the cold region remains in the cache, then we infer that history is

not being used. Given that further identification of historyattributes is likely to be specific to each

replacement algorithm, we focus on only this simple historical fingerprint.

2.3 Simulation Fingerprints

To illustrate the ability ofDustto accurately fingerprint a variety of cache replacement policies,

we have implemented a simple buffer cache simulator. In thissection, we describe our simulation

framework and then present a number of results. Our first simulation results verify the distinc-

tive short-term replacement fingerprints produced for the pure replacement policies of FIFO, LRU,

and LFU [53], as well as for other simple replacement policies such as Random and Segmented
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FIFO [69]. To explore the impact of internal state within thereplacement policy, we investigate

Clock [44] and Two-handed Clock [70]. We then demonstrate our ability to identify the use of his-

torical information in the replacement policy, focusing on2Q [29] and LRU-K [45]. We conclude

this section by showing thatDust is robust to some inaccuracy in its estimate of buffer-cachesize.

2.3.1 Simulation methodology

Given that our simulator is meant only to illustrate the ability of Dust to identify different OS

buffer cache replacement policies, we keep the rest of the system as simple as possible. Specif-

ically, we assume that the only process running is our fingerprinting software, and thus ignore

irregularities due to scheduling interference. We currently model only a buffer cache of a fixed

size and do not consider any contention with the virtual memory system. For most of our simula-

tions, we model a buffer cache containing approximately 80 MB (or 20,000 4 KB pages). Finally,

we assume that reads that hit in the file cache require a constant time of 2µs, whereas reads that

must go to disk require 7ms.

2.3.2 Basic Replacement Policies

We begin by showing that the simulation results for strict FIFO, LRU, and LFU replacement

policies precisely matches what one can derive from the ordering graphs shown in Figure 2.4.

The fingerprints from these three simulations are shown in Figure 2.6. We further show thatDust

can identify Random replacement and Segmented FIFO [35]. These fingerprints are shown in

Figure 2.8. Across all the graphs, one can observe the two levels of probe times, corresponding to

blocks that are in cache and those that are not. Also, one can verify that approximately half of the

test data remains in cache.

We now examine these basic policies in turn. The FIFO fingerprint shows that the second half

of the test region remains in cache; this matches the initialaccess ordering shown in Figure 2.4

where blocks at the end of the file have priority. The LRU fingerprint shows that roughly the

second quarter and the fourth quarter of the test region remains in the buffer cache; once again,

this is the expected behavior since those blocks have been accessed the most recently. Finally, the
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LFU fingerprint shows that middle half of the file remains resident, as expected, since those blocks

have the highest frequency counts. In the LFU fingerprint, one can see two small discontinuous

regions that remain in cache to the left and right of the main in-cache area; this behavior is due to

the fact that within each stripe, blocks have the same frequency count and these in-cache regions

are part of a stripe that was beginning to be evicted.

Fingerprinting a Random replacement policy stresses the importance of runningDustmultiple

times. With a single fingerprint run of twenty probes, there exists some probability that Random

replacement behaves identically to FIFO, LRU, or LFU. Therefore, by fingerprinting the system

many times, we can definitively see that random pages are selected for replacement. This is il-

lustrated in the first graph of Figure 2.8 with two horizontallines indicating the “fast” and “slow”

access times.

The original VMS system implemented the Segmented FIFO (SFIFO) page replacement pol-

icy [35]. SFIFO divides the buffer cache into two queues. Theprimary queue is managed by FIFO.

Non-resident pages are faulted into the primary queue. Whena page is evicted from the primary

queue, it is moved to the secondary queue. If a page is accessed while in the secondary queue, it

moves back into the primary queue. The key parameter in SFIFOis the fraction of the buffer cache

devoted to the secondary queue, denotedP (thus,1 − P is the fraction devoted to the primary

queue).

A value ofP = 0.3 is the traditional choice and is fingerprinted in the middle graph of Fig-

ure 2.8. The resulting SFIFO fingerprint is a cyclic shift of the pure FIFO fingerprint. The reason

for this pattern is as follows. The initial read of the test area sets the contents of the primary and

secondary queues such that the first pages accessed (i.e., the left portion of the test area) are shifted

down to the secondary queue and the tail of the primary queue;the right portion is at the head of

the primary queue. When the pages are touched to set the recency and frequency attributes, the left

portion of the test area is moved back to the head of the primary queue while the right portion is

shifted down into the secondary queue and end of the primary queue. Thus, as blocks are evicted,

the right portion is evicted first, followed by the first blocks of the left portion. Thus, with these
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Figure 2.9 Fingerprints of the Clock Replacement Policy.To identify Clock, the basic fingerprinting
algorithm is run twice. The first time it is run after the use bits have been all set; in this case, Clock behaves
identically to FIFO as shown in the graph on the left. The second time it is run after half of the use bits have
been set; in this case, Clock has the same fingerprint as LRU, as shown in the graph on the right.

queue sizes, SFIFO produces a distinctive fingerprint whichcan be used to uniquely identify this

policy.

As P increases, SFIFO behaves more like LRU. WhenP ≥ 0.5 the fingerprint becomes iden-

tical to that of LRU, as shown in Figure 2.8. When the secondary queue is that large, by the time

a page is touched for the second time, it has already progressed into the secondary queue. Thus,

the fingerprint reveals the LRU behavior of the policy and matches the LRU fingerprint. We feel

that since Segmented FIFO is used to approximate LRU (especially with this high value ofP ), it

is acceptable, and even appropriate, that its fingerprint cannot be distinguished from that of LRU.

2.3.3 Replacement Policies with Initial State

The Clock replacement algorithm is a popular approach for managing unified file and virtual

memory caches in modern operating systems, given its ability to approximate LRU replacement

with a simpler implementation. The Clock algorithm is an interesting policy to fingerprint because

it has two pieces of internal initial state: the initial position of the clock hand and whether or not

each use bit is set. Thus, we must ensure that Clock can be identified by its fingerprint regardless

of its initial state. We now describe small modifications to our methodology to guarantee this

behavior.

In the basic implementation of Clock, the buffer cache is viewed as a circular buffer starting

from the current position of theclock hand; a singleuse bitis associated with each page frame.
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Whenever a page is accessed, its use bit is set. When a replacement is needed, the clock hand

cycles through page frames, looking for a frame with a cleared use bit and also clearing use bits as

it inspects each frame. Thus, Clock approximates LRU by replacing pages that do not have their

use bit set and have not been accessed for some time.

Since Clock treats the buffer cache as circular, the initialposition of the clock hand does not

affect our current fingerprint. The initial position of the clock hand simply determines where

the first block of the test region is placed. Since all subsequent actions are relative to this initial

position, this position is transparent toDust. Thus, we do not need to modify our fingerprinting

methodology to account for hand position.

However, the state of the use bits does impact our fingerprint. Depending upon the fraction of

set use bits,U , the Clock fingerprint can look like FIFO or LRU. Specifically, whenU is near the

two extremes of 0 or 1, the fingerprint looks like FIFO; whenU is near 0.5, the fingerprint looks

like LRU. We now describe the intuition behind this behavior.

In the simplest case, whenU = 0, each frame starting with the clock hand is allocated to

sequential pages of the test region. As a result, the clock hand wraps back to the beginning of

the buffer cache after this allocation and asDust touches each page to set attributes, the use bit of

every page is set. During eviction, the first pages of the testregion are replaced, matching both the

behavior and fingerprint of a FIFO policy. Note thatU = 1 results in identical behavior, except the

clock hand must first sweep through all frames clearing use bits before it allocates the test region

sequentially.

WhenU = 0.5, the left and right portions of the test region data are randomly interleaved

in memory. This interleaving occurs because pages are allocated in two passes. In the first pass,

those frames with cleared use bits are allocated to the left-hand portion of the test region; the

use bits of these frames are then set and the use bits of the remaining frames are cleared. In the

second pass, the remaining frames are allocated to the right-hand portion of the test region. In

the accesses to set the locality and frequency attributes ofthe pages, the use bits of all frames are

again set. Thus, when the eviction phase begins, the first half of pages from both the left and right

portions of the test region are replaced. If the frames with set use bits are uniformly distributed,
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this coincidentally matches the evictions of the LRU policy. If the distribution of use bits were not

uniform, the fingerprint would show those blocks whose frames had their use bits initially clear as

having been replaced. We consider the case where they are uniformly distributed as this provides

a consistent and recognizable fingerprint.

Thus, to identify Clock,Dust brings the initial state of the use bits into each of these two

configurations and observes the resulting two fingerprints.The following steps can be followed to

configure the use bits from outside of the OS.Dustsets all of the use bits (i.e., U = 1) by allocating

awarm-upregion of pages that fills the entire buffer cache and then touching all pages again (with

no intervening allocations) so that their use bits are set.

Setting half of the use bits (i.e., U = 0.5) is slightly more complex. The first step is to set all

the use bits as in the previous scenario. In the second step,Dust allocates a few more pages to

the warm-up region; since all of the reference bits are set atthis point, the clock hand must pass

through the entire buffer cache, clearing all of the reference bits, to find a page to evict. The final

step is to randomly touch half of the pages, setting their usebits. In this way,Dustcan configure

the state of the use bits.

In summary, we modifyDust slightly to account for internal state. Before running any fin-

gerprint,Dust first allocates the warm-up region, which has the effect of setting use bits if the

replacement policy implements them. If the resulting fingerprint looks like FIFO, thenDust runs

again with half the use bits set. If the fingerprint still looks like FIFO, then we conclude that there

are no use bits and the underlying policy is FIFO. If the second fingerprint looks like LRU, we

conclude that Clock is the underlying policy. The result of running these two steps on the Clock

replacement policy is shown in Figure 2.9.

2.3.4 Replacement Policies with History

We now show thatDust is able to distinguish those replacement policies that use long-term

history from those that do not. We begin by briefly showing that the policies examined above

(FIFO, LRU, LFU, Random, Segmented FIFO, and Clock) do not use history. We then discuss in

more detail the behavior of those policies (LRU-K and 2Q) that do use history.
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Figure 2.10History Fingerprint of Short-term Policies. Probes are performed on only pages in the hot
(i.e., the blocks on the left) and cold (i.e., the blocks on the right) test regions. The graph on the left shows
the fingerprint for FIFO, LRU, LFU, and Segmented FIFO. Sincethe cold test region remains in the buffer
cache, these policies do not prefer pages with history. The graph in the middle shows that Random also has
no preference for pages with history and thus does not use history. Finally, the graph on the right shows
that the historical fingerprint of Clock is ambiguous if the use bits are not set; after the use bits have been
properly set, the fingerprint is identical to leftmost graph.
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Figure 2.11Fingerprints of LRU-2. The first graph shows the short-term fingerprint of LRU-2 whenthe
correlated reference count is set to zero; in this case, LRU-2 displaces those pages with a frequency count
less than 2 and those whose second-to-last reference is the oldest. The second graph shows the short-term
fingerprint of LRU-2 when the correlated reference count is increased; here, no pages in the eviction with a
frequency count higher than two are evicted. Finally, the last graph shows the history fingerprint of LRU-2,
verifying that it prefers the hot pages.
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Figure 2.10 shows the long-term fingerprints of three representative policies that do not use

history. The graph on the left is that for LRU; FIFO, LFU, and Segmented FIFO look identical and

are not shown. The graph shows the results of probing the hot and cold regions of the test data.

As expected, the hot data has been entirely evicted, as shownby its high probe times; although

the initial portion of the cold data is also evicted due to thesize of the eviction region, the cold

data is clearly preferred by these policies. The middle graph shows that Random has no preference

for either hot or cold data. Finally, the graph on the right shows that the historical behavior of

Clock is difficult to determine when the use bits are not explicitly controlled. In this graph, the use

bits are set toU = 0.5; as a result, the hot and cold regions are interleaved in the file buffer and

then each region is replaced sequentially. To illustrate that Clock does not use history,Dustmust

again ensure that the use bits are all first cleared (or set); with this initialization step, the history

fingerprint of Clock is identical to the first graph in the figure. Thus, FIFO, LRU, LFU, Segmented

FIFO, Random, and Clock do not use history in making replacements.

The LRU-K replacement policy was introduced by the databasecommunity to address the prob-

lem that LRU is not able to discriminate between frequently and infrequently accessed pages [45].

The idea behind LRU-K is that it tracks theK-th reference to each page in the past, and replaces

the page with the oldestK-th reference (or a page that does not have aK-th reference); thus, tradi-

tional LRU is equivalent to LRU-1. Given thatK = 2 exhibits most of the benefits of the general

case, and is the most commonly used value, we only consider LRU-2 further. LRU-2 is sensitive

to another parameter as well, the correlated reference period,C; the intuition is that accesses to a

page within this period should not be counted as distinct references. Since settingC correctly is

a non-trivial task, the default value forC is zero. Given that LRU-2 is complex, we note that our

implementation is derived from the version provided by the original authors [46].

We begin by briefly exploring the sensitivity of LRU-2 to the correlated reference period; the

short-term fingerprints of LRU-2 are shown in the first two graphs of Figure 2.11. WhenC = 0

(i.e., the default value) the resulting fingerprint is a variationof pure LRU, as shown in the left-

most graph. Specifically, the last stripe of the test region is evicted with LRU-2; since this stripe

was accessed only twice, its second-to-last reference is very old (i.e., when the page was initially
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Figure 2.12Fingerprints of 2Q. The first fingerprint of 2Q shows that the short-term replacement policy
used is FIFO. The second fingerprint shows that 2Q uses history, preferring pages that have been accessed
and then evicted. The third fingerprint shows that the replacement policy used for pages in the main queue
is LRU.

referenced). As the correlated reference period is increased such thatC > 0, the fingerprint looks

more similar to LFU, as shown in the middle graph. With this setting, pages in the eviction region

are classified as having only correlated references and thusreplace mostly themselves; thus, all of

those pages that have a frequency count greater than two are kept in memory. Finally, whenC is

very large, all accesses are treated as correlated and thus no pages have a second-to-last reference;

in this case the behavior degenerates to pure LRU (not shown). In summary, LRU-2 produces a

distinctive fingerprint that uniquely identifies it and alsoindicates the approximate setting of the

correlated reference period.

Next, we verify that LRU-2 uses history. The last graph in Figure 2.11 shows the historical

fingerprint of LRU-2. As desired, the hot region is given preference over data in the cold region;

this occurs because the second-to-last reference of pages in the hot region is more recent than the

second-to-last reference to those in the cold region. Further, when a replacement must be made

within the hot region, those with the oldest second-to-lastreference are chosen.

The 2Q algorithm was proposed as a simplification to LRU-2 with less run-time overhead yet

similar performance [29]. The basic intuition behind 2Q is that instead of removing cold pages

from the main buffer, it only admits hot pages to the main buffer. Thus, the buffer cache is divided

into two buffers, a temporary queue for short-term accesses, A1in which is managed with FIFO,

and the main buffer,Am, which is managed with LRU. Pages are initially admitted into theA1in

queue and only after they have been evicted and reaccessed are they admitted intoAm. Thus, 2Q
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Figure 2.13Sensitivity of LRU Fingerprint to Cache Size Estimate.These graphs show the short-term
fingerprints of LRU as the estimate of the size of the buffer cache is varied. In the first graph the estimate is
too high by 20%, in the second graph the estimate is perfect, and in the third graph the estimate is too low
by 20%. However, all fingerprints still uniquely identify LRU.

has another structure to remember the pages that have been accessed but are no longer in the buffer

cache,A1out. In our experiments, we setA1in to use 25% of the buffer cache (withAm using the

other 75%);A1out is able to remember a number of past references equal to 50% ofthe number

of pages in the cache.

We show the fingerprints for 2Q in Figure 2.12. The first graph shows that the short-term

fingerprint of 2Q is identical to FIFO. Given that theA1in queue is managed with FIFO and the

short-term fingerprint does not access pages after they havebeen evicted, this is the expected result.

