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Abstract

As flash devices become ubiquitous in data centers and
cost per gigabyte drops, flash systems need to provide data
services similar to those of traditional storage. We present
Mjölnir, a powerful and scalable engine that addresses the
core problems that make efficient flash based data services
challenging: multi-reference management and garbage col-
lection. Additionally, by providing powerful primitives for
address remapping, Mjölnir enables redesign of the I/O stack
for greater efficiency and performance with flash. Mjölnir
uses techniques from language runtimes for reference man-
agement and garbage collection; we show via prototype and
experimental evaluation that this design can deliver pre-
dictable performance even with varied user workloads across
a range of capacity and reference-count scales.

1. Introduction

Flash devices are now ubiquitous in data centers, improv-
ing both application performance and data center efficiency
by providing an intermediate storage tier in between DRAM
and Hard Disk Drives (HDDs) [2, 7, 25]. As flash increases
in capacity and drops in cost, larger quantities of data are
being stored in flash, leading to demand from users for the
same data services available from traditional disk based stor-
age systems. Prior work has observed the impact of flash
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on storage architectures while also noting that flash presents
new challenges in the implementation of classic data ser-
vices and the expectations placed on them [18, 19, 25, 27,
30, 34].

At the same time, studies have observed that flash presents
an opportunity to rethink the overall architecture of the I/O
stack, with designs that reuse powerful primitive functions
to create composable data services [1, 16, 20–22, 25, 30].
For example, studies such as ANViL [30], FlashTier [25],
NVMKV [21] and DFS [16] demonstrate that log structured
stores, which are already well-suited to flash, can also pro-
vide address mapping capabilities which enable construction
of applications and common data services (such as snap-
shots) with relatively little effort and minimal redundancy in
the I/O stack.

In this paper we build upon and extend these key ideas of
flexible and powerful address remapping to create Mjölnir,a
system that provides the same core primitives as ANViL [30]
and advocated by other studies [16, 21, 25, 27, 28]. While
prior work focused on the power of the primitive operations
themselves and the benefits achievable by redesigning the
I/O stack using these primitives, in Mjölnir we focus on
the challenges involved in creating a high performance and
scalable implementation of the core engine that provides
these capabilities.

Prior work has also shown the difficulty in implementing
even basic data services at the speeds provided by flash
devices [4, 11, 27, 30]. These studies illustrate the need
for scalable reference management and garbage collection
(GC). Once data sharing is introduced (with copy on write
snapshots or in deduplication, for example), the core engine
must be able to efficiently find unreferenced data blocks
in order to coalesce free space, even while data references
are changing simultaneously [10, 14]. While these needs
have existed since the era of hard disk based systems, the
high performance of flash brings new dimensions to the



problem. Flash devices have enough bandwidth to fill their
storage capacity in a very short amount of time. Therefore,
previously off-line procedures, such as defragmentation,are
now required to be done on-line by necessity [27].

Modern SSDs have become increasingly good at GC, si-
multaneously delivering predictable performance and mil-
lions of IOPS [23]. However, systems such as ioSnap have
demonstrated that this performance is difficult to maintain
in the presence of advanced data services such as snap-
shots [27]. The primary difference between the address map-
ping in an SSD and that required by a versioning system is
the need to maintain and manage a variable number of ref-
erences to each data block, which puts pressure on both the
foreground and background operations of the system. The
presence of frequent remapping operations, such as those
generated by ANViL, further increase the performance de-
mands on the GC system.

Scalable reference management has been done in other
areas, such as disk based deduplication systems and lan-
guage runtimes [6, 14]. We leverage insights and techniques
from these areas and apply them to the flash domain, ex-
tending as necessary. For example, disk-based deduplication
systems handle scale in reference count but not at the per-
formance levels of flash [14]. Reference management and
GC in managed language runtimes handle scale of reference
and speed, but rarely have to operate at the capacity points
required of storage systems.

