Why panic()? Improving Reliability with Restartable
File Systems

Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale,

Andrea C. Arpaci-Dusseau, Remzi H.

Arpaci-Dusseau, Michael M. Swift

Computer Sciences Department, University of Wisconsimlidda

ABSTRACT

Device drivers are not the only OS subsystem, nor are they

The file system is one of the most critical components of the necessarily where the most important bugs reside. Many re-

operating system. Almost all applications running in the op
erating system require file systems to be available for their
proper operation. Though file-system availability is i

in many cases, very little work has been done on tolerating

cent studies have shown tHéé systemsontain a large num-

ber of bugs [4, 6, 11, 24]. Perhaps this is not surprising,las fi
systems are one of the largest and most complex code bases in
the kernel. Further, file systems are still under active bige

file system crashes. In this paper, we propose Membrane, ament, and new ones are introduced quite frequently.

set of changes to the operating system to support restartabl

file systems. Membrane allows an operating system to tol-

Due to the presence of flaws in file system implementation,

erate a broad class of file system failures and does so while it is critical to consider how to handle their crashes. Unfor

remaining transparent to running applications; upon fady
the file system restarts, its state is restored, and pendimg a
plication requests are serviced as if no failure had occdrre
Our initial evaluation of Membrane with ext2 shows that Mem-
brane induces little performance overhead and can tolesate
wide range of file system crashes. More critically, Membrane
does so with few changes to ext2, thus improving robustoess t
crashes without mandating intrusive changes to existimg fil
system code.

1. INTRODUCTION

tunately, two problems prevent us from directly applying-pr
vious work from the device-driver literature to improve file
system fault tolerance. First, most approaches mentionedka
are heavyweightue to the high costs of data movement and
page-table manipulation across address-space boundaees
ond, file systems, unlike device drivers, are extrensédyefu)

as they manage vast amounts of both in-memory and persistent
data; making matters worse is the fact that file systems dprea
such state across many parts of the kernel, including the pag
cache, dynamically-allocated memory, and locks. Thusywhe
a file system crashes (typically by callipgni c()), a great
deal of care is required to recover from the crash while kegpi

Operating systems crash. Whether due to software bugs or the rest of the OS intact.

hardware bit-flips, the reality is clear: large code bases ar
brittle and the smallest problem in software implementatio
hardware environment can lead the entire monolithic opegat
system to fail.

In this paper, we propos®lembrane an operating system
framework to support lightweight, stateful recovery frone fi
system crashes. During normal operation, Membrane logs
file system operations and periodically performs lightvirtig

Recent research has made great headway in operating-systengheckpoints of file system state. If a file system crashes, Mem

crash tolerance, particularly in surviving device driveilf

brane parks pending requests, cleans up existing statartees

ures [17, 18, 23, 25]. Many of these approaches achieve sometne file system from the most recent checkpoint, and replays

level of fault resilience by building &ard wall around OS
subsystems using address-space based isolation and enicror
booting said drivers upon fault detection [17, 18]. Other ap
proaches are similar, using variants of microkernel-based
chitectures [2, 23] or virtual machines [5, 9] to isolatevers
from the kernel.

the in-memory operation log to restore the state of the mgpni
file system. Once finished with recovery, Membrane begins to
service on-going application requests again; applicatiane
kept unaware of the crash and restart except for the small per
formance blip during recovery.

Membrane does not place an address-space boundary between
the file system and the rest of the kernel. Hence, it is passibl
that some types of crashes (e.g., wild writes) will corrugt-k

nel data structures and thus prohibit Membrane from prgperl
recovering from a file system crash, an inherent weakness (an
strength!) of Membrane’s architecture. However, we believ
that this approach will have the propaedeutic side-effeene
couraging file system developers to add a higher degree of in-
tegrity checking (e.qg., via assertions, either by hand mubh
automated technigues such as SafeDrive [25]) into theie cod

in order to fail quickly rather than run the risk of furtherreo
rupting the system. If such faults are transient (as many im-
portant classes of bugs are), crashing and quickly restpisi

a sensible course of action.

Membrane, being a lightweight and generic operating system
framework, requires little or no change to existing Linwefil
systems. We believe that Membrane can be used to restart
most of the existing file systems. We have prototyped Mem-
brane with the ext2 file system. From our initial evaluatioe,

find that Membrane enables ext2 to recover from a wide range
of fault scenarios. We also find that Membrane is relatively
lightweight, adding a small amount of overhead across afset o
file system benchmarks. Membrane achieves these goals with
little or no intrusiveness: only five lines were added to $an
form ext2 into its restartable counterpart. Finally, Meauie
improves robustness with complete application transmgaren
even though the underlying file system has crashed, applica-
tions continue to run.