However, 2Q can be easily distinguished from pure FIFO from observing the history fingerprint

shown in the second graph. In the historical fingerprint, we can see that the hot region remains

entirely in the buffer cache, since these are the only accesses that are moved to theAm buffer.

Finally, we are able to identify the replacement policy employed by the long-term buffer,Am,

by setting the initial access, recency, and frequency attributes of the hot region and then forcing

evictions from it. Since this methodology is more specific tothe 2Q replacement policy, we do not

describe it in more detail. This fingerprint is shown as the last graph of Figure 2.12 and correctly

identifies the LRU policy of theAm buffer. We note that for LRU-2 or other policies that use

history, a similar technique could be used to determine the replacement strategy of the long-term

queue. However, explicitly setting the state of the long-term queue requires knowledge of the

policy of the short-term queue and the policy for moving a block from one queue to the other.
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Figure 2.14Sensitivity of Clock Fingerprint to Cache Size Estimate.These graphs show the short-term
fingerprints of Clock with half of the use bits set as the estimate of the size of the buffer cache is varied.
With U = 0.5, Clock is expected to look like LRU. In the first graph the estimate is too high by 10%, in the
second graph the estimate is perfect, and in the third graph the estimate is too low by 10%. Thus, the Clock
fingerprint is not as robust to inaccuracies in this estimateas the other algorithms.
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Hence a fingerprinting technique for the long-term queue is by nature specific to the policy of the

short-term queue.

2.3.5 Sensitivity to Buffer Size Estimate

In our last set of experiments we verify the robustness ofDustto inaccuracies in its estimate of

the size of the buffer cache. If the estimate of the buffer cache size is significantly different than

its actual value, then the resulting fingerprints are not identifiable. If the estimate of the cache is

much too small, thenDustdoes not touch enough pages to force evictions to occur; if the estimate

is much too large, thenDustevicts the entire region.

The short-term fingerprint is more sensitive to this estimate than the historical fingerprint: in

the short-term fingerprint we must observe the presence or absence of stripes that use only 1/10th

of the buffer cache, whereas in the historical fingerprint wemust observe a hot or cold region that

uses half of the buffer cache. However, as Figure 2.13 shows,the short-term fingerprint of LRU

is distinguishable even with estimates that are either 20% under or over the real sizes. The other

replacement policies, with the exception of Clock, are robust to a similar degree.

The Clock replacement algorithm is more sensitive to this estimate due to our need to configure

the state of the use bits. Specifically, the size of the warm-up region used byDustto fill the buffer

cache must be accurate as well. Figure 2.14 shows thatDust is still reasonably tolerant to errors in

cache-size estimate when identifying Clock but not as robust as when identifying other algorithms.

2.3.6 Summary

Through our simple simulation, we have shown thatDust is capable of identifying a wide

variety of buffer cache replacement policies.Dustdifferentiates policies based on the attributes of

the workload they use to make replacement decisions: initial access order, access recency, access

frequency and long-term history.Dust also accounts for use bits in Clock-like algorithms. In

the next section, we demonstrateDust identifying cache replacement policies of real operating

systems.
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2.4 Platform Fingerprints

Buffer caching in modern operating systems is often much more complex than the simple

replacement policies described in operating systems textbooks. Part of this complexity is due to the

fact that the file system buffer cache is integrated with the virtual memory system in many current

systems; thus the amount of memory dedicated to the buffer cache can change dynamically based

on the current workload. To control this effect,Dustminimizes the amount of virtual memory that

it uses, and thus tries to maximize the amount of memory devoted to the file buffer cache. Further,

we runDuston an otherwise idle system to minimize disturbances from competing processes.

In this section, we describe our experience fingerprinting three Unix-based operating systems:

NetBSD 1.5, Linux 2.2.19 and 2.4.14, Solaris 2.7 and HP-UX 11i. As we will see, the fingerprints

of real systems contain much more variation than those of oursimulations. In addition to finger-

printing the replacement policy of the buffer cache,Dustalso reveals the cost of a hit versus a miss

in the buffer cache, the size of the buffer cache, and whetheror not the buffer cache is integrated

with the virtual memory system.

Dust takes a considerable amount of time to run on a real system. Generating a sufficient

number of data points requires running many iterations of test scan, eviction scan, and probes.

In our experiments we always allowed at least 300 iterations. We found that one iteration can

take anywhere from 30 seconds to three minutes depending on the system under test. Note that

systems with smaller buffer caches can be tested in a shorterperiod of time since the test region

becomes smaller. We feel this relatively long running time is acceptable since, for any given

system configuration,Dustneed only be run once; the results can be stored and made available to

applications and programmers.

All of the experiments described in the section were run on systems with dual Pentium III-Xeon

processors, 1 GB of physical RAM and a SCSI storage subsystemwith Ultra2, 10000 RPM disks.
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Figure 2.15 Fingerprints of NetBSD 1.5. The first graph shows the short-term fingerprint of NetBSD,
indicating the LRU replacement policy. The second graph shows the long-term fingerprint, indicating that
history is not used.

2.4.1 NetBSD 1.5

Given that NetBSD 1.5 [39] has the most straight-forward replacement policy of the systems

we have examined, we begin with its fingerprint, shown in Figure 2.15. As in the simulations,

we examine both short-term and long-term fingerprints. The first graph in Figure 2.15 shows

the expected pattern for pure LRU replacement; given thatDust produces this same fingerprint

regardless of whether it attempts to manipulate use bits, wecan infer that NetBSD implements

strict LRU, and not Clock. This conclusion is further verified by the second graph of Figure 2.15

showing that NetBSD does not use history. Documentation [39] and inspection of the source

code [43] confirm our finding.

From the fingerprints we can also infer other parameters. Specifically, we can see that the time

for reading a byte from a page in the buffer cache is on the order of 10 µs, whereas the time for

going to disk varies between about 1ms and 10ms. Further, even on this machine with 1 GB of

physical memory, NetBSD devotes only about 50 MB to the buffer cache (most easily shown by

the fact that the history fingerprint devotes this much memory to the hot and cold regions); this

allows us to infer that the file buffer cache is segregated from the VM system.
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Figure 2.16 Fingerprints of Linux 2.2.19. The first graph shows the short-term fingerprint of Linux
2.2.19 when the use bits are all set; the second graph shows the fingerprint when the use bits are untouched.

2.4.2 Linux 2.2.19

Linux 2.2.19 is a very popular version of the Linux kernel in production environments. In

Section 2.5 we will run the NeST web server on top of this OS; thus, it is important for us to

understand this fingerprint.

The short-term fingerprint of Linux 2.2.19 is shown in Figure2.16. The graph on the left shows

the results whenDustattempts to set all of the use bits. Since this graph looks like FIFO, we must

investigate further to determine if Clock is actually beingused. The graph on the right shows the

fingerprint when the use bits are left in a random state. Although this fingerprint is very noisy, one

can see that priority is given to pages that are most recentlyreferenced (i.e., pages near the second

and fourth quarters); further, after filtering the data, we are able to verify that more pages in the

first and third quarters are out of cache than in cache. Thus, this fingerprint is similar to the LRU

fingerprint expected for a Clock-based replacement algorithm. Examination of the source code

and documentation confirms that the replacement policy is Clock based [36, 72]. Finally, since the

buffer cache size is very close to the amount of physical RAM in the system, we conclude a buffer

cache that is integrated with the VM.

2.4.3 Linux 2.4.14

The memory management system within Linux underwent a largerevision between version

2.2 and 2.4, thus we see a very different fingerprint for Linux2.4.14, which uses a more complex
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Figure 2.17 Fingerprints of Linux 2.4.14. The first graph shows the short-term fingerprint of Linux
2.4.14, indicating that a combination of LRU and LFU is used.The second graph shows the long-term
fingerprint, indicating that history is used.

replacement scheme than either Linux 2.2.19 or NetBSD. The short-term fingerprint, shown as the

first graph in Figure 2.17, suggests that Linux 2.4 uses both arecency and frequency component,

and does not use Clock. Further, the second graph ofDustshows that Linux 2.4 does use history

in its decision.

Examination of the Linux 2.4.14 source code and existing documentation confirms these re-

sults [36, 72]. Linux maintains two separate queues: an active and an inactive list. When memory

becomes scarce, Linux shrinks the size of the buffer cache. In doing this, pages that have not been

recently referenced (as indicated by their reference bit) are moved from an active list to an inactive

list. The inactive list is scanned for replacement victims using a form of page aging, in which an

agecounter is kept for each frame, indicating how desirable it is to keep this page in memory.

When scanning for a page to evict, the page age is decreased asit is considered for eviction; when

the page age reaches zero, the page is a candidate for eviction. Theageis incremented whenever

the page is referenced.

2.4.4 Solaris 2.7

Solaris presented us with the greatest challenge of the platforms we studied. The VM subsys-

tem of Solaris has not been thoroughly studied; it is believed to use a two-handed, global Clock

algorithm [11], but some researchers have noted non-intuitive behavior [4]. In two-handed Clock,

one hand clears reference bits while the second hand followssome fixed distance behind, selecting
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Figure 2.18 Fingerprint of Solaris 2.7. The first graph shows the short-term fingerprint of Solaris; the
second graph shows the history fingerprint.

a page for replacement if its reference bit is still clear. The hands are advanced in unison such that

once the reference bit on a page is cleared, it has some opportunity to be re-referenced before it is

a candidate for eviction. When implemented in our simulator, the fingerprint of two-handed Clock

looks identical to FIFO (not shown).

The short-term fingerprint of Solaris 2.7 is shown in the firstgraph of Figure 2.18. The out-of-

cache areas on both the far right and left of the fingerprint strongly suggests that Solaris is using

a frequency (or aging) component in its eviction decision inaddition to Clock. The second graph

of Figure 2.18 shows the historical fingerprint for Solaris.Though the data is again noisy, it shows

a clear preference for the hot region, again suggesting thathistory or page aging is also used in

Solaris. The fingerprint also shows that the time to service abuffer cache hit is significantly higher

in Solaris than in Linux. The fingerprint shows a hit time of over 10µs, whereas the hit time for

Linux 2.4 on the same platform is under 10µs.

2.4.5 HP-UX 11i

The last system we fingerprint is HP-UX 11i, running on an Intel Itanium system. For this

experiment we configured HP-UX to limit the size of the buffercache to 40,000 pages. This is

entirely for convenience asDustcompletes faster on smaller caches.

Figure 2.19 shows the fingerprint for HP-UX 11i. The graphs show the fingerprint both at-

tempting to set all of the use bits to be uniform, and leaving them set randomly. Since the graphs
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Figure 2.19 Fingerprints of HP-UX 11i (Itanium). The first graph shows the short-term fingerprint of
HP-UX 11i when the use bits are randomized; the second graph shows the fingerprint when the use bits
are uniform. The fingerprint indicates that a combination ofrecency and frequency is being used. The
fingerprint doesn’t significantly change based on use bit manipulation, so use bits are being ignored by the
policy.
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are virtually the same, we conclude that no use bits exist, orthey are being ignored by the replace-

ment policy. Similar to the short-term fingerprint of Linux 2.4.14, HP-UX appears to use both

recency and frequency in determining replacement decisions. Source code for HP-UX 11i is not

available to us so we are unable to verify our conclusion in this case.

2.4.6 Summary

This section describesDust fingerprints for several popular operating systems: NetBSD1.5,

Linux 2.2.19 and 2.4.14, Solaris 2.7 and HP-UX 11i. Fingerprinting real systems is more chal-

lenging for a variety of reasons. Real operating systems often use replacement policies that are

more sophisticated than simple LRU or LFU, and thus are more difficult to identify. Fingerprints

from real systems are far noisier than simulated fingerprints due to variations in access times in the

storage stack and other processes running on the system. Despite these difficulties,Dust is able to

identify the replacement policies of these systems.

In some cases, such as NetBSD it is easy to identify the precise replacement algorithm from the

Dustfingerprint. For systems with more sophisticated replacement policies, it may not be possible

to pinpoint the replacement policy, but theDustfingerprint still reveals what workload attributes

are being used to make replacement decisions. We believe that even this more limited information

is still useful. In the next section, we discuss a cache-aware webserver and show that somewhat

inaccurate information is still quite valuable.

2.5 Cache-Aware Web Server

In this section, we describe how knowledge of the buffer cache replacement algorithm can be

exploited to improve the performance of a real application.We do so by modifying a web server

to re-order its accesses to first serve requests that are likely to hit in the file system cache, and

only then serve those that are likely to miss. This idea of handling requests in a non-FIFO service

order is similar to that introduced in connection scheduling web servers [17]; however, whereas

that work scheduled requests based upon the size of the request, we schedule based upon predicted

cache content. As we will see, re-ordering based on cache content both lowers average response
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time (by emulating a shortest-job first scheduling discipline) and improves throughput (by reducing

total disk traffic).

2.5.1 Approach

The key challenge in implementing the cache-aware server isto use our knowledge of the file

caching algorithm to determine which files are in the cache. By keeping track of the file access

stream being presented to the kernel, the web server can simulate the operating system’s buffer

cache and thus predict at any given time what data is in cache.We term thisalgorithmic mirroring,

and believe that it is a general and powerful manner in which to exploit gray-box knowledge.

One important assumption of algorithmic mirroring is that the application induces most or all

of the traffic to the file system, and thus the mirror cache is likely to accurately represent the

state of the real OS cache. Although this assumption may not hold in the general case within a

multi-application environment, we believe it is feasible when a single application dominates all

file-system activity. Server applications such as a web server or database management system are

thus a perfect match for such mirroring methods.

The NeST storage appliance [9] supports HTTP as one of its many access protocols. NeST

allows a configurable number of requests to be serviced simultaneously. Any requests received

beyond that number are queued until one of the pending requests completes. By default, NeST

services queued requests in FIFO order. We term this defaultbehavior ascache-oblivious NeST.

We have modified the NeST request scheduler to keep a model of the current state of the OS

buffer cache. The model is updated each time a request is scheduled. NeST bases its model of the

underlying file cache on the algorithm exposed byDust. NeST uses this model to reorder requests

such that those requests for files believed to be in cache are serviced first. Note that NeST does not

perform caching of files itself, but relies strictly upon theOS buffer cache.

For the cache mirror to accurately reflect the internal stateof the OS, NeST must have a reason-

able estimate of the cache size. In our current approach, NeST uses the static estimate produced by

Dust; the disadvantage of this approach is that this estimate is produced without contention with

the virtual memory system, and thus may be larger than the amount available when the web server
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is actually running. To increase the robustness of our estimate, it would be possible to modify

NeST to dynamically estimate the size of the buffer cache by measuring the time for each file ac-

cess. If the time is “low”, the file must have been in the cache,and if it is “high”, the file was likely

on disk. By comparing these timings with the prediction provided by the mirror cache, NeST can

adjust the size of the mirror cache.

2.5.2 Performance

To evaluate the performance benefits of cache-aware scheduling, we compare the performance

of cache-aware NeST to cache-oblivious NeST for two different workloads. In all tests, the web

server is run on a dual Pentium III-Xeon machine with 128 MB ofmain memory and Ultra II disks.

For clients, we use four machines (identical to the server, except containing 1 GB of main memory)

each running 36 client threads. The clients are connected tothe server with Gigabit Ethernet.

The server and clients are running Linux 2.2.19, which was shown in Section 2.4.2 to use

the Clock replacement algorithm; therefore, cache-aware NeST is configured to model the Clock

algorithm as well. In our configuration, the server has approximately 80 MB of memory dedicated

to the buffer cache. In our experiments, we explore the performance of cache-aware NeST as we

vary its estimate of the size of the buffer cache. As discussed previously, the Clock algorithm has

initial state in the form of use bits, which effect replacement. We ignore this small complication

in cache-aware NeST. This may result in some inaccuracy in the model initially, but since NeST

dominates the systems workload, the previous state is quickly flushed and the model kept by NeST

becomes accurate.