In this paper, we describe the GC design in Mjölnir, a
system specifically designed for high performance, scalable
reference management and GC for flash storage. The paper
makes the following contributions:

• Demonstrates a scalable and highly GC design for flash
devices by borrowing concepts from programming lan-
guage runtimes.

• Illustrates the design tradeoffs between CPU consump-
tion, memory overhead, write amplification, and scala-
bility in high performance GC.

• Shows that it is possible for version creation to remain
fast by deferring work to background operations while
also making these operations efficient.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background and an overview of Mjölnir.
Section 3 discusses the need for GC and reference manage-
ment in Mjölnir and explains why existing solutions are in-
sufficient. In Section 4 we describe in detail the design of
Mjölnir. Sections 5 and 6 provides an evaluation and con-
clusion, respectively.

2. Mj ölnir background

Virtualization is a popular technique for managing and ex-
ploiting available resources in computing systems, from
memory and processors [5] to entire machines [8, 12, 13].

Storage virtualization, though conceptually similar, remains
fairly limited in use and highly restrictive [26], providing
only specialized administrative features like deduplication,
snapshots, and thin-provisioning. These operations do not
provide any opportunity to the application to leverage stor-
age virtualization directly. Mjölnir aims to address thisprob-
lem.

Mjölnir draws inspiration from ANViL and is a block de-
vice designed to run on top of fast, large flash devices [30].
In addition to providing a standard read/write block inter-
face, Mjölnir also supports fine grained address space ma-
nipulation operations through the use of a translation layer
(analogous to the address translation in FTLs). These opera-
tions help provide storage virtualization at a granularityand
level of control that can support a wide variety of real-world
applications [30]. We now briefly describe Mjölnir: features,
implementation, and the various background work needed to
support these operations.

Mjölnir provides a set of simple interfaces to a fine-
grained block address map that allow virtualization to be
exposed as a first class entity in storage devices. These op-
erations (range copy, move, delete) have been designed to
scale on multiple levels: size of extent being manipulated,
the frequency of manipulation, and the overall number of
such operations. ANViL also demonstrates the usefulness of
these operations with features like high-performancevolume
snapshots, file snapshots and single-write journaling [30].
Mjölnir was designed from the ground up to provide the
same address manipulation operations in a fast and efficient
manner.

Mjölnir, like most modern storage systems, is log struc-
tured, with incoming writes always directed to the tip of the
log, never overwriting data in place [24]. This also necessi-
tates a translation layer (TL), where all block address remap-
ping operations take place [3, 15]. Similarly to LFS, we man-
age physical space in units of segments, where data within a
segment is sequential in time, but segments themselves need
to be rearranged to reconstruct the time-ordered log. Finally,
after a segment has been fully written, it is made immutable.
But as the data written in a segment gets overwritten (logi-
cally, replaced by data elsewhere in the log), blocks within
each segment become invalid. Segments gradually accumu-
late invalid data in this way and are garbage collected over
time; garbage collection is thus a critical component for con-
tinuous efficient operation in Mjölnir.

3. GC Considerations for Mjölnir

Mjölnir requires a different background GC from a con-
ventional SSD, primarily due to its many-to-one address
map [24]. A GC for a traditional log-structured storage sys-
tem like the one described in LFS is simple, with each block
referenced by at most one logical location. Since Mjölnir
aims to support much richer capabilities, a single physical
data block may be referred to by more than one logical ad-



dress, with reference count ideally limited only by the avail-
able physical storage capacity. In this section, we outlineour
design goals and illustrate why traditional GC techniques are
not directly applicable for Mjölnir.

3.1 Design Goals

Scale with Capacity: Modern storage systems are grow-
ing in capacity and now support terabytes to petabytes of
data. The GC should be able to scale to large storage capac-
ities.

Scale with References: Advanced virtualization support
within storage devices increases the number of references
to physical blocks. The garbage collector should be able to
scale with both number of references and frequency with
which these references are created.