The rest of this paper is organized as follows. Sections 2,
3, and 4 describe the motivation, the challenges in building
restartable file systems, and the design of Membrane respec-
tively. Section 5 and Section 6 discuss the consequence of
having Membrane in the operating system and evaluates Mem-
brane’s robustness and performance. Section 7 places Mem-
brane in the context of other relevant work; finally Section 8
concludes the paper.

2. MOTIVATION

We first motivate the need for restartability in file systehie

file system is one of the critical components of the operating
system that is responsible for storing and retrieving Leap)i-
cation, and OS data from the disk. File systems are also one of
the largest and complex codes in the operating system; for ex
ample, modern file systems such as Sun’s Zettabyte File Sys-
tem (ZFS) [1], SGI's XFS [16], and older code bases such as
Sun’s UFS [10] contain nearly 100,000 lines of code [14].-Fur
ther, file systems are still under active development, and ne
ones are introduced quite frequently. For example, Linux ha
many established file systems, including ext2 [19], ext3,[20
reiserfs [13], and still there is great interest in next-grtion

file systems such as Linux ext4 [21] and Btrfs [22]. Thus, file
systems are large, complex, and under development: the per-
fect storm for numerous bugs to arise.

Existing file systems only provide data consistency in thespr
ence of system crashes (power failures or operating system
crashes) through techniques such as journaling [7, 16] and
snapshotting [1]. However, little has been done to tolerate
transient failures in file systems (such as those causeddsy bu
in file system code and memory corruption), and to prevent
them from causing total system failures. Recent research on
restarting individual OS component such as device drivérs [

18, 25] cannot be directly applied to file systems because, un
like device drivers, file systems are very stateful and sprea

their state across many operating system components (e.g.,

comes useless, as a majority of the applications runninigen t
operating system depend on the file system for their proper
operation. The currently available solution for handlinig fi
system crashes is to restart the operating system and run re-
covery (or a repair utility such asckfor file systems that do

not have any in-built crash consistency mechanism). More-
over, applications that were using the file systems aredille
making their services unavailable during this period. Ths
tivates the need for a restartable framework in the opegatin
system, to tolerate failures in file systems.

3. CHALLENGES

Building restartable file systems is hard. We now discuss the
challenges in building such a system.

Fault Tolerant. A gamut of faults can occur in file systems.
Failures can be caused due to faulty hardware and/or buggy
software. These failures can be permanent or transient, and
can corrupt data arbitrarily or be fail-stop. Tigealrestartable

file system should recover from all possible faults.

Transparency. File-system failures must be transparent to ap-
plications. Applications should not require any modifioas

to work with restartable file systems. Moreover, multiple ap
plications (or threads) could be modifying the file systeatest

at the same time and one of them could trigger a crash (through
a bug).

Performance. Since file systems are fine-tuned for perfor-
mance, the infrastructure to restart file systems shoule hav
little or no overhead during regular operations. Also, the r
covery time should be as small as possible to hide file-system
crashes from applications.

Consistency. Care must be taken to ensure that the on-disk
state of the file system is consistent after recovery. Hence,
infrastructure for creating light-weight recovery poistsould

be built as most file systems do not have any inbuilt crash con-
sistency mechanism (e.g., only 8 out of 30 on-disk file system
have such feature in Linux 2.6.27). Also, the kernel datacstr
tures (locks, memory, list, etc.) should be kept consisiéter
recovery.

Generic. A large number of commodity file systems exist and
each has its own strengths and weaknesses. The infrasguctu
should not be designed for a specific file system. Ideally, the
infrastructure should enable any file system to be transédrm
into a restartable file system with little or no changes.

4. DESIGN

In designing Membrane, we explicitly make the choice to fa-
vor performance, transparency, consistency, and geteoakr

the ability to handle a wider range of faults. Membrane does
not attempt to handle all types of faults. Like most work in
subsystem fault detection and recovery, Membrane best han-
dles failures that argansientandfail-stop[12, 18, 25]. We
now present the three major pieces in the Membrane design
namely fault detection, fault anticipation, and recovery.

4.1 Fault Detection
The goal of fault detection within Membrane is to be

in-memory objects, data in page cache, locks, and meta-datalightweight while catching as many faults as possible. Mem-

cached in memory) and are fine tuned for performance.

Consequently, when file systems crash (due to a bug in the
file system code), the entire operating system effectively b

brane uses both hardware and software techniques to catch
faults. The hardware support is simple: null pointers ameot
exceptions are caught by the hardware and routed to the Mem-
brane recovery subsystem.