In our first experiment, we consider a workload in which each client thread repeatedly requests

a uniformly distributed random file from a set of 200 1 MB files.Figures 2.20 and 2.21 show the

average response time and throughput, respectively for three different web servers: the Apache web

server [1], cache-oblivious NeST, and cache-aware NeST as afunction of its estimate of cache-size.

We begin by comparing the response time and the throughput ofNeST and Apache; from the two

figures, we see that although NeST incurs some overhead for its flexible structure (e.g., NeST can

handle multiple transfer protocols, such as FTP and NFS), itachieves respectable performance as
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a web server and is a reasonable platform for studying cache-aware scheduling. Second, and most

importantly, adding cache-aware scheduling significantlyimproves both the response time and

the throughput of NeST. By first servicing requests that hit in the cache, cache-aware scheduling

improves average response time by servicing short requestsfirst. More dramatically, cache-aware

scheduling improves throughput by reducing the number of disk reads (verified through the/proc

interface): in-cache requests are handled before their data is evicted from the cache. Finally, the

performance of cache-aware NeST improves when its estimateof the cache size is closer to the

real value, but is robust to a large range of cache size estimates.

In our second experiment, we consider a workload created by the SURGE HTTP workload

generator [7]. The SURGE workload uses approximately 12,000 distinct files with sizes taken from

a Zipf distribution with a mean of approximately 21 KB. SURGEis thus a more representative web

workload than is presented above.

With the SURGE workload, we measure qualitatively similar results to those above, except for

two main differences. First, the performance of cache-oblivious NeST relative to Apache degrades

slightly more; for example, the average response time for cache-oblivious NeST is 0.80 seconds

and for Apache is 0.65 seconds. This result is expected, given that NeST is designed for staging

data in the Grid, and is thus optimized for large files and not the small files more typical in web

workloads. Second, the performance of cache-aware NeST is not as sensitive to its estimate of

the cache size; for example, performance improves from 4.27MB/s to 4.69 MB/s (approximately

10%) as the cache size estimate is improved from 10 MB to 80 MB.Apache achieves 4.91 MB/s.

2.6 Conclusions

We have shown that various buffer cache replacement algorithms can be uniquely identified

with a simple fingerprint. Our fingerprinting tool,Dust, classifies algorithms based upon whether

they consider initial access, locality, frequency, and/orhistory when choosing a block to replace.

With a simple simulator, we have shown that FIFO, LRU, LFU, Clock, Random, Segmented FIFO,

2Q, and LRU-K all produce distinctive fingerprints, allowing them to be uniquely identified. We
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have also begun to address the more challenging problem of fingerprinting real systems. By run-

ning Duston NetBSD, Linux, and Solaris, we have shown that we can determine which attributes

are considered by each page replacement algorithm.

Further, we have shown that the algorithmic knowledge revealed byDust is useful for predict-

ing the contents of the file cache. Specifically, we have implemented a cache-aware web server

that services first those requests that are predicted to hit in the file cache, improving both response

time and bandwidth. Thus it is possible for applications to discover and utilize knowledge of the

contents of the buffer cache, despite the operating system being designed to hide such information.

In this way, we regain some of the knowledge lost due to implementing caching at the operating

system level, while at the same time retaining the benefits ofa centralized caching infrastructure.

We also show that even though this information might be have adegree of inaccuracy, it can still

be used to gain significant performance improvements.

The cache information discovered byDust is obtained and used by cache-aware NeST without

any alterations to the existing operating system. Leaving the OS unmodified yields several advan-

tages. First, porting to a new OS is made simple; it only requires runningDustto discover the new

system’s cache management strategy. Second, any risk of adding bugs to the OS is eliminated;

any new bugs will be confined to the user-level application. Finally, techniques based on implicit

information can be used and deployed without requiring the consent of OS developers; techniques

based on implicit information can be used on a per-application basis, rather than on a per-OS basis.

Implicit information is sometimes inaccurate. While the optimization described here can tol-

erate some inaccuracy, one might imagine more aggressive optimizations that require accurate

information. Here if cache-aware NeST mispredicts the cache state, it merely results in a bad

scheduling decision. As long as its predictions are correctmost of the time, performance will still

be better than it would be if cache state were ignored. If the application is attempting an opti-

mization where a misprediction of the cache state could, forexample, result in extra disk accesses,

performance might suffer severely if the information beingused is inaccurate. For optimizations

in this class, implicit information may be insufficient.
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Chapter 3

Exposing Buffer Cache State with Explicit Information

3.1 Introduction

Implicit information is, by its nature, imperfect. In the case of our cache-aware web server,

imperfect information is acceptable. Having an imperfect algorithmic mirror is unlikely to lower

performance below the level of being cache-oblivious. As wediscovered, the cache size estimate

can be quite inaccurate before performance drops to be near that of the cache-oblivious connection

scheduler. The reason for this is twofold. First, as long as the predictions are right most of the

time, performance will be better than the cache-oblivious web server. Second, since the policy

being used was recency based, for any cache size estimate, the most recent items in the cache will

be predicted correctly since these items will be in the intersection of the sets of contents of both the

cache mirror and the actual cache. That said, we would like tobe able to perform more aggressive

optimizations where it is possible that inaccurate information could actually degrade performance.

There are other potential sources of inaccuracy as well. If the algorithmic mirror is simulat-

ing the wrong policy, the resulting cache predictions may beincorrect. The level of error in the

prediction will be a function of the difference between the policy being simulated and the actual

policy. For example, if the algorithmic mirror is simulating LRU and the actual policy is Clock, the

degradation is likely to be very small since these policies are very similar in what they keep cached.

However, if the actual policy is Clock and the algorithmic mirror is simulating MRU, depending

on the workload the predictions are likely to be wrong most ofthe time.

Another possible source of error is interference from otherprocesses. Consider a web site

with a database back-end. At a small site, the web server might run on the same machine as the



49

DBMS. If either of these applications depends on an algorithmic mirror, that mirror is likely to

be inaccurate. The only way to prevent this inaccuracy is to have both applications aware of each

other and collaborate to keep a common algorithmic mirror upto date.

As we saw in the previous chapter, implicit information can also be costly to acquire.Dustfor

example, requires that the system be quiescent and even thenmay take hours to run to completion.

If a production system is being upgraded to a new version of the operating system, the amount of

downtime required to runDust may not be acceptable and another system with an identical OS

version may not be available.

To address these limitations, we exploreexplicit information. We modify the operating system

to explicitly expose useful information to applications. This gives applications timely, accurate

information that is easy to access at the cost of having to modify the operating system kernel.

Exposing information only, rather than adding new mechanisms, makes our kernel modifica-

tions very simple. This helps to mitigate the usual difficulties associated with kernel development.

There is very little risk that our modifications will interfere with the existing mechanisms and poli-

cies of the system, since we only read kernel data structures, we never modify them. Since our

modifications are relatively safe in this respect, we believe it will be easier to have them integrated

into popular systems.

We also believe that information interfaces are often more versatile than implementing new

mechanisms directly in the operating system kernel. For example, in this chapter we show that by

exposing cache state, it is possibly to transform the kernel’s buffer cache replacement policy into

nearly any other policy. There are two ways in which this information-based approach is more ver-

satile than a direct implementation. First, using the approach this chapter describes, an application

can implementanycache policy that is desired. This is much more flexible than having the kernel

provide a different cache policy. Even if the kernel provided a selection of policies to choose from,

the application would still have to choose from that finite set. By providing information only, we

let the application implement whatever policy suits it. Second, the interface we describe could

be used for purposes other than policy transformation. For example, we could use it to make our

algorithmic mirror from the previous chapter perfectly accurate and eliminate the need forDust.
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Extensible operating systems have been studied for many years [10, 58]. One approach to

extensible systems has been to allow applications to uploadcode into the kernel. The problem then

becomes one of protecting the rest of the system from misbehaving kernel extensions. Exporting

information provides a way to extend kernel functionality without the risks and costs of allowing

application code to be loaded into the kernel.

In this chapter, we show that by exposing two key pieces of internal operating system state to

user-level applications, we enable those applications to efficiently transform the kernel provided

buffer cache policy into the replacement policy of the applications choice. For applications with

a high degree of knowledge about the IO workload they present, the ability to alter the cache

replacement policy can yield substantial benefits. Database management systems are particularly

well suited to this sort of optimization since, once a query plan is chosen, a DBMS has a great deal

of knowledge about it’s near-term future IO patterns [16].

We now discuss some issues and trade-offs with exposing kernel information in general. We

then describe and evaluate our new interface for exposing file system buffer cache state, focusing

on our Linux implementation with a brief discussion of our experience porting that interface to

NetBSD.

3.2 Information Exposure Issues

In this section, we discuss the general issues of exposing internal kernel state. We begin by

presenting the benefits of exposing more information about the policies and state of the OS to

higher-level services and applications. We then discuss some of the fundamental tensions concern-

ing how much information should be exposed. This discussionis applicable not only to exposing

buffer cache information, but to exposing any kernel state to the user-level [5].

3.2.1 Tensions in Design

When exposing kernel state, a number of design decisions must be made. We now discuss

some of the issues pertaining to the amount of information that is exposed, exposing information

across process boundaries, and exposing information instead of adding new mechanisms.
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3.2.1.1 Amount of information

One tension when designing an kernel to expose information is to decide what information

should be exported. On the one hand, exporting as much information as possible is beneficial since

one cannot always knowa priori what information is useful to higher-level services. On theother

hand, exposing information from the OS greatly expands the API presented to applications and

destroys encapsulation.

There are unfortunate implications for both the application and the OS when the API is ex-

panded in this way [19]. For example, consider a new user-level service that wants to control the

page replacement algorithm and must know the next page to be evicted by the OS. If the service

is developed on a system that uses Clock replacement, then the application examines the clock

hand position and the reference bits. However, if this service is moved to a system with pure LRU

replacement, the service must instead examine the positionof the page in the LRU list. From

the perspective of the user-level service, a new API impliesthat either the service no longer op-

erates correctly or that it must be significantly rewritten.From the perspective of the OS, a fixed

API discourages developers from implementing new algorithms in the OS and thus constrains its

evolution.

Therefore, for application portability, information exposing interfaces must keep some infor-

mation hidden and instead provide abstractions. However, for the sake of OS innovation, these

abstractions must be at a sufficiently high level that an operating system can easily convert new

internal representations to these abstractions.

Exposing too much information might also lead to performance issues. Ones first instinct might

be to expose the contents of theentire buffer cache to applications. Exposing everything would

ensure that the application had all the of the information itcould possibly need (provided such

information exists), however it would be difficult to designan interface to efficiently move that

much data from the kernel into a user-level process. Further, since the cache state is constantly

changing it would be challenging to keep the information seen by the application up to date fast

enough if the entire cache were exposed.
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We believe that precisely determining the correct abstractions for exposing kernel state in this

way requires experience with a large number of case studies and operating systems. In this dis-

sertation, we take a first step in defining these abstractionsin the case of the file system buffer

cache. More importantly, we demonstrate the ease with whichinformation can be exposed and the

potential application improvements that can be realized byleveraging such information.

To represent the file cache replacement algorithm, we find that a prioritized list of resident

pages allows user-level services to efficiently determine which pages will be evicted next. Our

implementation illustrates that implementing these abstractions for an existing OS is relatively

simple and involves few lines of code.

3.2.1.2 Process boundaries

Another tension when designing interfaces to expose information information is to determine

the information about competing processes that should be exposed to others. On the one hand,

the more information about other processes that is exposed,the more one process can optimize

its behavior relative to that of the entire system. On the other hand, more information about other

processes could allow one process to learn secrets or to harmthe performance of another process.

Clearly, some information about other processes must be hidden for security and privacy (e.g.,

the data read and written and the contents of memory pages). Although other information about the

resource usage of other processes may increase the prevalence of covert channels, this information

was likely to be already available, but at a higher cost. For example, with a resident page list,

a curious process may infer that another process is accessing a specific file; however, by timing

the open system call for that file, the curious process can already infer from a fast time that the

inode for the file was in the file cache. If exposure of certain information proves to be a risk, it can

be hidden by doing more work; with the resident page list example, the corresponding file block

number can be removed for those pages that do not belong to thecalling process.

This issue also addresses the suitability of competing applications performing information

based optimizations. One concern is that services are encouraged to “game” the OS to get the

control they want, which may harm others. With more information, a greedy process can acquire
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more than its fair share of resources; for example, a greedy service that keeps its pages in memory

by touching them before they are evicted is able to steal frames from other processes. However,

given that an we not providing any new mechanisms, this behavior was possible in the original

OS, albeit more costly to achieve. For example, without explicit cache state information, a greedy

process can continually touch its pages blindly, imposing additional overhead on the entire system.

As was shown in the Chapter 2 even without explicit information, applications can already deter-

mine cache state to a fair degree of accuracy. In summary, applications using explicit information

stresses the role of the OS to arbitrate resources across competing applications (i.e., to define limits

in its existing policies), but does not impart any new responsibilities.

3.3 Cache Information Interfaces

Different applications benefit from different file cache replacement algorithms [14, 45, 60],

and modifying the replacement policy of the OS has been used to demonstrate the flexibility of

extensible systems [58]. We can emulate similar functionality with only minimal changes to the

operating system. We implement a user-level library, InfoReplace, that demonstrates a variety

of replacement algorithms (e.g., FIFO, LRU, MRU, and LFU) can be implemented on top of the

unmodified Linux replacement algorithm.

We begin by describing the intuition for how the file cache replacement policy can be treated as

a mechanism, giving replacement control to applications. Consider the case where an application

wishes to keep a hot list of pages resident in memory (i.e., the target policy), but the OS supports

only a simple LRU-replacement policy (i.e., the source policy). To ensure that this hot list remains

resident, the user process must know when one of these pages is about to be evicted; then the user

process accesses this page some number of times, according to the source replacement policy, to

increase the priority of that page. More generally, one replacement policy can be converted to

another by accessing pages that are about to be evicted giventhe source policy, but should not be

evicted according to the target policy.
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3.3.1 Abstractions

To support the InfoReplace user-level library, the operating must export enough information

such that applications can determine the next victim pages and the operations to move those pages

up in priority.

Linux 2.4.18uses a 2Q-like replacement policy. This policydivides the buffer cache into two

queues. One list ofhot pages, managed in an LRU fashion and a list of non-hot pages, managed

using FIFO. To provide the general representation of a prioritized list of all physical pages,page-

List, the kernel exports the concatenation of these two queues through a system call. With this

information, InfoReplace can examine the end of the queue for the pages of interest. The drawback

of thepageList abstraction is that its large number of elements imposes significant overhead when

copying the queue to user space; therefore, the call can be made only infrequently. However, if the

queue is checked only infrequently, then pages can be evicted before the user-level library notices.

Therefore, the kernel provides avictimList abstraction, containing only the lastN pages of the

full queue, as well as a mechanism to quickly determine when new pages are added to this list.

The operating system already provides a mechanism for increasing the priority of a pages in

the buffer cache. For most replacement policies,read() increases the priority of a page as a

side-effect. If the kernel provided policy is FIFO, or another policy that doesn’t increase a page’s

priority when they are touched, then we cannot efficiently transform the replacement policy using

the techniques described here. However, we have not encountered any modern operating systems

that have this problem.

3.3.2 Implementation

The state within Linux can be converted into this form with low overhead as follows. Linux 2.4.18

has a unified file and page cache with a 2Q-like replacement policy [29]: when first referenced, a

page is placed on theactive queue, managed with a two-handed clock; when evicted from there,

the page is placed upon theinactive queue, managed with FIFO.