Predictable Performance: Performance is improving with
every generation of non-volatile memory devices, with a sin-
gle modern flash drive capable of delivering anywhere from
hundreds of thousands to millions of IOPS. Moreover, ap-
plications expect predictable performance from storage sys-
tems. As a result, background operations cannot take too
long and must be able to keep up with foreground opera-
tions. If not, a huge backlog can accumulate and degrade
foreground performance.

Manage Memory Usage: Memory is always a precious
resource and the design of the GC must to be mindful of
this issue. The design should be able to handle large-scale
(in both capacity and reference count) storage systems even
with relatively small amounts of available memory. This is
very true especially in the case of an “off-load” device where
virtualization support is embedded within device DRAM.
The GC should be able to trade off CPU and GC efficiency
against memory usage when necessary.

3.2 Alternate Approaches

There are many different ways of implementing a GC for
a log-structured storage system. We now look at existing
approaches and explain why Mjölnir requires a different
(hybrid) solution.

3.2.1 Bitmaps

Bitmaps are perhaps the most obvious potential approach
to GC. With bitmaps, tracking utilized and free blocks is
very straightforward [24]. While bitmaps are efficient in both
memory and CPU utilization, they are insufficient to track
used/free status in the context of the many-to-one address
map used by Mjölnir. For example, a simple set-on-map,
clear-on-unmap bitmap-management algorithm would be in-
accurate if one were to simply clone a live block’s mapping
to a new logical address and then unmap the original address
(the block would have a live reference but incorrect bitmap
state).

3.2.2 Reference Counting

Alternatively, one could use an array of reference counts to
track the number of mappings to each block. In fact, a bitmap
is simply a one-bit special case of a reference count array.
If we generalize the bitmap approach to use multi-bit refer-
ence counts, we can address the inaccuracy problem inher-
ent to bitmaps tracking a many-to-one address map, using
a simple increment-on-map, decrement-on-unmap reference
count management algorithm. This approach introduces a
follow-on question to which there is no clear, obviously-
correct answer: how large do we make the reference counts?
Larger reference counts require more memory to store, but
smaller ones impose undesirable limitations on the usage of
the special features offered by Mjölnir. Even if this ques-
tion is answered, it still does not address a significant need
for GC. The GC in a multi-reference log-structured system
needs to know not only the liveness status of physical blocks
and reference count for each block, but alsowhere those
mappings are, so that it can update those mappings after
copying data to a new location. Regardless of their size, ref-
erence counts simply do not provide this information, mean-
ing that in addition to its expense in DRAM consumption,
this would be at best an incomplete solution.

3.2.3 Synchronous Reverse Map

To overcome the limitations of reference counts, one could
expand the GC’s metadata-tracking to use a full reverse map
(mapping each physical address to zero, one, or more logi-
cal addresses) in addition to the forward map in the TL. This
would of course provide all the information provided by ref-
erence counts (and, depending on its exact implementation,
likely avoid arbitrary limits on the number of references toa
given block), and also be able to supply the necessary infor-
mation for the GC to update the address map after copying
data. However, a reverse map would require at least as much
DRAM space as the forward map, and likely more, since the
data structure mapped to by each physical address would be
a set that would have to support reasonably efficient insertion
and deletion. The cost of implementing this would simply be
unacceptably high in terms of DRAM consumption in addi-
tion to the extra book-keeping work it would require during
foreground I/O operations.

3.3 Mark and Sweep

Mark and sweep is a GC approach categorized under the
class of tracing garbage collectors [31]. A tracing GC is used
to manage resources (commonly memory) by evaluating the
reachability of memory extents (objects) starting from a set
of root objects. In the context of programming languages
(such as Java [29]), objects may have zero or more refer-
ences at a given point in time; a live object will be reachable
by at least one path. Objects without any references are ready
for reclamation.