The software technigues leverage the checks that alreasty ex

in file system code. For example, file systems contain asser-

tions, calls topani c¢(), and similar functions. We take ad-
vantage of such internal integrity checking and modify ¢hes
functions and macros to call into our recovery engine irgtea
of crashing the system. Membrane provides further pratacti
by adding extensive parameter checking on calls from the file
system into the kernel.

4.2 Fault Anticipation

Anticipation is the overhead incurred even when the sysem i
behaving well; it should be minimized to the greatest extent
possible while retaining the ability to recover.

In Membrane, there are two components of fault anticipation
First, thecheckpointingsubsystem patrtitions file system oper-
ations into differentransactionsand ensures that the check-

pushed/popped to a per-thread stack. Finallyyawind stack
pushes register state during kernel-to-file system calis the
per-thread stack to track the execution of code in the file sys
tem and kernel. Thus, by using these data structures, Mem-
brane tracks the file system state after the last checkpoint.

4.3 Fault Recovery

Once a fault is detected, control is transferred to the recov
ery subsystem, which executes the recovery protocol. The si
steps in the recovery protocol are described below.

First, Membrane halts the execution of threads within the fil
system as well as late-arriving threads to prevent furtlaen-d
age. Second, the crashed thread and all other in-flightdkrea
are unwound and brought back to a point such that they appear
to be just about to enter the file system call they are making.
Third, Membrane moves the system to a clean starting point

pointed image on disk represents a consistent state. Secondat the beginning of an epoch, and commits any dirty pages

updates to data structures and other state are tracked a&th a
of in-memory loggndper thread stacksThe recovery subsys-

from the previous epoch to disk. Fourth, Membrane frees any
operating system state corresponding to the file systemeand r

tem utilizes these pieces in tandem to recover the file system |eases any in-memory file-system objects by simulating an un

after failure.

Checkpointing and state-tracking are central to the manage
ment of file system state. File system operations use mamy cor
kernel services (e.g., memory allocation), are heavilgrint
twined with kernel subsystems (e.g., the page cache), ared ha
application-visible state (e.g., file descriptors). Caletate-
tracking and checkpointing is thus required to enable ciean
covery after a fault.

4.2.1 Checkpointing
Checkpointing is critical because a checkpoint defines atpoi
in time to which Membrane can roll back and thus initiate re-

mount operation; Membrane then mimics the mount operation
to recreate state for the restarted file system. Fifth, Mamébr
reopens sessions of active processes and replays opsrafion
ter the last checkpoint to restore the file system to the state
it was before crashing. Finally, Membrane wakes all parked
threads which will behave as if a crash never occurred.

We have implemented a prototype of Membrane in the Linux
2.6.15 kernel. This prototype includes the features disdri
above including fault detection, checkpointing, statekiag,
and recovery.

5. DISCUSSION

covery. A checkpoint also represents a consistent boundary The major negative of the Membrane approach is that, without

where no file system operation is in flight.

Checkpointing must integrate with the file system’s own con-

address-space-based protection, file system faults mayptor
other components of the system. If the file system corrupts
other kernel data or code or data that resides on disk, Mem-

sistency management scheme. Modern file systems take aprane will not be able to recover the system. Thus, an im-

number of different approaches such as journaling [7, 1&]) a

portant factor in Membrane’s success will be minimizing the

snapshotting [1]); some file systems such as ext2 do not im- |atency between when a fault occurs and when it is detected.

pose any ordering on updates. In all cases, Membrane must

operate correctly and efficiently.

4.2.2 Tracking State with Logs and Stacks

An assumption we make is that kernel code is trusted to work
properly, even when the file system code fails and returns an
error. We found that this is true in most of the cases across

Membrane must track changes to various aspects of file systemthe kernel proper code. But in twenty or so places, we found

state that transpired after the last checkpoint. This i®@ec
plished with five different types of logs or stacks that handl
file system operations, application-visible sessions,lons)
locks, and execution state.

First, an in-memonyoperation logrecords file system opera-

that kernel proper did not check the return value from the file
system and additional code was added to clean up the kernel
state and propagate the error back to the callee.