Our modified Linux exports an estimate of how rapidly the queues are changing by reporting

how many times items are moved out of the inactive queue; thisis done efficiently by counting the
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Kernel Task C Statements
Memory-map counter setup 64
Track page movement 1
Reset counter 14
ExportvictimList 30
Total for victimList abstraction 109

Table 3.1 Code size for kernel portion of InfoReplaceThe number of C statements (counted with
the number of semicolons) needed to implement both thevictimList abstraction and memory-mapped
counter within Linux.

User-Level Task C Statements
Setup 4
Simulation framework 720
Target policies

FIFO 86
LRU 115
MRU 75
LFU 110

CheckvictimList and refresh 251
Total for InfoReplace library 1361

Table 3.2Code size for user level portion of InfoReplaceThe number of C statements (counted with the
number of semicolons) needed to implement the InfoReplace library at user-level library.
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number of times key procedures are called.1 This counter is activated only when a service registers

interest and is fast to access from user-space because it is mapped into the address space of the user

process. Once this counter is approximately equal toN , the process performs the more expensive

call to get the state of the lastN pages on the inactive queue. As shown Table 3.1, thevictimList

abstraction can be implemented in only 109 C statements; in fact, more than half of the code is

needed to setup the memory-mapped counter.

With thevictimList abstraction, the user-level InfoReplace library can frequently poll the OS

and when new pages are near eviction, obtain the list of thosepages; if any of these pages should

not be evicted according to the target policy, InfoReplace accesses them to move them to the active

list. Thus, one of the roles of InfoReplace is to track the pages that would be resident given the

target policy. For simplicity, the InfoReplace library currently exports a set of wrappers, which

applications call instead of theopen(), read(), write(), lseek(), andclose() system calls.

Hence, the library only tracks file pages accessed with theseexplicit calls; however, our interface

could be expanded to return access information about each page in the process address space. Thus,

on each read and write, the InfoReplace library first performs a simulation of the target replacement

algorithm to determine where the specified page belongs in the page queue; InfoReplace then uses

victimList to see if any of the pages that should have high priority are near eviction and accesses

them accordingly. Since InfoReplace does not know the specific replacement policy that the kernel

is using, only that it increases the priority of a page when itis accessed, InfoReplace rechecks the

victimList after accessing all of the high-priority pages that are neareviction. If some of these

pages are still on thevictimList InfoReplace accesses them again. It repeats this procedureuntil

either all of the pages on thevictimList are non-resident in the simulated target policy, or a fixed

maximum number of iterations is exceeded. Thus InfoReplaceis capable of running on recency

and frequency based policies. In our implementation, this maximum is set to 1000, and during

none of our experiments was it exceeded. Finally, the library wrapper performs the requested read

or write and returns.
1In Linux 2.4.18, these procedures areshrink cache and the macrodel page from inactive list.
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Following these basic steps, we have implemented FIFO, LRU,MRU, and LFU on top of the

Linux 2Q-based replacement algorithm. The bottom half of Table 3.2 shows the amount of C code

needed to implement InfoReplace. Although more than one thousand statements are required, most

of the code is straightforward, with the bulk for simulationof different replacement policies.

3.4 Evaluation

We evaluate the usefulness of our approach in two ways. First, we measure the overhead in-

curred and accuracy achieved when using InfoReplace to transform the Linux 2.4.18 2Q-like policy

into a variety of other replacement policies. Second, we evaluate the performance improvement

achieved on a synthetic workload devised to simulate lookups in a tree-based on-disk index.

3.4.1 Experimental Configuration

Our experimental platform consists of a 2.4 GHz Pentium 4 processor with 512 MB of main

memory and two 120 GB 7200 RPM Western Digital WD1200BB ATA/100 hard drives. One

drive serves as the system disk, we run our experiments on theother disk. We setN , the size of

thevictimList that InfoReplace requests, to 100. While we did not thoroughly study the effects

of varying this value, 100 worked well in practice.

3.4.2 Overhead and Accuracy

To evaluate the overhead and accuracy of our approach, we runtheDustworkload described in

Chapter 2. Recall that this workload accesses a large file (1.5 times the size of memory), touching

blocks such that the initial access order, recency, and frequency attributes of each block differ;

thus, which blocks are evicted depends upon which attributes the replacement policy considers.

We measure the accuracy of the target policy at the end of the run, by comparing the actual contents

of memory with the expected contents.

Figure 3.1 shows both the accuracy and overhead of implementing these algorithms in InfoRe-

place. The graph on the left shows the inaccuracy of InfoReplace, defined as the percentage of
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Figure 3.1Accuracy and overhead of InfoReplace.FIFO, LRU, MRU, and LFU have been implemented
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should not be evicted, to simulate the target replacement algorithm, and to perform miscellaneous setup.



59

pages that are not resident in memory but should be, given a particular target replacement algo-

rithm. By this metric, if four pagesA, B, C, andD should be in memory for a given target policy,

but instead pagesA, B, C, andX are resident, inaccuracy is 25%. In general, the inaccuracyof

InfoReplace is low. The inaccuracy of MRU is the highest, at roughly 12% of resident pages, be-

cause the preferences of MRU highly conflict with those of 2Q;therefore, when emulating MRU,

InfoReplace must constantly probe pages to keep them in memory.

The graph on the right of Figure 3.1 shows the overhead of implementing each policy, in terms

of the increase in time perread() or write() operation; this time is broken down into the time to

check thevictimList abstraction, to probe the pages that should not be evicted, to simulate the

target replacement algorithm, and to perform miscellaneous setup. The overhead of InfoReplace is

generally low, usually below 4µs per read or write call. The exception is pure LFU, which incurs

a high simulation overhead (roughly 100µs per call) due to the logarithmic number of operations

required per read or write to order pages by frequency. However, assuming that the cost of missing

in the file cache is about 10ms, even the relatively high overhead of emulating LFU pays offif the

miss rate is reduced by just 1%.

3.4.3 Workload Benefits

Database researchers have observed that policies providedby general-purpose operating sys-

tems deliver suboptimal performance to database management systems [63]. To demonstrate the

utility of InfoReplace, we provide a file cache replacement policy inspired by DBMIN [16] that is

better suited for database index lookups.

Given that indices in DBMS systems are typically organized as trees, the replacement policy

should keep nodes that are near the root of the tree in memory since these pages have a higher

probability of being accessed. For simplicity, our policy,PinRange, assumes that the index is

allocated with the root at the head of a file and the leaves nearthe end; therefore, PinRange gives

pages preference based on their file offset. Pages in the firstN bytes of the file are placed in one

large LRU queue, while the remaining pages are placed in another much smaller queue. PinRange

is also simple to implement, requiring roughly 120 C statements in the InfoReplace library.
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To demonstrate the benefits of InfoReplace for repeated index lookups, we compare workload

run-time using PinRange versus the default Linux 2Q replacement policy. We note that 2Q is

already a fairly sophisticated policy, introduced by the database community specifically to handle

these types of access patterns [29]; as a result, 2Q gives some preference to pages at the top of the

tree.

For our experiments, we run synthetic workloads emulating 100,000 lookups in index trees

with seven or eight levels and a fan-out of seven or eight. On amachine with 128 MB of memory,

PinRange is configured to prefer the first 90 MB of the file, since 90 MB fits well within main

memory. The graph on the left of Figure 3.2 shows that PinRange improves run-time between 10%

and 22% for three different trees.

To illustrate why PinRange improves performance over 2Q, the graph on the right of Figure 3.2

plots hit rate as a function of the index level, for a tree withseven levels and a fan-out of seven.

The graph shows that PinRange noticeably improves the hit rate for the sixth level of the tree while

only slightly reducing the hit rate in the lowest (seventh) level of the tree. This improvement in

total hit rate results in a 22% decrease in run-time, which includes approximately 3 seconds of

overhead from the InfoReplace library.

3.5 Experience porting to NetBSD

In this section, we describe our initial experience portingour cache information interfaces to

NetBSD 1.5. In our discussion, we focus on the main differences between the NetBSD and Linux

implementations.

The pageList we use in NetBSD is quite similar to that which we used in Linux. Since

NetBSD has a fixed-sized file cache, the primary difference between the two implementations is

that for Linux,pageList contains every page of memory, whereas for NetBSD, it contains only

those pages in the file cache. Given that the NetBSD file cache is managed with pure LRU re-

placement, the NetBSD implementation simply exports this LRU list for pageList and the lastN

elements forvictimList. To enable processes to quickly determine how the elements are moving

in the lists, NetBSD tracks the number of evictions that haveoccurred from the LRU list. Only
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40 C statements are needed to export these abstractions in NetBSD; the primary savings compared

to the Linux implementation, which requires 109 statements, is that we have not implemented the

memory-mapped interface to the eviction count.

Through this exercise, we have shown that the abstractions we defined for out Linux imple-

mentation are straight-forward to implement in NetBSD as well. Thus, we are hopeful that these

list-based abstractions are sufficiently general to capture the behavior of other UNIX-based oper-

ating systems and that porting this interface to other operating systems will not be difficult. We

note that operating systems that export these same interfaces will be able to directly leverage the

user-level libraries created for other operating systems,which is where the majority of code resides.

3.6 Conclusions

This case study shows that new replacement policies can be implemented when information

is exposed from the OS: thevictimList abstraction is sufficiently flexible to build a variety of

classic replacement algorithms. We believe this compares favorably to direct in-kernel implemen-

tations; for example, in Caoet al.’s work [14], applications can easily invoke policies that are

some combination of LRU and MRU strategies; however, their system has difficulty emulating the

behavior of a wider range of policies (e.g., LFU). This case study also illustrates that care must

be taken to efficiently perform the conversion from internalstate to the generalvictimList ab-

straction. Furthermore, InfoReplace demonstrates that target replacement algorithms that are most

similar to the source algorithm can be implemented with the most accuracy and least overhead.

Modifying the operating system to exposeexplicit informationis one way to overcome the

inherent limitations of implicit techniques. Exposing information explicitly gives applications

easy access to information about the operating system’s internal state. The information provided

is always accurate and never out of date. By only exposing information, we avoid many of the

complications usually associated with modifying operating systems. Since the interfaces presented

here are purely read-only, there is no risk that OS internal data structures will become corrupted,

thus making it far easier to have confidence in the safety of the new code. All of the code with any
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significant complexity is kept safely in user-space, where it will only corrupt a single application

if it is buggy.

We have presented an interface by which applications can access information concerning the

current state of the file system buffer cache. Applications can leverage this information to manip-

ulate the ultimate behavior of the operating system. This isdone by observing the current state

of the buffer cache and issuing additional reads to bring theOS into the state desired by the ap-

plication. With these techniques we have demonstrated thatthe default cache replacement policy

used by Linux 2.4 can be transformed into a variety of other replacement policies. We have also

ported our interface to NetBSD. We see no reason why the same techniques could not be used on

any operating system that provides file system caching.

Information-based approaches as described in this and the preceding chapter provide applica-

tions with a great deal of power to modifies their behavior to better fit the policies of the operating

system, and to manipulate the behavior of the OS to better fit the needs of the application. Both

the implicit and explicit information techniques we have described leverageimplicit control. That

is, they use the existing interfaces provided by the OS to exercise control. This naturally limits the

OS behavior modifications that are possible. For example, ifLinux used strict a strict FIFO policy

to manage the buffer cache, there would be no way to efficiently alter the cache policy since FIFO

doesn’t increase the priority of pages when they are accessed.
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Chapter 4

Controlling Write Ordering

The approaches based on implicit information and explicit information, discussed in Chapters 2

and 3 have in common that control over the operating system isapplied using implicit techniques.

Even in the case where information is exposed explicitly, nointerfaces were added for altering

the behavior of the operating system. While this provides a larger degree of control than was

previously available, in some cases implicit techniques are not powerful enough to exercise the

needed control, or are not suited to exercising that controlin an efficient manner. This chapter

describes one such instance, controlling the order in whichdata is committed to stable storage, and

two interfaces for allowing the application the control it needs. We show that the interface exposed

to the application can make a tremendous difference in the performance and usability of a feature.

4.1 Write Ordering

At every level in the storage stack, write requests may be reordered to optimize performance.

In fact, the order in which the application submits writes tothe operating system is typically not

even recorded. Many factors determine the order in which data is finally written to the storage

device. When an application sends a write request to the kernel, the update is applied to a copy

of the data in the file system buffer cache, then the write callreturns. At this point the operating

system is free to write the data to disk at its own convenience. Assuming the system doesn’t crash,

the new data will eventually be written to disk. How and when that happens depends on a number

of factors. If the application callsfsync() orsync(), the data will be flushed to disk immediately.

If there is memory pressure, the data may be flushed as a part ofthe cache replacement algorithm.
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Also, most systems will assure dirty data is written within some defined period of time (30 seconds

in many systems). Once requests are sent to the disk scheduler, they will be reordered to maximize

the performance of the disk. Depending on the policies implemented in the operating system, data

sent to the kernel to be written to disk can end up being committed to disk in nearly any conceivable

order.

4.1.1 Motivation

For most applications, this situation is acceptable. The performance benefit gained by allowing

reordering far outweighs any benefits of restricting reordering. However, for certain classes of

applications the order in which data is committed to disk is critical.

Any application that is concerned with the consistency of the data it writes to disk will be

concerned with the order in which data is committed to the media. Complex on-disk data is likely

to contain references to other parts of the data set. Ordering is necessary to ensure that, in the event

of a crash, these references do not point to data that was never committed to disk. For example,

FFS-like file systems ensure that data blocks are written to disk before inodes and indirect blocks

that point to them [38]. In the application space, CAD/CAM systems often use large datasets with

ordering requirements similar to database systems [8].

Perhaps the most common example of the need for ordering is write-ahead logging [24], used

by journalling file systems [12, 51, 64, 68] and database management systems [40]. These systems

maintain the write-ahead invariant: the log entry for a transaction will be written to stable storage

strictly before the data updates for that transaction. Thisguarantees that no there will be no data

updates applied which aren’t described in the write-ahead log; allowing the system to recover to a

consistent state in the event of a crash. This is the example we focus on here.

4.1.2 Current Ordering Strategies

Currently applications have several choices on how to deal with consistency when running

on a modern OS. Each of these options sacrifices at least one ofperformance, manageability or

reliability.
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Perhaps the simplest option that maintains ordering is to usefsync() to force data to disk when

necessary to preserve ordering. While this does accomplishthe goal of maintaining the correct

order, it also slows down the application since these calls are synchronous. It isn’t necessary to use

a synchronous call in this case since we don’t carewhenthe data reaches the disk, only that it gets

there in the correctorder.

The application can access the raw disk device, bypassing the file system entirely. This has

a small performance advantage and allows the application toexplicitly control the ordering in

which blocks are sent to the disk. In exchange for this additional performance, the user sacrifices

some convenience in management. By running on top of the raw disk, the administrator loses

the use of file system and data management utilities which depend on the file system. Users are

now dependent on the application authors to provide reimplementations of backup utilities, space

management utilities, and so forth. In general, applications are easier to set up and administer

when run on top of a file system. At least one commercial DBMS manufacturer recommends

using the file system for smaller databases for this reason [28]. Further, interfaces to access raw

storage devices are not well standardized. The users choiceof operating system is limited to those

the application vendor supports the raw device interface on.

The final option is to run on top of the file system and not use anyordering control. Without

guaranteed ordering, the users and administrator have no guarantee that the application data will

be consistent, or even recoverable, when the system comes back after a crash. The popular open

source DBMS, PostgreSQL, runs on top of the file system and allows the administrator to choose

whether to usefsync()or no ordering control [50].