Category Features Accuracy CPU Memory
SSDs (Storage) Low High Low Low
Snapshotting Systems Low High Med High
Prog. Languages High High High High
Dedupe Systems High Med High High

Table 1. Comparison of garbage collecting systems

We compare various systems requiring garbage collection along four axes:
features, accuracy, and CPU and memory utilization. “Features” refers to
the data management features (pointers/references in a PL GC, snapshots
in storage) supported by the system. Accuracy is the abilityto identify re-
claimable blocks most efficiently (relative to the CPU and memory over-
heads incurred).

Mark and sweep, as its name suggests, consist of two
phases. The mark phase involves performing a complete
reachability analysis on the entire object graph, during which
all reachable objects are marked. The sweep phase then
follows and reclaims all objects that were not marked in this
manner.

Mark and sweep has also been explored in the context
of storage systems [10, 14, 17]. For example, deduplication
systems [14] have used mark and sweep to improve single
node scalability. Similarly, BigTable [10] uses a mark and
sweep based garbage collector to cleanup its SSTables.

3.4 Comparison with Other Systems

Even though Mjölnir is a storage system, given its features,
its GC has more in common with those of programming lan-
guage runtimes than most storage systems. Mjölnir supports
a large number of references to its data objects (blocks) and
reclaims space online, in real time. Also, as illustrated inTa-
ble 1, existing storage systems offer relatively few features
(i.e., support only read/write operations) and so their garbage
collectors are very accurate while consuming little CPU and
memory. Mjölnir, being much more feature-rich, cannot use
such techniques, so we look to programming languages for
inspiration. As we will describe in subsequent sections, the
garbage collector of Mjölnir adopts a mark and sweep ap-
proach, but provides the ability to control memory and CPU
overheads during this process.

4. Design

Mjölnir uses a mark and sweep based GC [9]. The core de-
sign philosophy of Mjölnir is to make the common case op-
erations as fast as possible and move the infrequent latency
insensitive operations to the background [27]. This approach
puts pressure on Mjölnir’s background GC to reclaim data
efficiently and ensure predictable performance to foreground
operations.

4.1 Key Observations

There are a few key observations about multi-reference log-
structured systems that we have used to design an optimized
GC.

Translation Layer is Omniscient: The TL maintains the
logical to physical address mapping and represents the en-
tirety of the storage device’s metadata; information about
any physical block can be inferred via the TL. Moreover,
TLs are almost always kept in DRAM (in host- or device-
based FTLs) and thus offer much faster access (nanosecond
latency) as compared to I/Os issued to the flash device.

Block Liveness: A block is live if there is at least one
reference to it in the TL; block liveness can thus be inferred
by traversing the TL and hence bitmap management for the
entire storage device can be avoided. Once a block is dead
(unreferenced), its status cannot change until the segment
containing the block is recycled.

Reference Counting: Reference counts need not be ac-
tively maintained in the system to aid the GC. The simple
boolean of block liveness is enough to decide which seg-
ments to reclaim. More importantly, the reverse map for a
segment (i.e., the logical addresses mapped to blocks within
a segment) can be constructed on-demand by traversing the
TL.

Reclamation of Segments: Data in a log-structured sys-
tem is always reclaimed in segments (large, physically con-
tiguous extents). The validity of blocks within a segment
helps determine if a segment could be a candidate for recla-
mation. The GC can thus use only a small amount of in-
memory state to keep the information necessary for selecting
segments as candidates for reclamation.

Keeping up with foreground I/O: In steady state opera-
tion, GC needs to reclaim space at the same average rate at
which its being consumed. Though it is desirable to select
segments optimally (perhaps using an algorithm that differ-
entiates hot data from cold), it is more important reclaim
space fast enough to avoid pauses in I/O traffic.

4.2 Mark Phase: Scanner

The goal of theMark Phase is to identify segments for recla-
mation. The segments to be garbage collected may contain
both valid and invalid data. Ideally, the goal is to find empty
or near empty segments as this minimizes the amount of data
copied forward, reducing write amplification [24]. There are
many challenges to identifying candidate segments for GC
(see Section 3).