A potential limitation of our implementation is that, in sem
scenarios, a file system restart can be visible to applicstio

tions that have taken place during the epoch or are currently For instance, when a file is created, the file system assigns it

in progress together with relevant information. Secondpive

brane maintains a smalession loghat tracks open files at the
beginning of an epoch along with their file position. Third,
an in-memorymalloc tabletracks heap-allocated memory so

a specific inode number which an application may query (e.g.,
rsync and similar tools may use this low-level number for
backup and archival purposes). If a crash occurs before the
end of the epoch, Membrane will replay the file create; during

that upon failure, it can determine which blocks should be replay, the file system may assign a different inode number to
freed. Fourth, lock acquired and released are tracked by the the file (based on in-memory state). In this case, the applica
lock stack When a lock is acquired/released by a thread ex- tion would possess what it thinks is the inode number of the
ecuting a file system operation, information about the lack i file, but what may be in fact either unallocated or allocated t

ext2 ext2+ Benchmark ext2 ext2+Membrane

Janilla | Membrane OpenSSH 57.7s 62.3s

g% 5%, g% § S PostMark 21.0s 25.0s

gg gﬁ ES g ﬁ Sort (100 Mb) 143.0s 145.0s

32371329 3 Table 2: Performance. The table presents the performance
ext2_Function Fault T T of a number of benchmarks (in seconds) running on both stamda
create mark_inode_dingf | o x x x| dv/ v v ext2 as well as ext2 within the Membrane framework. PostMark
le:d—éﬁc’de :;Zg(—:ggggg('ggé?a)g i i i g\\?\\? y parameters are: 100 files, 1000 transactions, file sizes oBKL€o
add_nondir d_instantiate(bad) oxx x| dvv v 4MB, and 50/50 read/append and create/delete biases.
symlink null-pointer exception] 0 x x x| d/+/
readpages mpage_readpages(had) x /v/| d /v Transparency. To analyze the ability of Membrane to hide

Table 1. Fault Study. The table shows the results of some fault
injections on the behavior of Linux ext2. Each row represers fault
injection experiment, and the columns show (in left-to-tiyorder):
routine the fault was injected into, the exact nature of thadlt, fault
detection and its affect on the application, and file systeBymbols
used to condense the presentation are as follows: “0": kekoeps
was triggered; “G”": general protection fault occurred; “d” fault
was successfully detected. Arx” or “ /" implies a no or yes to the
question.

file system crashes from applications, we systematicajgctn
faults in the file system code where faults may cause trouble.
Table 1 presents the results of our study, the caption explai
how to interpret the raw data one sees in the table. Due to lack
of space, we only show the results of a few representative fau
injections. We injected a total of 15 faults, the results bfak

are similar to the ones shown here.

We begin our analysis with vanilla ext2, the results of which
are shown in the leftmost result column. We can see that in all
the cases, an unhandled exception such as “oops” is getherate
within the file system. This results in the application being
killed, frequently leaving the file system inconsistent /and
unusable. A complete reboot is required to fix the system.

a different file. Thus, to guarantee that the user-visibtale
number is valid, an application must sync the file systenestat
after the create operation.

On the brighter side, we believe Membrane will encourage
two positive fault-detection behaviors among file-systesn d
velopers. First, we believe that quick-foug patchingwill In our second set of fault injections, we analyze ext2 with
become more prevalent. Imagine a scenario where an impor- \jembrane, which also includes stateful restart of file syste
tant customer has a workload that is causing the file system to e find that Membrane is able to detect all the errors that we
occasionally corrupt data, thus reducing the reliabilifyte injected. Upon detection, Membrane transparently resthe
system. After some diagnosis, the development team discov- fjjg system while the applications keep running normally:-Fu

ers the location of the bug in the code, but unfortunatelyethe ther, Membrane is able to keep the file system in a consistent
is no easy fix. With the Membrane infrastructure, the devel- gnd usable state.

opers may be able to transform the corruption into a faipsto

crash. By installing a quick patch that crashes the codeaaist
of allowing further corruption to continue, the deploymeah
operate correctly while a longer-term fix is developed. Even
more interestingly, if such problems can be detected butdvou

Performance. To measure performance, we ran a series of
workloads on both standard ext2 as well as ext2 with Mem-
brane. Table 2 shows the results of our experiments. From the
table, we can see that the performance overheads of our un-

require extensive code restructuring to fix, then a patchibeay yned prototype are quite minimal. We expect that with ferth

the best possible permanent solution. As Tom West said: not effort, the small overheads observed here could be reduzed n
all problems worth solving are worth solving well [8]. ticeably.