The choice is between manageability, performance, and reliability. The file system provides

certain management conveniences which we would like to preserve. Raw storage access performs

well but can be difficult to manage. Using no ordering controlis fast and easy to manage, but

unreliable in the face of failures. We would like a system that is fast, reliable and allows the file

system to be used for storage management.
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4.1.3 New Ordering Strategies

One solution is to provide a way for applications to express ordering constraints to the operat-

ing system. To this end we proposefile system barriers. File system barriers provide an additional

barrier() system call to applications. Whenbarrier() is called, the operating system guar-

antees that all file system writes issued before the call tobarrier() will be committed to stable

storage strictly before any writes issued subsequently. File system barriers have the advantage that

a call tobarrier() is a direct, asynchronous, replacement for a call tofsync(). Thus it is very

easy to convert an application that usesfsync() for ordering to use file system barriers. However,

file system barriers require keeping most logical writes physically separate. That is, if the same

piece of data is written to twice, with a barrier between the two writes, two physical disk writes

are required to maintain the correct semantics. This results in more disk traffic when file system

barriers are used when compared to other ordering mechanisms. To address this limitation, we

proposeasynchronous graphs. Asynchronous graphs is an interface that allows an application to

specify ordering constraints among its write requests in a very fine-grained manner. Ordering is

enforced only where necessary, leaving the operating system free to combine many logical writes

to a piece of data into one physical write in most cases. The operating system also has a greater de-

gree of freedom to reorder write requests with asynchronousgraphs since the ordering constraints

are specified at a very fine granularity.

Since our primary target application is database management systems, it is necessary to exam-

ine the effect of using file system barriers or asynchronous graphs on traditional database seman-

tics [8, 25]. By allowing ordering to be controlled despite all of the IO being done asynchronously,

we sacrifice one aspect of traditional ACID semantics, durability. ACID semantics guarantee that

each transaction is executed atomically, that is, either all of the transactions updates are applied, or

none of them are. An application which provides atomicity when usingfsync() will still provide

it correctly when using file system barriers or asynchronousgraphs. Whether or not a transaction’s

updates are considered to be effective is determined by the presence or absence of that transac-

tion’s commit record in the log. If the commit record is present, all of the transaction’s updates,

which are also recorded in the log, apply. If the commit record is absent, none of those updates
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apply. Similarly, consistency, the assurance that if the database is in a consistent state when a

transaction starts, it will be in a consistent state when thetransaction ends, is not effected by using

asynchronous ordering control. Isolation guarantees thatno transaction will see another transac-

tion’s updates until that transaction commits. In a DBMS, this guarantee is provided by two-phase

locking internally. The only time using asynchronous ordering control may affect isolation occurs

in the event of a crash. Some transactions that had committedprior to the crash, and whose results

thus became visible to other transactions, may disappear after recovery if their log records hadn’t

been written to disk yet. With true ACID semantics, the application is assured that once the DBMS

reports that the transaction has successfully committed, that data will not be lost. Since both file

system barriers and asynchronous graphs allow IO calls to return before any data is written to disk,

it is possible that data will be lost in the event of a system crash. What these two new interfaces

provide is that, if properly used, the database will be recoverable to a consistent state in the event

of a crash. Though some transactions might be lost, they willbe lost or recovered atomically.

Our results show that by making this sacrifice, it is possibleto achieve performance very near that

achieved using no ordering control at all. When no ordering control is use, the ability to recover the

on-disk data to a consistent state is not guaranteed and so reliability in the face of system failures

is sacrificed.

With the current techniques used to control ordering, usersare forced to choose between man-

ageability, performance and reliability. By introducing asynchronous mechanisms to control or-

dering, we offer a new point in this space that the user might choose. Applications can run on the

file system, maintaining ease of administration. As we will show in the following sections, the

performance of asynchronous graphs is competitive with theperformance when using no ordering

control. As discussed above, some reliability, namely durability, is sacrificed, but consistency is

preserved. While it is not possible to implement strict ACIDsemantics using the mechanisms de-

scribed in this chapter, it is possible to provide a great deal more reliability than is possible without

any ordering control. With these mechanisms, asynchronousgraphs in particular, it is now possible

to sacrifice a small amount of reliability for a significant improvement in performance.
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Figure 4.1 A number of writes broken into epochs by calls tobarrier().

4.2 File System Barriers

Like architectural memory barriers, a file system barrier ensures that all writes requested before

the barrier are committed to disk before any of the writes requested subsequent to the barrier.

Unlike architectural barriers, we needn’t worry about readrequests; sinceread() doesn’t return

until the data is read into memory, reads are always ordered as issued. The buffer cache will

ensure that all processes and threads see the same data at thesame time. File system barriers allow

an application to specify write ordering without using any synchronous system calls and while

still using the file system. Thus the user can have a fast and reliable system without sacrificing

manageability.

4.2.1 Semantics of File System Barriers

File system barriers can be thought of as an asynchronous version ofsync(). All writes issued

by the application before a call tobarrier() will be committed to stable storage strictly before

subsequent writes. The interface is simple: a single additional system call,barrier(). Existing

applications can be converted to use file system barriers forordering by simply replacing calls to

fsync() with calls tobarrier().

A typical application will callbarrier() many times as it updates its on-disk data. These

repeated calls tobarrier() group writes intoepochs. An epoch is defined as the set of all writes

issued between one call tobarrier() and the next call tobarrier(). Writes can be reordered

within their epoch, but cannot be reorderedacrossepochs. There are two epochs that are of par-

ticular importance. Thesafe epochis the earliest epoch for which there are still dirty buffersin

the system. Writes in this epoch, and this one only, can be safely flushed to disk. The collection
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of writes that were issued after the most recent call tobarrier() constitute theopen epoch. The

open epoch is the only epoch to which writes can be added. All epochs that are not the open epoch

are said to beclosed. Figure 4.1 illustrates a number of write operations, broken into epochs by

three calls tobarrier(). In the figure, Epoch 0 is the safe epoch, Epochs 1 and 2 are closed and

Epoch 3 is the open epoch.

Consider an application that performs write-ahead loggingand usesfsync() to maintain or-

dering between the log and the data. An application might usecode similar to that shown in

Figure 4.2 to implement write-ahead logging. First the log is updated and that update is forced to

disk, then the data is updated. Note that the updates to the data are applied in the buffer cache only

at this point, the operating system will commit the new data to disk at its leisure. The log data,

however, is safely on disk when the call tofsync() returns.

Figure 4.3 shows the same transaction implemented using filesystem barriers. When this code

completes execution, there is no assurance that any of the data, or the log updates, are on disk. But

it is guaranteed that the write to the log will be flushed disk before the the writes to the data. Thus,

in the event of a system crash, this transaction may or may notbe lost, but it will be possible to use

whatever portion of the log is on disk to bring the entire dataset into a consistent state.

4.2.2 Implementing File System Barriers

Thebarrier() system call implementation is fairly straightforward. Theentirebarrier()

call takes place under a global lock. It isn’t clear what the proper semantics would be for two bar-

riers executing at the same time, so that situation isn’t permitted. For each call tobarrier(),

the kernel creates anepoch list structure and assigns it a unique, monotonically increasing

epoch id. It then traverses the lists of dirty buffers and adds each buffer to the epoch list

and puts theepoch id in a special field in the buffer header. If that buffer is listed on a previous

epoch list it is skipped. The newepoch list is then added to a global list of all theepoch list

structures currently in the system. By default, each new buffer is marked as not being a part of any

barrier epoch.
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/* first transaction */

/* write an entry to the log */

write(log, logbuf, 128);

fsync(log);

/* write some data pages */

lseek(datafd, random_offset(), SEEK_SET);

write(datafd, databuf, datasize);

lseek(datafd, random_offset(), SEEK_SET);

write(datafd, databuf2, datasize2);

lseek(datafd, random_offset(), SEEK_SET);

write(datafd, databuf3, datasize3);

/* second transaction */

/* write an entry to the log */

write(log, logbuf, 128);

fsync(log);

/* write some data pages */

lseek(datafd, random_offset(), SEEK_SET);

write(datafd, databuf, datasize);

lseek(datafd, random_offset(), SEEK_SET);

write(datafd, databuf2, datasize2);

lseek(datafd, random_offset(), SEEK_SET);

write(datafd, databuf3, datasize3);

Figure 4.2 Code to execute two transactions with default workload parameters usingfsync().
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/* first transaction */

/* write an entry to the log */

write(log, logbuf, 128);

barrier();

/* write some data pages */

lseek(datafd, random_offset(), SEEK_SET);

write(datafd, databuf, datasize);

lseek(datafd, random_offset(), SEEK_SET);

write(datafd, databuf2, datasize2);

lseek(datafd, random_offset(), SEEK_SET);

write(datafd, databuf3, datasize3);

/* second transaction */

/* write an entry to the log */

write(log, logbuf, 128);

barrier();

/* write some data pages */

lseek(datafd, random_offset(), SEEK_SET);

write(datafd, databuf, datasize);

lseek(datafd, random_offset(), SEEK_SET);

write(datafd, databuf2, datasize2);

lseek(datafd, random_offset(), SEEK_SET);

write(datafd, databuf3, datasize3);

Figure 4.3 Code to execute two transactions with default workload parameters using file system
barriers.



73

To flush a buffer to disk, the OS first must flush all of the buffers that come before it in the

barrier ordering. It is important to observe that in most cases when the operating system needs

to write the contents of a buffer to disk, it doesn’t need to write any specific buffer. If buffers

are being laundered to relieve memory pressure or keep the number of dirty buffers below some

threshold, the OS can choose which buffers to send to the disk. In these cases, it is wise to choose

buffers from the safe epoch.

A complication arises if there is a write to a buffer, a barrier, then another write to the same

buffer, without an intervening flush of the buffer. In the implementation as described so far, the

writes will be combined, either before or after the barrier operation depending on whether the

buffersepoch id is updated or not. This is not the correct behavior: write operations should never

logically move between epochs.

To prevent this situation, separate logical writes to the same buffer must remain physically sep-

arate in memory if there is a barrier operation between them.When the second write is issued, the

kernel notices that that buffer is already behind a barrier.To make sure the writes stay separate, a

new buffer is allocated and the old version of the data is copied into it and placed in the appropriate

epoch list. The write is then allowed to proceed normally. Now two versions of the data exist in

the buffer cache, each in a different epoch. The normal procedure for maintaining barrier ordering

will ensure that the old version is written first.

There are three disadvantages to doing this. First, thewrite() call will take longer whenever

it has to copy a buffer. Second, memory usage increases due topotentially having many versions

of one disk block in memory. Finally, disk traffic increases due to the additional writes.

The only alternative to duplicating buffers is to synchronously flush the old version of the data

as part of thewrite() system call. We choose copying the buffer rather than flushing it since one

of our goals is to remove excess synchrony from the system. Since the old version of the buffer

will never be written to or read from again, an asynchronous write to disk is initiated on it as soon

as the copy is created.
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The increased memory usage can be mitigated by issuing an asynchronous write on the buffer

containing the old version of the data at the time the copy is made. Flushing the old version imme-

diately both lets the application continue running at memory speed and ensures that the additional

buffer space will only be in use a short time. Once the write iscomplete, the buffer is released.

The evaluation will show that this is an effective way to reduce the impact of copying buffers.

Disk traffic will be increased because the operating system must keep logical writes separate

where in a conventional system they would be combined into a single physical write. This problem

is due to the semantics of the barrier operation.

These three issues can be alleviated by using a more fine-grained interface to express ordering,

at the expense of ease of programming.

4.3 Asynchronous Graphs

In order to address some of the limitations of file system barriers, we introduce a new interface

for controlling write ordering,asynchronous graphs. Asynchronous graphs allow the application

to specify ordering constraints at the level of individual calls towrite(). Writes are not grouped

into epochs and the application is able to express ordering precisely where it is needed. This is

similar to the way soft-updates tracks dependencies between various types of file system metadata

blocks [22]. Soft-updates, however, exploit semantic knowledge of the data it is managing that is

not available to the operating system in the general case addressed here. This more fine-grained

interface reduces the number of extra writes necessary to maintain correct ordering (to zero in

some cases) and reduces the need for buffer copying (to zero in most cases). Improved performance

comes at the expense of programming ease. Ordering dependencies between writes must be tracked

by the application and passed along to the operating system.

4.3.1 Semantics of Asynchronous Graphs

Asynchronous graphs introduces a modifiedwrite() call, graphwrite(). This new system

call returns an integer to identify the write operation eachtime it is called. These identifiers can

then be passed into subsequent calls tographwrite() to specify ordering constraints. The C
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typedef int write_id;

write_id graphwrite(int fd, void * buf, ssize_t size,

int ndeps, write_id *dependencies)

Figure 4.4 C language signature forgraphwrite().

language function signature forgraphwrite() is shown in Figure 4.4. The first three arguments

are the same as the traditionalwrite() system call: a file descriptor, a buffer containing the data

to be written, and the size of the data to be written. The two additional arguments,ndeps and

dependencies, allow the application to specify a set of previous writes that must be committed

to disk before the current one. Thedependencies parameter is an integer array which lists the

relevant write identifiers. Thendeps parameter gives the length ofdependencies.

Figure 4.5 shows two simple WAL transactions using asynchronous graphs. The first call to

graphwrite() updates the write-ahead log and records the identifier for that write operation. No

write identifiers are passed in since the writes to the log have no ordering dependencies. The

subsequent calls perform the updates to the data itself. These calls each pass in the identifier

for the write to the log. This additional argument specifies that the update to the log must be

applied before any of the data updates. Notice that there areno dependencies specified between

the data updates, so the operating system is free to reorder them amongst themselves. The code

then performs another write to the log for a second transaction. The data updates for the second

transaction are then applied.

Figure 4.6 shows the dependency graph generated by the code in Figure 4.5. Arrows show the

“must be written to disk before” relationship. The two transactions are completely independent of

each other. Depending on the policies of the kernel, the write operations involved may be reordered

in a variety of ways.

The dependency graph as perceived by the user-level application and the dependency graph as

implemented within the operating system may be different. For example, if the two log updates

from Figure 4.5 happened to be to the same buffer internally,the nodes representing the log updates

will be internally combined. The resulting graph is shown inFigure 4.7. Similarly, if some of the
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int logid;

/* first transaction */

/* write an entry to the log */

logid = graphwrite(logfd, logbuf, 128, 0, NULL)

/* update the data */

lseek(datafd, random_offset(), SEEK_SET);

graphwrite(datafd, databuf, datasize, 1, &logid);

lseek(datafd, random_offset(), SEEK_SET);

graphwrite(datafd, databuf2, datasize2, 1, &logid);

lseek(datafd, random_offset(), SEEK_SET);

graphwrite(datafd, databuf3, datasize3, 1, &logid);

/* second transaction */

/* write an entry to the log */

logid = graphwrite(logfd, logbuf, logsize, 0, NULL);

/* update the data */

lseek(datafd, random_offset(), SEEK_SET);

graphwrite(datafd, databuf, datasize, 1, &logid);

lseek(datafd, random_offset(), SEEK_SET);

graphwrite(datafd, databuf2, datasize2, 1, &logid);

lseek(datafd, random_offset(), SEEK_SET);

graphwrite(datafd, databuf3, datasize3, 1, &logid);

Figure 4.5 Two simple transactions using asynchronous graphs.Each log write has no ordering de-
pendencies. The data writes are required to be written afterthe log writes for the transaction that touches
them.

xact 2
data

xact 2
data

xact 2
data

xact 1
data

xact 1
data

xact 1
data

xact 1
log write

xact 2
log write

Figure 4.6 The graph generated by two simple transactions.Data writes are required to be committed
to disk after writes to the log, other reorderings are permitted.
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log write

xact 1
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data

xact 2
data

xact 1
data

Figure 4.7The graph generated by two simple transactions if the log writes are to a common buffer.
Since there are no writes required to be written to disk in between the two writes to the log, the log writes
can be safely combined.
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data

xact 1
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data
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data

xact 2
data

xact 2
log write

Figure 4.8 A graph representation of two transactions with file system barrier ordering semantics.
File system barriers impose numerous unnecessary orderingdependencies.