The component of Mjölnir that performs this phase is the
scanner. The scanner consists of one or more threads that
periodically traverse the TL to collect valid data block ref-
erences to identify segments for cleaning. Mjölnir leverages
the observations described earlier and splits the mark phase
into two parts. The first,candidate selection, scans through
the TL to identify potential segments that fall below the de-
sired data-validity threshold. This is accomplished by build-
ing a bitmap for immutable segments to get an accurate view
of the amount of live data in each segment. The second part
of the mark phase,candidate preparation, scans through the



TL again to reconstruct the reverse map for the live data
blocks in the selected candidate segments.

The mark phase ultimately determines the overall write
amplification introduced in the system: a poor choice of
candidate segment may lead to inefficient space reclama-
tion as well as device wearout caused by excessive writ-
ing. The mark phase also implicitly becomes a bottleneck on
the sweep phase: without the mark completing, the sweep
cannot proceed. Thus, the speed and the accuracy of the
mark phase is critical. Scanning more quickly increases CPU
utilization, while more careful candidate selection incurs
greater memory consumption.

4.2.1 Selective Segment Tracking

The scanner is required to construct reverse maps for candi-
date segments for use during the sweep phase. As explained
in Section 3, reverse maps are expensive; a full-system re-
verse map would cause significant memory bloat. Thus, it is
important to control the memory consumed by these maps.

The only way by which memory consumption can be re-
duced without compromising data integrity is to construct
reverse maps for fewer segments. The problem is thus to se-
lect a small subset of segments based on overall space pres-
sure and some limit of permissible memory consumption.
A given segment must undergo two full scan cycles before
it can be reclaimed. The first scan populates a bitmap for
each segment to determine how much valid data it contains.
Once the utilization gets low enough and it is selected as a
candidate for reclamation it is treated specially in the fol-
lowing scan, during which a reverse map is constructed for
all valid blocks in the selected segments. One could consider
other segment selection policies, but for simplicity we have
employed a greedy policy, which has shown itself to be ef-
fective.

4.2.2 Pipelined Scanning

For performance, the two scan phases are pipelined (i.e., they
can be run concurrently for different segments). It is im-
portant to note that the second scan (reverse-map construc-
tion) is only dependent on the first (candidate selection) for
a given individual segment. As a result, on any given scan
cycle, the scanner can be performing the work of the first
scan on one set of segments and the work for the second
on another (disjoint) set of segments, effectively pipelining
them. While pipelined scanning does increase ”latency” of
the reclamation of any individual segment (since it must take
two complete trips through the scanner), this is not an impor-
tant metric for Mjölnir, for which GC throughput (which is
not negatively affected by pipelined scanning) is much more
critical. Figures 1 (a) and (b) provide an overview of the scan
stage.
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Figure 1. Mjölnir’s GC in action

The above figures illustrate Mjölnir’s mark and sweep GC in action. Figure
(a) shows a btree-like TL that maps a logical space ranging from address 0
to 2

48 . The solid boxes represent index nodes and the dotted lines indicate
leaf nodes. In this simplistic example, we show a single leafnode with 4
mapping entries. Each entry contains a logical address (topleft), extent
length (top right), and a physical address (in the box below). For example,
the first entry represents a mapping from logical address range [2000, 2004]
to physical addresses [2, 6]. For simplicity, each segment is shown as having
10 blocks. Figure (b) illustrates the construction of bitmaps and reverse
maps during the scan. We show four segments in the left most ”before
scan 1” segment. The addresses of these segments are listed within each
rectangle with a bitmap below (dark areas represent valid addresses). After
Scan 1, segment [20, 29] is identified as a candidate. Scan 2 helps build a
reverse map for this segment using the entries it found in theleaf node from
Figure (a). These entries are then copied to new locations insegment [80,
89] and finally segment [20, 29] is trimmed and reclaimed. Figure (c) shows
the state of the same leaf node after the GC cycle has completed.