78

log write 1

data A

data B

data C

log write 2

Figure 4.9A graph with writes that cannot be combined.The two writes to the log cannot be combined
without incorrectly ordering one of them relative to the write of data B.

data writes are to common file system buffers, those nodes in the graph can be combined as well.

Writes are combined in this way in order to reduce the needs for duplication of buffers.

There are situations where two writes to the same buffer cannot be combined. If there is at

least one write operation required to be performed between them, they cannot be combined. If

both writes are part of the same connected subgraph and they are not adjacent, then they cannot

be combined. Figure 4.9 shows a graph for such a situation. This is the same as the example

transactions previous described with the addition of a second log write orderedafter one of the

data writes. While we don’t expect this situation to occur often in practice, it serves for illustration.

The two writes to the log cannot be safely combined. If they were, and the write to disk occurred

before the the write of data B, then the ordering would be incorrect since log write 2 would be on

disk before data B. Similarly, if the two log writes were combined and the write to disk occurred

after data B, the ordering would also be incorrect since log write 1 must be on disk before data B.

Therefore, the two log writes must be executed as separate physical writes to disk. In this case, the

same techniques that are used to keep writes separated in filesystem barriers can be used. Either

the old version can be flushed, or the buffer can be duplicated. In the workloads presented in this

chapter, this situation never occurs.
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Notice that file system barrier semantics are expressible interms of the asynchronous graphs

interface. When issuing the writes for epochN usinggraphwrite() every write is specified

as being after every write from epochN − 1. Figure 4.8 shows the dependency graph for two

transactions where the ordering is controlled using file system barrier semantics. This illustrates

the extra dependencies imposed by file system barrier semantics. One could imagine other ordering

interfaces being implemented on top of asynchronous graphsthrough a user-level library.

4.3.2 Implementation of Asynchronous Graphs

4.3.2.1 Data Structures

The data structures necessary to implement asynchronous graphs are considerably more com-

plex than was necessary to implement file system barriers. This additional complexity is due to

the more fine-grained level of control and the additional freedom that the operating system has to

combine and reorder write requests. The operating system must have a representation of a node in

the dependency graph. We term this structure awrite node. Eachwrite node includes a unique

integer to identify it, a list of the dirty buffers associated with that node, and a list of write oper-

ations that must be performed before it (i.e. outbound edges). There is also a table which maps

write node identification numbers to pointers to the actualwrite node structures, thewritemap.

This table becomes important when it comes time to enforce correct ordering.

When a new write operation is requested by an application with graphwrite() the operating

system performs a number of steps to correctly add the new write to the existing dependency graph.

In the simplest case, all of the buffers being written are clean. In this case, a newwrite node

is allocated, the buffers being dirtied are added to its buffer list and the list of outbound edges

is populated from thegraphwrite() arguments. Then the requested updates are applied to the

relevant buffers as in a conventional OS.

If the buffers being updated are already dirty, the operating system needs to determine if any

of the buffers need to be duplicated. Recall that a buffer needs to be duplicated if it is already

present in the connected subgraph containing the new write operation and is not adjacent to the

new write operation. Thus, the operating system traverses the graphs rooted at each of the write
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operations the new write depends on. If the buffer that the current write updates is found in any of

those subgraphs and is not the root, then the buffer is duplicated. The original buffer remains in

its current position in the graph and the copy is updated by the pending write. The buffers are then

updated andgraphwrite() returns to the application. In any of these cases, the value returned to

the application bygraphwrite() is the identifier for thewrite node created or affected by the

call.

Further complications arise if the write affects multiple buffers, those buffers are already dirty

and some of them belong to differentwrite node structures. Suppose a call tographwrite() will

dirty buffersA andB. Suppose thatA is already part ofwrite node a andB is part ofwrite node

b. If there is no path betweena andb then it is safe to combine them into a singlewrite node

since there are no ordering requirements between them. Thewritemap is then updated to map

the identifiers fora andb to the commonwrite node. This mapping must be maintained since

the application is not aware that the twowrite node structures have been combined and may

still use either identifier to refer to it. Thewrite node also includes a field that lists all of the

write node’s aliases. This list is used when all of the buffers in a givenwrite node are finally

written to disk so the additional mappings in thewritemap can be garbage collected.

4.3.2.2 Enforcing Ordering

In most cases, no additional disk traffic is necessary to maintain a correct write ordering. Since

ordering is only specified where it is absolutely necessary,it is often the case that any given buffer

has very few or no buffers that need to be written prior to it. Also, when the operating system needs

to launder buffers, it is most often the case that any buffer will do, so the OS chooses a buffer that

can be written without any extra work. Lastly, a buffer flushing daemon, whose behavior we

modify slightly, tends to keep dependency graphs from getting very deep. A typical buffer flushing

daemon traverses the entire buffer cache periodically, flushing every buffer that has been dirty for

more than a fixed period of time (often 30 seconds). We modify this behavior so the daemon skips

buffers with unsatisfied ordering constraints. That is, it only flushes buffers that are part of leaf
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nodes in the dependency graph. This simplifies the implementation of the daemon since the buffers

it skips in one pass will be written during a subsequent pass.

When it is necessary to flush a buffer to disk, the operating system examines thewrite node

with which the buffer is associated. If the list of dependencies in thewrite node is empty, then the

buffer is safe to launder. If the list is non-empty, then it ispossible that it is not safe to launder the

buffer. If all of the pages in all of thewrite node’s listed have been flushed, then the buffer is, in

fact, safe to write. Since awrite node is deallocated when all of its pages have been flushed, the

writemap is used to indicate whether the specifiedwrite node still exists. When the last buffer

listed in awrite node is flushed to disk, thewrite node is deallocated, and all mappings to it are

removed from thewritemap. This level of indirection allows the memory used bywrite nodes

to be safely deallocated.

If the operating system finds that it is safe to flush the bufferto disk, the write is initiated

and proceeds normally. If the OS finds that there are still dirty buffers in memory that must be

written before the current one, then there is a choice to be made. If it doesn’t matter which buffer

gets laundered, as is the case when buffers are laundered dueto memory pressure, the OS simply

selects another, safe, buffer to launder.

If a particular buffer needs to be flushed, as is the case during a call tofsync() then all of

the buffers ordering dependencies must first be satisfied. Inthis case, the OS begins traversing

the dependency graph rooted at thewrite node the given buffer is associated with. It will issue

writes on all of the pages in the leaf nodes and as these writescomplete, working its way back up

to the requiredwrite node. Having to do this will be relatively rare in practice; much of the need

for usingfsync() will be eliminated by the availability of an ordering interface. In the case of a

call tosync(), the operating system makes repeated passes through the buffer cache, on each pass

writing whatever buffers have no ordering constraints. After N passes, whereN is the maximum

depth of any connected subgraph, all of the buffers will havebeen written in a safe order.
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4.4 Evaluation

We evaluate file system barriers and asynchronous graphs in trace-driven simulation. This

allows exploration of a broader range of potential system configurations than a real implementation

would. It also allows broad parameter studies to be conducted relatively quickly. We want to

determine what aspects of the workload effect the performance of each of the ordering mechanisms

we study.

4.4.1 Simulator

The simulator uses an event driven architecture. There are 23 event types representing system

calls, memory operations, disk IO, buffer duplication and abuffer flushing daemon. Reads and

writes to memory take a constant 2µs, disk access times increase linearly with block distance, with

a minimum access time of 1ms and a maximum of 10ms. This simple disk model is adequate

for our purposes since most of the differences in performance are due to the number of writes

performed, not the specific locations on the disk. Simulatedfiles are laid out back to back starting at

offset zero. Results are presented using FIFO and C-LOOK disk scheduling. C-LOOK scheduling

begins at block zero of the disk and sweeps across the disk servicing requests as it goes. When

the end of the disk is reached, the algorithm returns to blockzero and begins again. No requests

are serviced when the disk head is moving from the end of the disk, back to block zero. Results

using LOOK and Shortest Seek Time First (SSTF) are substantially similar to C-LOOK and aren’t

discussed further.

When controlling ordering asynchronously, the operating systems policy for flushing dirty

buffers is critical. Current systems usually assume that all buffers cost roughly the same to flush.

When ordering constraints are present, this is no longer thecase. If there are two dirty buffers in

the system and one must be written before the other, the cost of flushing one of these is double

the cost of flush the other. So, in our simulator, when it is necessary to flush a buffer to disk,

we always choose one with no ordering constraints (i.e., there are no buffers that must be flushed
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before it). Note that such a buffer always exists. Our simulation also includes a buffer flushing dae-

mon. Every 10 simulated seconds, the buffer flushing daemon scans the buffer cache and flushes

any buffers that have been dirty for at least 30 seconds. The buffer daemon skips any buffers that

cannot be immediately flushed due to ordering constraints. We do this to keep the buffer daemon

simple, noting that if no additional ordering dependenciesare added, every buffer will eventually

become free of ordering dependencies.

In the default configuration, we simulate cache of 312 MB, or,20000 pages of 16 KB each.

Variations of these parameters are noted where appropriate.

4.4.2 Controlled Workload

The first set of experiments were conducted using synthetically generated traces. Synthetic

traces allow easy modification of various aspects of the workload and allow the effects of those

changes to be easily observed without being convoluted by the complexities of a more realistic

workload.

4.4.2.1 Workload

The workload is based loosely on TPC-B [66]. Using the default parameters each transaction

writes 128 bytes to a write-ahead-log, then reads one byte from each of three randomly selected

offsets, then writes one byte each to each of three randomly selected offsets. The random offset

range from zero to 615 MB. A write to an uncached page incurs the cost of a disk read. To keep

this synthetic workload simple and easy to understand, theHistory relation normally present in

TPC-B is omitted.

The size of the log write, the number of pages read and the number of pages written are varied

in the experiments where specified. Table 4.1 shows the default values for each workload parameter

and the range over which each parameter is varied.

Depending on the mechanism being tested, anfsync() or barrier() may be issued after

the write to the log. If asynchronous graphs is being tested,then each write is specified as being



84

/* write an entry to the log */

write(log, logbuf, 128);

fsync(log); /* or barrier() or nothing */

/* read some data pages */

for (i = 0; i < 3; i ++) {

lseek(data, random_offset(), SEEK_SET);

read(data, buf, 1);

}

/* write some data pages */

for (i = 0; i < 3; i ++) {

lseek(data, random_offset(), SEEK_SET);

write(data, buf, 1);

}

Figure 4.10Code to execute one transaction with default workload parameters usingfsync() or file
system barriers. The call tobarrier() directly replaces the call tofsync(). When using no ordering
control, bothfsync() andbarrier() are omitted.

dependent on the preceding log write. In these experiments,the workload always consists of 10000

transactions except where specified and concludes with a call to sync().

In the case wherefsync(), barriers, or no ordering is being used, the workload is described

by the pseudocode in Figure 4.10. The situation is slightly more complicated in the case of asyn-

chronous graphs. In this case, we use a new system callgraphwrite() described in Section 4.3.

Figure 4.11 shows C-like pseudocode for one transaction using asynchronous graphs.

We conducted five groups of experiments. In each group, one ofthe following was varied:

number of pages read in each transaction, number of pages dirtied in each transaction, the size

of the write to the log, the number of transactions executed and the total size of the buffer cache.

Table 4.1 summarizes the parameters varied and the range over which they were varied. Parameters

are always varied one at a time, holding the others constant at their default values.
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write_id log_write;

/* write an entry to the log */

log_write = graphwrite(log, logbuf, 128, 0, NULL);

/* read some data pages */

for (i = 0; i < 3; i ++) {

lseek(data, random_offset(), SEEK_SET);

read(data, buf, 1);

}

/* write some data pages */

for (i = 0; i < 3; i ++) {

lseek(data, random_offset(), SEEK_SET);

graphwrite(data, buf, 1, 1, &log_write);

}

Figure 4.11Code to execute one transaction with default workload parameters using asynchronous
graphs. The updates to the data are made dependent on the writes to thelog. The data updates are unordered
among themselves.

Parameter Default Range Step
Pages Read 3 0-20 1
Pages Written 3 1-20 1
Log Write Size 128 B 64 B - 16 KB 64 B
Transactions 10000 5000-1000000 5,000
Cache Size 312 MB 16 MB - 781 MB 16 MB

Table 4.1Experimental ParametersParameters of the synthetic workload and the range over which they
are varied.
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Figure 4.12Simulated execution time as the number of pages read per transaction increases.the line
for asynchronous graphs is collinear with the line for no ordering control.
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Figure 4.13The number of disk reads and writes as a function of the numberof pages read in each
transaction. In (a) all four lines are collinear. In (b) the line for asynchronous graphs is collinear with the
line for no ordering control.
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4.4.2.2 Pages Read

Adjusting the number of pages read essentially adjusts the pressure on the buffer cache. This

group of experiments is presented first since it is the simplest and illustrates some trends that will

be present in many of the subsequent experiments.

As the number of pages read increases, the execution time increases, as does the total disk IO.

Figure 4.12 shows the simulated execution time as a functionof the number of pages read during

each transaction. The graph on the left shows the execution time with a FIFO disk scheduler and

the graph on the write shows the execution time with a C-LOOK scheduler. The performance

of all of the ordering mechanisms improves with the better disk scheduler. The performance of

file system barriers improves less than the other methods. File system barriers groups writes into

epochs, and in order to maintain the correct ordering, only one epochs worth of writes can be sent

to the disk scheduler at a time. In this workload, each epoch contains only four disk writes. As

a result, there is only a small amount of improvement that canbe gained by rescheduling such a

small number of disk writes.

Naturally, the increase in execution time is mostly a function of the number of disk reads, which

increases as the number of pages read per transaction increases. This is shown in Figure 4.13 in

the left-hand graph. The right graph shows that the number ofdisk writes incurred is dependent on

the ordering mechanism being used.

The barrier mechanism incurs the most disk writes and is constant at 40000. File system

barriers force writes to the same buffer in different transactions to be executed as separate writes

to the disk. The number 40000 comes from three page writes andone log write in each of the

10000 transactions. Usingfsync() incurs the second greatest number of disk writes.fsync(),

like barriers, keeps writes to the log separate, but allows multiple writes to the same data page to

be combined into one disk write. Thus, the number of writes increases as cache pressure increases

since when a buffer is written twice, it more often happens that the page is evicted between the first

and second writes.

The lowest line shows the number of writes when either no ordering control is used or asyn-

chronous graphs is used. These incur the same number of disk writes since they both allow logical
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Figure 4.14Simulated execution time as the number of pages dirtied per transaction increases.The
line for asynchronous graphs is collinear with the line for no ordering control.

writes to both the data and the log pages to be combined into a fewer number of physical disk

writes. Asynchronous graphs achieves this by carefully maintaining the ordering between logical

writes and allowing the writes from each transaction to remain independent of each other. Asyn-

chronous graphs does not incur a greater number of disk writes than using no ordering control, but

the writes are executed in a different order than when no control is used.

4.4.2.3 Pages Dirtied

For all of the ordering mechanisms other than file system barriers, increasing the number of

pages dirtied has a similar effect to increasing the number of pages read. There is more cache

pressure and an increase in the number of disk IOs. For file system barriers, the effect is to increase

the number of write operations in each epoch.

Figure 4.14 shows the simulated execution time versus the number of pages dirtied in each

transaction with both FIFO and C-LOOK disk scheduling. In both cases, the performance of file

system barriers suffers more than the other mechanisms as the number of dirtied pages increases.

This shows the effect of having to keep logical writes physically separate. Whereas the three

non-barrier mechanisms allow multiple writes to the same data page to be combined into a single
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Figure 4.15 The number of disk reads and writes as a function of the numberof pages written in
each transaction.In (a) all four lines are collinear. In (b) the line for asynchronous graphs is collinear with
the line for no ordering control.
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Figure 4.16 Simulated execution time as the number of bytes written to the log per transaction
increases.

physical write, file system barriers doesn’t allow this. As there are more and more pages being

dirtied, the situation where a page is dirtied more than oncehappens more frequently.