4.2.3 Parallel Scanner Threads

Because the work of a scan cycle is entirely CPU-bound, po-
tentially very large, and parallelizable, the scanner is multi-
threaded. Each thread is given a subset of the logical address
space to scan. How to divide the logical address space among
these threads, however, is a surprisingly difficult question.
The logical address space is sparsely populated, and the
scanner only traverses mapped addresses in the TL. In order
to spread work evenly among scanner threads, each thread
should scan approximately the same number of mappings.
The scanner, however, has no high-level picture of the distri-
bution of mapped addresses within the logical address space
and as such it is not trivial to divide up the work evenly.

To address this issue, we devised a dynamic space reas-
signment algorithm. This algorithm is based on the insight
that there is no actual need for the division of logical address
space between threads to be statically determined at the start
of each scan cycle. When any thread finishes its partition,
it sets a global flag requesting that the remaining scanning
work be redistributed. Each running thread checks this flag
periodically, and upon observing it having been set, records
the progress it has made and proceeds to wait at a barrier.
When all threads have reached the barrier, a leader thread
then splits up the remaining work among any idle threads.
The scanner threads are then released from the barrier and
begin scanning their newly-reassigned address space, repeat-
ing the reassignment process when any threads finish their
work.

4.3 Sweep Phase: Cleaner

The goal of the cleaner, Mjölnir’sSweep Phase, is to actually
reclaim the unused space in candidate segments. The cleaner
must efficiently move all valid data identified by the scanner
out of candidate segments and into new locations, updating
the TL accordingly before freeing the segments. Here we
describe these steps in detail.

Copy-Forward Valid Data: The cleaner needs to relocate
all valid data (if any) in a candidate segment to a new lo-
cation on the log in order to reclaim the segment. To re-
locate data, the cleaner first issues reads to all valid data
blocks identified by the scanner. When these reads complete,
the cleaner allocates new space (at the head of the log) and
writes the data out to these new locations. It is important to
note that, even if the copy-forward fails for some reason, the
old data still remains and can be used to service foreground
read operations.

Update Translation Layer: The cleaner updates the TL
only after the data has been successfully moved to its new
location. After a successful write but before this point, both
the old and new location of the data are valid and either could
be used to service reads. Thus, even with multiple blocks of
valid data to be moved, the TL can be updated one mapping

at a time without compromising data integrity. Figures 1 (a)
and (c) illustrate how mappings are updated after cleaning.

Reclaim Segment: After the TL has been successfully up-
dated for the valid data within a segment, the segment can be
trimmed and returned to the space allocator for reuse. Once
the segment is trimmed, the old data no longer exists and any
reference to such a segment would be invalid. Figures 1 (b)
and (c) provide an overview of some of the cleaner’s opera-
tion.

4.3.1 Callbacks to Reduce Write Amplification

GC always leads to some write amplification in a log-
structured system and a large body of existing work already
describes policies to minimize it [24, 32, 33]. The aspect of
write amplification that is unique to Mjölnir is introducedby
the two phases of mark and sweep. The reverse map gener-
ated during the mark phase for a segment represents all valid
data within the segment at the time the reverse map was
constructed by the scanner. But this state could potentially
change with user writes or address manipulation operations.
Moreover, by the time the cleaner can act on a segment dur-
ing the sweep phase, the amount of valid data in the segment
may have changed. Note however that the amount of valid
data within a segment can only decrease, never increase.

To ensure the cleaner does not perform any wasted work,
we use callbacks on our TL that are triggered when ever
an existing piece of data is overwritten. The old mapping
information available to the callbacks is used to check if it
belongs to a segment that is being cleaned and if so, remove
the corresponding entries on the fly.

4.3.2 Rate Limiter for Predictability

The act of GC forward-copying data necessarily interferes
with the foreground user I/O traffic by using some of the
available bandwidth of the underlying storage device. This
could potentially introduce I/O pauses or latency spikes.
Mjölnir tackles this problem using an explicit rate limiter.
The job of the rate limiter is to determine what fraction of
the total available bandwidth is given to the foreground and
background (GC) traffic.

The rate limiter takes into account the overall available
free space in the system (number of free segments), the
invalidity of the segments tracked by the scanner, and the
amount of work that is outstanding for the user and the
cleaner. At a high level, the fraction of bandwidth given to
the GC increases as free space drops (as long as the cleaner
has useful work). Finally, the rate limiter also decides when
the system has entered ”panic” mode; when the system is
critically low on space it suspends user traffic and dedicates
all available bandwidth to the GC. In interest of space, we
do not describe the rate limiter in detail in this paper.



5. Evaluation

Mjölnir is a complex system (approximately 100K lines of
code), with GC contributing significantly to its complexity.
In this section, we will restrict our evaluation to only the GC
and examine its functionality, predictability, scalability, and
interaction with foreground traffic. To better understand GC
in Mjölnir, we will also dig deeper into the various aspects
that contribute to the cost of reclaiming a segment. We will
also demonstrate Mjölnir’s ability to scale with references
(i.e., snapshots). For our evaluation, we use SLES 11SP2
with a 3.0 Linux kernel running on an HP DL380 server with
64GB of RAM, two 6-core (12-thread) Intel Xeon proces-
sors, and a 1.2 TB SanDisk ioMemory PCIe flash drive as
Mjölnir’s backing storage. Mjölnir is configured to run with
a segment size of 128M.

5.1 GC in Action

Here we demonstrate the real-time operation of the GC.
Specifically, we show how the GC slowly ramps up its activ-
ity as device utilization increases. To illustrate this behavior,
we artificially reduced the capacity of the drive to 320 GB.
We ran a fio workload with 32 threads each writing 10 GB
of data in 32K blocks, with about 50% overwrites. Figure 2
shows the progress of the system over time.

Initially, when the device utilization is under 50%, the
foreground traffic is granted the full device bandwidth and
performs its work at full throttle. Once the utilization crosses
50%, the GC activates, starts performing scans of the TL and
begins moving blocks as is observed after approximately 50
seconds. We observe a gradual decrease in the fraction of
bandwidth given to the foreground traffic to allow the GC to
do its work. More importantly, we also observe that the GC
is keeping up with foreground traffic, as evidenced by the
roughly equal rates of segment allocation and reclamation.
From the backing-device I/O graph, we can see that the
presence of the GC introduces reads, which also has the
implicit effect of reducing the overall write bandwidth.

An interesting behavior of flash devices is also revealed in
Figure 2. In the pure write workload, the device can achieve
full bandwidth. But in the presence of a mixed workload, es-
pecially the combination of large writes with small reads, the
write bandwidth suffers disproportionately. From the graph,
we can also see that the rate-limiter attempts to minimize
this impact. This, unfortunately, is the behavior of the drive
even in the absence of Mjölnir.

5.2 Scaling GC with capacity

It is important for the GC to scale gracefully with the volume
of data being managed. We measure the time taken by the
GC to reclaim the valid data from a set of segments. In these
experiments, we issue 4K sequential writes to the device and
allow the GC to start processing after all the writes complete.
We adjust the GC’s candidate-selection threshold to make
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Figure 2. GC in action

This figure shows the operation of the GC at various utilization levels. The
graphs are (from top to bottom): user and backing device I/O rates (sectors
per second), device-wide segment utilization, bandwidth share between
GC and foreground I/O, sectors per second moved by GC, and segment
allocation and reclamation rates.

Data Mappings Time to reclaim
128M 3,712 329ms

8G 266,952 28.3s
64G 2,152,134 179.4s

128G 4,037,073 363.7s

Table 2. GC scaling with capacity
This table illustrates how Mjölnir scales with capacity. We populate the
device with some data and alter the GC to clean segments even though
they contain only live data. The cost in time and mappings scanned thus
represents the time spent by the GC in moving all of the data that was
originally written.

it reclaim any segment, regardless of its utilization. In this
particular experiment, as we have no overwrites in our initial
workload, the segments contain only valid data.