Figure 4.15 shows the number of disk reads on the left and diskwrites on the right for each

ordering mechanisms. The number of reads increases as each page that is dirtied must be read off

of the disk before it can be updated in memory. The number of writes for file system barriers in-

creases linearly with the number of pages dirtied since it keeps nearly all of these writes physically

separate. Disk writes for the other three mechanisms increase sub-linearly since a cache hit on a

write results in two or more logical writes being combined into a single physical write.

Comparing the performance of FIFO and C-LOOK illustrates how file system barriers prevents

the operating system from optimizing the performance of disk write traffic. While all four mecha-

nisms improve with better disk scheduling, file system barriers improves less than the other three

mechanisms because writing buffers an epoch at a time keep the disk queue very shallow.

4.4.2.4 Size of Log Entries

The most interesting effect of enlarging the amount of per-transaction log data is when file

system barriers are in use, it enlarges the amount of data in each epoch that would otherwise be

subject tofsync(). Instead of forcing the application to block while this datais written, file system
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Figure 4.17Simulated execution time as a function of the number of transactions executed.The line
for asynchronous graphs is collinear with the line for no ordering control.

barriers performs those writes in the background. Also as the size of the log entries increases, the

fraction of buffer containing log data that need to be duplicated decreases. Only a buffer that

contains log data for two or more transactions will ever require duplication. This accounts for the

dips in runtime at 8 KB and 16 KB for file system barriers. As a result, we see the first result where

barriers performs significantly better than usingfsync() as Figure 4.16 shows. With C-LOOK

scheduling the crossover point between barriers andfsync() is around 6 KB. This is a reasonable

size for a log entry in some cases. PostgreSQL, for example, writes an entire data page to the

write-ahead log the first time that page is dirtied [50]. Thisresults in many log entries being at

least as large as the default internal page size, which in PostgreSQL is 8 KB.

4.4.2.5 Number of Transactions

When usingfsync() to control ordering, a DBMS will typically execute onefsync() call

for each transaction, this flushes the log entries for that transaction to disk. As a result, the more

transactions a workload executes, the greater the benefit ofasynchronous graphs overfsync().

Figure 4.17 shows the execution time as a function of the number of transactions increases. As

expected, the relative benefit increases with the number of transactions.
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Figure 4.18Simulated execution time as a function of cache size.The line for asynchronous graphs is
collinear with the line for no ordering control.

4.4.2.6 Cache Size

Figure 4.18 shows the execution time against cache size for both FIFO and C-LOOK schedul-

ing as the size of the buffer cache is varied. Performance steadily improves until the entire working

set fits in the cache at around 490 MB.

For very small cache sizes with C-LOOK scheduling, file system barriers performs better than

usingfsync(). Whenfsync() is being using, a number of pages are left dirty by each transaction,

only writes to the log are forced to disk. The application blocks later while those dirty pages are

written out so they can be replaced according to the replacement policy. Whereas file system

barriers issues a write as soon as each log page is duplicated, this causes all of the pages in each

preceding epoch to also be written in the background, keeping the total number of dirty pages in

the cache to a minimum. Figure 4.19 shows the number of disk writes due to cache eviction. This

effect is seen under C-LOOK scheduling because file system barriers sends whole epochs to the

disk scheduler at once, whereasfsync() is sending only a single buffer at a time. This anomalous

behavior for small cache sizes could be alleviated with better buffer flushing policies. However we

believe caches this small are rare so we don’t explore these possibilities any further.
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Figure 4.19 Number of writes due to cache replacement as a function of cache size.For most cache
sizes the line for asynchronous graphs is collinear with theline for no ordering control.
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Figure 4.20 Simulated execution time of TPC-B as a function of cache size. In (b), for most cache
sizes the line for asynchronous graphs is collinear with theline for no ordering control.

4.4.3 System Traces

4.4.3.1 TPC-B

In order to evaluate file system barriers and asynchronous graphs under more realistic work-

loads, this section presents further evaluation using an actual TPC-B system trace. This trace was

collected by modifying PostgreSQL 8.1.3 to log the IO related system calls it issues, whenever it

dirties a page in its buffer pool and the transaction number associated with each of these opera-

tions. Knowing when a buffer pool page is dirtied and the transaction numbers is necessary for

generating the dependency information for asynchronous graphs. The TPC-B workload is gener-

ated by thepgbench tool, a TPC-B implementation included in the PostgreSQL distribution. In

these experiments, pgbench is configured to execute 10000 transactions.

There are a number of differences between this workload and the synthetic workload used in the

previous section. First, PostgreSQL is performing buffering in userspace. This means that by the

time a data page is sent to the operating system, it may have been modified by many transactions.

Thus, it may have a “must be written after” relationship withdozens or hundreds of log entries.

This does not have a large impact on the performance since, even though all of the dependencies

must be tracked for correctness, the number of actual dependencies remaining for a given data

page when it is written is still small since the buffer flushing daemon tends to keep the number
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Figure 4.21Simulated execution time of TPC-C as a function of cache size.

of dirty pages in the system low. The buffering effect reduces the write traffic when file system

barriers are in use, since data pages that are dirtied as partof multiple transactions are duplicated

less often. The log entries in this workload are larger than that of the synthetic workload, and they

vary in size. The effect of this is to make file system barriersslightly more competitive than on a

workload with small log entries for the reasons stated in Section 4.4.2.4. Lastly, the working set

used by pgbench is much smaller than that used by the synthetic workload.

Figure 4.20 shows the simulated execution time of the pgbench workload as a function of the

simulated cache size. We see results similar to the results for our synthetic benchmark. Perfor-

mance levels off at a smaller cache size since the working setsize is significantly smaller. For very

small cache sizes,fsync() performs better since it keeps the number of dirty buffers containing

log data low (i.e., there is between one and zero at any time), and with extremely small cache sizes,

these buffers make up a significant portion of the contents ofthe cache if they’re not flushed. File

system barriers perform poorly for the reasons discussed previously.

4.4.3.2 TPC-C

TPC-B is a relatively simple workload, with small, fixed sized transactions. In order to evaluate

file system barriers and asynchronous graphs on a more complicated workload, we collected traces

of a TPC-C [67] workload. This trace was collected in the sameway as the TPC-B trace in the
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previous section. The workload was generated by BenchmarkSQL 2.3.2, a Java TPC-C implemen-

tation which runs on PostgreSQL and other DBMSs. BenchmarkSQL is configured to run with

one terminal, 10,000 transactions and 10 warehouses. In TPC-C the number of warehouses is the

parameter used to scale the size of the dataset. 10 warehouses yields a dataset of approximately

1 GB.

The results of our simulation are shown in Figure 4.21. As a fraction of the total execution

time, asynchronous graphs provides a smaller performance improvement for this workload than for

TPC-B. However, the improvement inabsoluteperformance is similar. This is to be expected since,

like our TPC-B workload, this workload consisted of 10,000 transactions. As we saw in 4.4.2.5, the

benefit of asynchronous graphs overfsync() is a function of the number of transactions. When

usingfsync() for ordering, each transaction results in one call tofsync(). Thus both the TPC-B

workload from the previous section and our TPC-C trace have the same number offsync() calls,

and so have the same degradation in performance due to those calls.

4.5 Conclusions

Buffer caching at the file system level provides a significantperformance benefit to applica-

tions. However, in using a cache that is controlled by the operating system, the application is

forced to cede to the OS control over the order in which its writes are committed to disk. While

this is acceptable for a large number of applications, thereis a significant class of applications for

which it impedes having a system that is both fast and correctin the face of failures. Database

management systems, for example, fall into this class, as would any application that performs in-

cremental updates to complex on-disk data structures. Whenrunning on conventional operating

systems, these applications are forced to either use directaccess to the storage system to gain the

control they need, which is inconvenient, or use OS facilities such asfsync(), which are slow.

This chapter proposes two new operating system interfaces that allow applications to express

write-ordering constraints to the operating system. The first, file system barriers, appears at first

to be beneficial, being a direct, asynchronous, replacementfor fsync(). However, the semantics

of the barrier() operation impede efficient execution of IO in many cases, mainly by forcing
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nearly all logical writes to be executed as separate writes to the disk resulting in increased disk

traffic. In most cases, this makes file system barriers a worsechoice thanfsync(). This shows

the importance of specifying ordering at a sufficiently fine granularity, and more generally, the

importance of carefully defining OS interfaces. The second interface, asynchronous graphs, pro-

vides a fine-grained level of control to the application. This allows the operating system maximum

freedom to optimize the IO path while still obeying write-ordering constraints laid down by the

application. However, using asynchronous graphs requiresmore intrusive modifications to exist-

ing applications. Applications are required to carefully track ordering dependencies between write

operations and pass those along to the operating system.

The simulation study presented shows for a limited set of workloads, file system barriers repre-

sent an improvement over usingfsync() for ordering. The results show that asynchronous graphs,

however, performs far better than either file system barriers orfsync(). In fact, in nearly all of the

workload variations studied, asynchronous graphs is competitive with using no ordering control at

all.
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Chapter 5

Related Work

Storage caches have been in use at least since the early versions of UNIX [52]. As a result, the

body of work concerning storage caching is substantial. This chapter first presents a brief overview

of more recent work on buffer cache management, then presents work more closely related to the

specific techniques described in this thesis.

5.1 General Caching Management

There is an enormous amount of literature on cache management. We summarize some of it

here. In general, this body of work complements the work we have presented in this thesis. At the

very least, any of these policies could be emulated on top of an existing operating system using

InfoReplace or detected using (a possibly extended)Dust. In fact, we believe the large variety of

policies that have been proposed for various purposes further motivates having application-selected

replacement policies.

Cao,et al. proposed application controlled cache replacement policies where the kernel de-

termined how much of the cache each process was permitted to occupy, but the application itself

made individual replacement decisions [13, 14]. This is similar to InfoReplace in its goal of giv-

ing the application control over replacement decisions. The primary difference is that in Cao’s

work, the mechanisms within the kernel are modified to enablethis OS/application collaboration.

Specifically, when the kernel needs to free a page from the buffer cache, it chooses a process to

take the page from, then the process decides which page to relinquish, and explicitly tells the ker-

nel this decision. In InfoReplace the kernel’s cache management mechanisms are unmodified, the
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only modification to the kernel is to expose portions of the already extant cache management data

structures.

Forney,et al., propose storage-aware caching, which bases the buffer cache replacement deci-

sions performance of the underlying storage [21]. That is, taking into account the cost rereading a

page from disk when making replacement decisions. It would be an interesting challenge to detect

such a policy with the techniques thatDust uses. Dust assumes that it can influence all of the

factors that the operating system is using to make replacement decisions. To detect a storage aware

policy, Dustwould need to be aware of the storage configuration, its performance characteristics

and be able to control the layout of the test data on that storage. Only with that knowledge could

Dusttest whether replacement decisions were being made based onstorage performance.

Various policies have been proposed in the context of database management systems. LRU-k,

by O’Neil, et al., remembers access information about pages that have already been evicted from

the cache [45]. Specifically, replacement decisions are based on the k-th most recent access to

each page. Thus, regular LRU is LRU-1. The authors found thatmost of the benefit of LRU-k was

realized using LRU-2. That is basing replacement decision not on the most recent access to each

page, but on the access previous to that. Johnson and Sasha developed a more efficient algorithm

that has similar benefits to LRU-2, TwoQueue [29].

The Generalized Clock algorithm [44], proposed by Nicola,et al., proposes a clock algorithm

where instead of a use bit, each page has a weight associated with it, which is assigned when the

page is read into memory. When the clock hand passes a given pages, instead of just resetting

the use bit, the weight is decremented. The page becomes a replacement candidate when the

weight value reaches zero. These weights are set using semantic knowledge about the database

management system which is using the cache. For example, weights might be based on data type.

Lee,et al.and Smaragdakis,et al., propose adaptive algorithms. Lee’s algorithm, LRFU [34]

takes into account both the recency of access to a block and the frequency of accesses, changing

the weight given to recency and frequency according to the workload. LRFU thus subsumes LRU

and LFU. Smaragdakis’ algorithm, Early-Eviction LRU (EELRU) [60], uses LRU replacement in

the common case, but when repeated sequential reads larger than the cache are detected, it adapts
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by evicting pages that are part of these runs early. In this way the worst-case scenario for LRU is

avoided.

R.H. Patterson,et al., suggest allowing applications to provide hints to the operating system to

better manage prefetching and caching [49]. The goals of informed prefetching and caching are

similar to the goals of InfoReplace. InfoReplace relies on the application using implicit techniques

to alter the behavior of the operating system whereas informed prefetching and caching provides

an explicit interface by which the application can pass hints to the OS.

Several techniques for cooperatively managing server and client caches have been proposed.

Some of these are similar in spirit to our own work as they involve examining information flow

between client and server. Wong and Wilkes propose extending distributed storage protocols to

allow server and client caches to be made exclusive [75]. In contrast Zhou and Philbin, created a

new replacement policy for second-level (e.g.server) caches that takes into account the expected

behavior of the client caches [79]. In a similar vein, Chen,et al., place data in a second-level

cache only when it has been evicted from the first level cache,using implicit techniques to detect

first-level evictions [15].

5.2 Implicit Information and Covert Channels

Fingerprinting system components to determine their behavior is not new and has been used

successfully in other contexts, notably in networking and storage. Specifically, fingerprinting has

been used to uncover key parameters within the TCP protocol and to identify the likely OS of a

remote host [23, 47]. The primary difference between fingerprinting within TCP and in our context

is that we are trying to identify policies that can have arbitrary behavior, rather than implementa-

tions that are expected to adhere to given specifications. In[56, 76] techniques similar to those

used inDustwere used to determine various characteristics of disks, such as size of the prefetch

window, prefetching algorithm and caching policy.

Fingerprinting also shares much in common with microbenchmarking. Specifically, both per-

form requests of the underlying system in order to characterize its behavior. For example, with sim-

ple probes in microbenchmarks, one can determine parameters of the the memory hierarchy [3, 55],
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processor cycle time [61], and characteristics of disk geometry [57, 65]. In our view, the key dif-

ference between fingerprinting and microbenchmarking is that a fingerprint is used to discover the

policy or algorithm employed by the underlying layer, whereas a microbenchmark is typically used

to uncover specific system parameters.

The idea of discovering characteristics of lower layers of asystem and using that knowledge

in higher layers to improve performance is not new. In traxtents [57] the file system layer of the

operating system was modified to avoid crossing disk track boundaries so as to minimize the cost

incurred due to head switching and exploit “zero-latency” access. Yu,et al. developed a method

of predicting the position of the disk head without hardwaresupport and used that information to

determine which of several rotational replicas to use to service a given request [77], thus giving

software expanded knowledge of hardware state.

Our approach involves informing the application of the buffer cache replacement policy in use

by the operating system. SLEDs [71] and dynamic sets [62] seek to increase the knowledge that

the application and operating system have of each other. Both take the approach of embellishing

the interface between the OS and the application to allow theexplicit exchange of certain types of

information. In the case of dynamic sets, the application has the ability to provide more knowledge

about its future access patterns. This allows the OS to reorder the fetching of data to improve

cache performance. SLEDs allows the OS to export performance data to the application, enabling

the application to modify its workload based on the performance characteristics of the underlying

system.

The idea of servicing requests within a web server in a particular order was explored in

connection-scheduling web servers [17]. The main thesis ofthat research is that better perfor-

mance can be obtained by controlling the scheduling of requests within the web server, rather than

with the OS. While their approach used static file size to schedule requests, cache-aware NeST

uses a dynamic estimate of the contents of the buffer cache.

Our cache-aware web server has similarities to locality-aware request distribution (LARD)

cluster-based web servers [48]. In LARD, the front-end nodedirects page requests to a specific
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back-end node based upon which back-end has most recently served this page (modulo load-

balancing constraints); thus, the front-end has a simple model of the cache contents of each back-

end and tries to improve their cache hit rates. Our approaches are complementary, as LARD

partitions requests across different nodes, whereas we usecache content to service requests in a

different order on a single node.