Table 2 shows the number of mappings discovered during
the scan and the time taken by the GC to reclaim all segments
(representing all the data that was written); the scan time
increases linearly with the quantity of data. Linear scaling
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Figure 3. Scanner scalability

This figure illustrates the scalability of the scanner, showing scanning per-
formance at varying thread counts. The scanner achieves near-linear scaling
up to 12 threads (the number of available CPU cores).

may not always be desirable when it comes to large backing
devices. In the future, we can apply work saving techniques
like preferential scanning of modified regions to reduce scan
space and control scan times.

The scan time can be reduced substantially by paralleliz-
ing the scan across multiple threads. We populated the drive
with 128 MB of data (one segment’s worth) and created
10,000 snapshots of it (to fill up the TL with five times
as many mappings as would be used by 256 GB of non-
snapshotted data). We then measured the performance of
the scanner with varying numbers of threads; the results are
shown in Figure 3. We can see from this data that Mjölnir’s
scan performance scales well with increasing numbers of
scanner threads, allowing Mjölnir to meet its goal of scal-
ing to large numbers of data references by leveraging the
plentiful CPU cores of modern systems.

5.2.1 Reclamation Time Breakdown

The time required to reclaim space includes the time spent
scanning the TL and the time taken to physically move the
data and update the TL. To understand how this time is spent,
we split the time into various sub-components.

As mentioned previously, our segment size is configured
to 128 MB. We first look at the cost of reclaiming a single
segment with 128 MB of data (all valid). The scanner found
3,712 mappings and this phase took 340us. The cleaner took
329ms to move the data and perform the updates. It is not
feasible to separate the data movement from the TL updates
costs as these occur asynchronously and in parallel. Thus, as
expected, data copying consumes most of the time spent on
reclaiming a given segment.

5.3 Scaling with References

The final piece of our evaluation demonstrates the GC’s scal-
ing with large numbers of data references. We measure the
cost of cleaning a single segment of data while varying the

Snapshots Mappings Time to reclaim
1 7,420 338.40ms

200 731,990 2.38s
2,000 7,287,642 29.6s

Table 3. GC Scaling with snapshots

Here we evaluate the cost of cleaning a single segment of data(128 MB)
while varying the number of data references (snapshots). Wepopulate the
device with 128 MB of sequentially-written data and configure the GC to
reclaim any and all segments; the time to reclaim a segment scales with the
number of snapshots, due to the time spent scanning the TL.

number of references to the data (snapshots). We populate
the device with 128 MB of sequentially-written data and
configure the GC to reclaim any and all segments. Table 3
shows snapshot time, number of mappings scanned, and time
to reclaim a single segment with varying numbers of map-
pings.

The time to reclaim includes the time to move the data
and update mappings. Comparing the time to reclaim with
varying numbers of snapshots, we see that the system can
handle an increasing number of snapshots quite comfortably.
This is facilitated by a set of IO completion threads (out of
scope for this paper) that handle most of the data moving and
TL-update work.

Our evaluation has demonstrated the operation and scal-
ability of Mjölnir’s GC. There are however several pieces of
evaluation that we omit due to space constraints, including
scanner self-scaling (adjusting its CPU consumption to an
appropriate level), memory consumption, and performance
tradeoffs.

6. Conclusions

Mjölnir demonstrates the feasibility of an online mark and
sweep style GC for log-structured storage systems support-
ing large numbers of data references. Mjölnir borrows ideas
from programming language runtimes to create a unique
GC that is tuned to scale with both capacity and references
while still controlling CPU and memory overheads. We hope
Mjölnir can inspire new storage systems to consider new
methods for GC to adapt themselves to the demands of fast
flash and persistent memory devices.
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