5.3 Explicit Information and Information Interfaces

The work on explicit information discussed in Chapter 3 was part of a larger project known as

infoKernel [5] wherein the general issues in exposing operating system information to applications

were explored. We now discuss some of the work related to thisapproach as it applies both to

information exposure in general and to exposing cache information specifically.

An infoKernel, like other extensible systems, has the goal of tailoring an operating system

to new workloads and services with user-specified policies.The primary difference is that an

infoKernel strives to beevolutionaryin its design. We believe that it is not realistic to discard the

great body of code contained in current operating systems; an infoKernel instead transforms an

existing operating system into a more suitable building block.

The infoKernel approach has the further difference from other extensible systems in that

application-specific code is not run in the protected environment of the OS, which has both disad-

vantages and advantages. The disadvantages are that an infoKernel will probably not be as flexible

in the range of policies that it can provide, there may be a higher overhead to indirectly control-

ling policies, and the new user-level policies must be used voluntarily by processes. However,

there is an advantage to this approach as well: an infoKerneldoes not require advanced techniques

for dealing with the safety of downloaded code, such as software-fault isolation [73], type-safe

languages [10], or in-kernel transactions [58]. The open question that we address is whether the

simple control provided by an infoKernel is sufficient to implement a range of useful new policies.

The idea of exposing more information has been explored for specific components of the OS.

For instance, the benefits of knowing the cost of accessing different pages [71] and the state of net-

work connections [54] has been demonstrated. An infoKernelfurther generalizes these concepts.
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We now compare the infoKernel philosophy to three related philosophies in more detail: ex-

okernel, Open Implementation, and gray-box systems. The goal of exposing OS information has

been stated for exokernels [20, 30]. An exokernel takes the strong position that all fixed, high-

level abstractions should be avoided and that all information (e.g., page numbers, free lists, and

cached TLB entries) should be exposed directly. An exokernel thus sacrifices the portability of

applications across different exokernels for more information; however, standard interfaces can be

supplied with library operating systems. Alternately, an infoKernel emphasizes the importance of

allowing operating systems to evolve while maintaining application portability, and thus exposes

internal state with abstractions to which many systems can map their data structures.

The philosophy behind the Open Implementation (OI) project[31, 32] is also similar to that

of an infoKernel. The OI philosophy states, in part, that notall implementation details can be

hidden behind an interface because not all are mere details;some details bias the performance

of the resulting implementation. The OI authors propose several ways for changing the interface

between clients and modules, such as allowing clients to specify anticipated usage, to outline their

requirements, or to download code into the module. Clients may also choose a particular mod-

ule implementation (e.g., BTree, LinkedList, or HashTable); this approach exposes the algorithm

employed, as in an infoKernel, but does not address the importance of exposing state.

Finally, there is a relationship between infoKernels and work on gray-box systems [4]. The

philosophy of gray-box systems also acknowledges that information in the OS is useful to appli-

cations and that existing operating systems should be leveraged; however, the gray-box approach

takes the more extreme position that the OS cannot be modifiedand thus applications must either

assume or infer all information. There are a number of limitations when implementing user-level

services with a gray-box system that are removed with an infoKernel. First, with a gray-box sys-

tem, user-level services make key assumptions about the OS which may be incorrect or ignore

important parameters. Second, the operations performed bythe service to infer internal state may

impose significant overhead (e.g., a web server may need to simulate the file cache replacement

algorithm on-line to infer the current contents of memory aswith Dustand cache-aware NeST). Fi-

nally, it may not be possible to make the correct inference inall circumstances (e.g., a service may
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not be able to observe all necessary inputs or outputs). Therefore, an infoKernel still retains most

of the advantages of leveraging a commodity operating system, but user-level services built on an

infoKernel are more robust to OS changes and more powerful than those on a gray-box system.

5.4 Explicit Control of File Systems and Caching

Explicit control over ordering of operations is not unprecedented. Processor architectures that

allow multiple processors also need to allow the programmerto ensure that ordering constraints

among loads and stores are honored. To do this, most modern architectures include a memory

barrier instruction in some form [59] [74]. This instruction allows a programmer to place a fence

in the instruction stream; no memory instruction can be reordered across such a fence. On the

Alpha, theMB instruction is defined as: “Guarantee that all subsequent loads or stores will not

access memory until after all previous loads and stores haveaccessed memory, as observed by

other processors.”. It is desirable that the operating system provide an interface to applications for

specifying what orderings for writes are permitted. This dissertation explores two such interfaces,

file system barriers and asynchronous graphs.

The Hewlett-Packard MPE XL operating system [33], providesdependency queues, which

allow an application to issue any number of writes and be assured that ordering will be maintained.

The dependency queues, however, impose a strict linear ordering on writes. This would be similar

to an application which used file system barriers and issued abarrier after every write. Both of the

ordering mechanisms described herein allow the operating system a greater opportunity to reorder

writes for performance.
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Chapter 6

Conclusions

6.1 Summary

This dissertation has presented three approaches for improving cooperation between operating

system’s caching subsystems and the applications that run on them. The key to this new level

of cooperation isinformation. The more the operating system and applications know about one

another, the more they are able to adapt to each others behavior to enhance the overall performance

of the system.

6.1.1 Discovering Cache Information

Chapter 2 presentsDust, a tool for fingerprinting buffer cache replacement policies. Dust

first executes a controlled synthetic workload on the file system buffer cache. This workload

is specifically designed to distinguish cache replacement policies in that the initial access order,

access recency, access frequency and use bit of each page is different and known. It then evicts

half of the data from this workload and measures the amount oftime required to read a random

selection of the test data. By measuring the time to read a page, it is easy to determine whether that

page was cached or not at the time of the read. Knowing which portions of the test data were still

cached after half of the data has been evicted tells us the bases on which the cache policy makes

replacement decisions.Dustruns entirely in user space and requires no kernel extensions.

In many cases, the information revealed byDust is enough to produce a simulation of the

operating system’s caching policy. Such a model, together with knowledge of most of the accesses

to the buffer cache, allows an application to predict the contents of the cache. We modified NeST,
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a software storage appliance, to use a cache simulation to schedule web requests on an in-cache-

first basis. This resulted in a significant improvement in throughput. Further, we found that even

imprecise cache predictions still enable a performance improvement.

6.1.2 Exposing Cache Information

InfoReplace depends on having accurate information about the state of the buffer cache. Un-

like cache-aware NeST, if InfoReplace acts on inaccurate cache information, completely useless

disk IO is the result (with cache-aware NeST, the data is at least still used to service a request).

Because of this need for precise knowledge, implicit information is inadequate. To address this,

we extended Linux to provide two key pieces of information explicitly. First, a new system call

allows applications to obtain a list of the nextN buffer cache pages that will be evicted, the victim

list. Second, an eviction counter, residing in kernel memory but mapped into the user process, lets

the application efficiently check how much the victim list has changed since the last time it was

retrieved from the kernel. Since these interfaces simply expose information, that is, they do not

provide any new mechanisms, they are very simple to implement. Most importantly, they only

read, they never modify any already existing kernel data structures. We believe this minimality of

intrusiveness is an advantage if these kinds of interfaces are to obtain widespread adoption.

In Chapter 3 we show that these additional interfaces enablethe application to transform the

kernel-provided buffer cache replacement policy into the policy of the application’s choice. The

application observes the victim list and when a page that theapplication wants to remain cached is

in danger of being evicted, the application issues a read on that page. The only caveat being that

the kernel must implement a policy that increases a page’s priority when that page is read. Every

modern operating system we have encountered has this property.

6.1.3 Controlling the Cache

When leveraging information, be it explicit or implicit, werelied entirely on implicit tech-

niques to exercise control over the operating system. That is, we only used the existing interfaces

to control the OS. This poses a limitation on the sorts of extensions that can be implemented.
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For example, it is impossible to implement zero-copy networking on a kernel that doesn’t other-

wise support it using implicit techniques. No amount of coercion from user-space will reduce the

number of data copies it takes to move data from a user-level buffer to the network adapter.

Chapter 4 presents two new interfaces which applications can use to express write ordering

constraints to the operating system. Applications with complex on-disk data structures, such as

those that employ write-ahead-logging, depend on having this control to ensure recoverability in

the event of a crash. File system barriers introduces thebarrier() system call. If an application

issues some writes, callsbarrier(), then issues additional writes, the writes will not be reordered

across the barrier. Asynchronous graphs provides a more fine-grained interface whereby applica-

tions can specify a “must be written to disk after” relationship between individual write operations.

We found that for two transactional workloads, asynchronous graphs has the best performance in

more circumstances, though it is more difficult for an application programmer to use. In fact, in

most cases, the performance of asynchronous graphs was comparable to the performance of using

no ordering control at all. Surprisingly, file system barriers performed consistently poorly. This is

due in large part to file system barriers not allowing two writes to the same page to be combined

into a single physical write. As a result, using file system barriers results in a significantly higher

number of disk writes than any of the other ordering methods examined.

6.2 Discussion

Since it is relatively easy to implement and deploy, we see cache-aware task scheduling as

being a simple way to increase the performance of existing systems, such as web and storage

servers. Though we didn’t examine issues such as starvation, or combining predicted cache-state

with other factors that might be a basis for a scheduling decision, gaining cache knowledge by

algorithmic mirroring is an easy way to gain more performance-critical knowledge. We also point

out thatDustonly needs to be run once per version of an operating system. Once the replacement

policy of a given version of a given OS is known, it could be provided as part of a cache-awareness

library that applications could then use to determine cachestate. This would make it easy to

deploy such server applications. Most importantly, we haveshown that useful internal information
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can be extracted from the operating system through the existing interface, and that that information

doesn’t have to be perfect to be useful.

Information exposing interfaces provide a safe, flexible way for application developers to ex-

tend operating systems to better suit application workloads. We have shown here that in the case of

the buffer cache, exposing relatively simple information provides the application with a great deal

of power. We believe the simplicity of the kernel modifications involved will enable them to gain

adoption more readily than proposals to introduce new, complex mechanisms into the operating

system. The kernel modifications involved are simple enoughthat even if they were not adopted

into mainline OS releases, it would not be unreasonable to maintain such interfaces as separate

patchsets.

Write ordering in commodity operating systems is a problem that we believe has not heretofore

been adequately addressed. It is not reasonable to ask smallsites to run applications on the raw disk

partition. Not only do the open-source applications these sites use not support direct access to stor-

age, but operating in this mode increases management overhead. Likewise, these sites shouldn’t

have to choose between performance and consistency. We’ve shown in this dissertation that is it

possible for them to have both. We hope to see write-orderinginterfaces in commodity operating

systems in the future. While adding ordering interfaces represents a substantial modification to

the internals of the operating system, it represents only a small, backward compatible change to

the operating system interface. The ability to control ordering might also encourage application

developers to design on-disk data structures that are recoverable after a crash.

6.3 Future Directions

It is an open question as to how bad the information can be and still be useful. For instance,

what if the application is modeling the wrong policy? Reasoning about the difference between

a model of a buffer cache and the cache itself would be best served by having a formal metric

for the difference between two policies. For instance, LRU and Clock would have a very small

difference, whereas LRU and MRU would have a large difference. A starting point point for such

a metric might be the difference in final cache state after running a canonical workload, such as
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Dust. However, a metric based on a canonical workload will be limited by the decision criteria

(e.g.recency, frequency, initial order) that the workload testsfor.

Explicit information interfaces are powerful but must be designed carefully. They must convey

enough information to be useful but not so much that private process information is revealed. They

must be efficient to be useful. A great deal more work will be required to make extensions like

InfoReplace more common. To facilitate application portability, it will be necessary to standardize

the information-revealing interfaces. Long before any standardization occurs, further research is

necessary to determine what information is useful and how toexpose it efficiently and safely.

Further, rather than extend POSIX to provide information interfaces, we feel it would be better to

design an operating system from the beginning to expose information. Such a system would have

process-private information clearly separated from information that is safe to expose. Designing

a system this way answers the question of what to expose: expose everything that is part of the

“safe” data. Since the OS would have been designed from the beginning with information exposure

in mind, will be easier to avoid opening security holes with information exposing interfaces. We

believe that exposing information has some advantages overimplementing new mechanisms in

the OS kernel. It is impossible for OS developers to anticipate the needs of future applications.

Exposing information provides a way to allow applications to safely extend the system on their

own, relieving OS developers of some of the burden of being all things to all applications. The

work presented here and as part of infoKernel is only the firststep down this road.

We have shown that introducing write ordering control into the kernel is useful when fine

grained control is required. It remains to be seen how large the class of workloads that can benefit

from such interfaces is. Also in need of further study is the interface itself. File system barriers

has a simple interface that is easy to use, but performs poorly. Asynchronous graphs performs well

but requires more work on the part of the application programmer. Further study will be required

to find out if there is a middle ground. Can there be an write-ordering interface that is fine-grained

enough to perform well, but simple enough that application developers won’t be hesitant to use it?
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6.4 Broad Conclusions

The boundary between user-level applications and the operating system kernel traditionally

allows only limited information to move across it. The operating system has knowledge of the

global state of the system, and a number of abilities that applications do not possess. The OS

does not have detailed knowledge of the needs of individual applications, has limited knowledge

that it can use to predict their future needs and doesn’t knowwhen the application can change

its workload (as it can in scheduling web connections) or when it cannot (as when performing

IO to maintain transactional semantics). The result of thisdivision of knowledge and division

of responsibility is that in some instances, interesting information and the ability to act on that

information are on opposite sides of the OS/application divide.

We have argued in this dissertation that it is useful to increase the amount of information

moving across this interface, at least in the realm of cache management. The goal in moving in-

formation across the OS/application interface is to bring the information needed for making good

decisions together with the mechanisms necessary to act on them. In Chapter 2,Dust brought

approximate cache state knowledge into the application, where the ability to schedule web connec-

tions resides. In Chapter 3 we brought precise knowledge of the cache state into the application,

the application then took that knowledge, along with knowledge of its own workload, to coerce

the buffer cache policy into behaving in a more advantageousway. In this case, the application

used knowledge of data semantics (e.g.the level of a page in an on-disk index), knowledge the OS

does not possess, to improve cache management. Finally, filesystem barriers and asynchronous

graphs in Chapter 4 moves knowledge about write ordering dependencies from the application into

the operating system, where it can be acted on. The application knows what the safe orders of its

writes are, but the operating system is actually responsible for performing the physical disk writes.

We brought the knowledge needed to make smart decisions together with the the mechanisms

necessary to act on those decisions.

Technologies such as virtual machine monitors, large-scale clusters and distributed storage

add more and more layers to already complex systems. Each of these layers, like the operating
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systems and applications discussed herein, has certain knowledge of their part of the system, and

certain decision making ability. The more layers a system has, the more likely it will become that

the ability to act on a decision and the knowledge necessary to make a good decision will be in

different parts of the system. Thus, we believe that information-based techniques such that those

we described here will become more important in the future.

The decision on how to implement a new feature is based largely on how difficult it is to change

the interface in question and how difficult it is to change thecode on either side of that interface.

When the interface between layers is entrenched, as POSIX is, our first attempt should be to use

implicit techniques to move information across the system.In many cases, this will allow system

designers to bring together the information needed for gooddecision making, and the mechanisms

that can act on that information, without the upheaval required to change a popular, standardized

interface. When an interface can be changed, but perhaps thecode on the other side of that interface

can’t be radically altered, exposing explicit informationgives an evolutionary path to extending the

system. In some cases, information based techniques won’t be powerful enough to implement the

needed functionality. If this is the case and the interface and system behind it can be changed

easily, or the new functionality is compelling enough to justify the pain, implementing an explicit

mechanism may be the right answer.
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