Second, with Membrane, file-system developers will see sig- |n summary, our initial evaluation suggests that Membrane i
nificant benefits to putting integrity checks into their code 5yt resilient, lightweight and transparent. Furthertfie cur-

S.ome of these |ightwe.ight checks could pe automated (as wasrent prototype for ext2, we made only a minor modification
nicely done by SafeDrive [25]), but we believe that devetepe g the file system (5 lines of code for flushing super blocks at

will be able to place much richer checks as they have a deep checkpoints) suggesting that Membrane infrastructuredcou
knowledge about expectations at various locations. Famexa pe generic and not tailored for a specific file system.

ple, developers understand the exact meaning of a directory
entry and can signal a problem if one has gone awry; automat-

ing such a check is a great deal more complicated [3]. The 7. RELATED WORK
motivation to check for violations is low in current file sys-
tems since their is little recourse when a problem is detecte
The ability to recover from the problem in Membrane gives
greater motivation.

We now discuss three previous systems that have the simi-
lar goal of increasing operating system fault resilienciestF

the restarting of OS subsystems was started by Swift et al.’s
work on Nooks, followed by shadow drivers [17, 18]. The
authors use memory-management hardware to build an iso-
lation boundary around device drivers; not surprisinglycts

6. EVALUATION techniques incur high overheads [17]. The subsequent shado
We evaluated Membrane in terms of transparency and perfor- driver work shows how recovery can be transparently ackieve
mance. All experiments were performed on Linux 2.6.15 on a by restarting failed drivers and diverting clients by pagsi
machine with a 2.2 GHz Opteron processor, 1GB of memory them error codes and related tricks. However, such recasery
and 2 80 GB Hitachi 7200 rpm disks. relatively straightforward: only a simple reinitializati must

occur before reintegrating the restarted driver into the OS

This material is based upon work supported by the National

Science Foundation under the following grants: CCF-062148
Second, SafeDrive takes a completely different approach to CNS-0509474, CCR-0133456, as well as by generous dona-

fault resilience [25]. Instead of address-space baseaprot
tion, SafeDrive automatically adds assertions in the devic

tions from NetApp, Inc and Sun Microsystems.

driver code. Because the assertions are added in a C-to-CAny opinions, findings, and conclusions or recommendations
translation pass and the final driver code is produced throug expressed in this material are those of the authors and do not

the compilation of this code, SafeDrive is lightweight and i
duces relatively low overheads. However, the SafeDrive re-

necessarily reflect the views of NSF or other institutions.

covery machinery does not handle stateful subsystems and1). REFERENCES

the recovery is not transparent to applications. Thus, evhil
currently well-suited for a certain class of device drivers 1l
SafeDrive recovery cannot be applied directly to file system 2

Finally, CuriOS, a microkernel-based operating systerso al 3]
aims to be resilient to subsystem failure [2]. It achievés th

end through address-space boundaries between servegs alon 4
with storing session state in an additional protection doma
Frequent kernel crossings (an expensive operation) are com
mon for file systems in data-intensive environments and @voul
dominate performance. CuriOS also represents one of the few
systems that attempt to provide failure resilience for natage-

ful services such as file systems; other heavyweight check- [6]
point/restart systems also share this property [15]. Irptqzer
there is a brief description of an “ext2 implementation”fam
tunately, it is difficult to understand how sophisticateis file
service is or how much work is required to recover from the
failure of such a service.

(5]

(7]

8]
E]

In summary, we see that few lightweight techniques have been [10]
developed. Of those, we know of none that work for stateful

subsystems such as file systems. [11

8. CONCLUSIONS

File systems fail. With Membrane, failure is transformeahfr

a show-stopping event into a small performance issue. The
benefits are many. Membrane enables file-system developers{if1
to ship file systems sooner, as small bugs will not cause mas-
sive user headaches. Membrane similarly enables customersi15]
to install new file systems with knowledge that it won't bring [16]
down their entire operation. Bugs will still arise, but tkedkat

are rare and hard to reproduce will remain where they belong,

automatically “fixed” by a system that can tolerate them.

Future work. We wish to employ the Membrane framework
for different file systems including other simple ones liKEAT

and more complex journaling file systems like ext3, JFS, and
ReiserFS. An interesting aspect of journaling file systems i
the fact that they are designed to group file operations into
transactions and Membrane can leverage it to checkpoint file 21]
system state.

[12

[17

[18

[19]
[20]

~
QLN

We also wish to carefully evaluate the robustness and perfor ,,
mance of Membrane. This includes comprehensive fault in-
jection tests and detailed characterization of the peréoce
overheads and restart delay as perceived by applications.

[25]

9. ACKNOWLEDGMENTS

We thank the anonymous reviewers and Richard Golding (our
shepherd) for their feedback and comments. We also thank
the members of the ADSL research group for their insightful
comments.

Jeff Bonwick and Bill Moore. ZFS: The Last Word in File Sgms.
http://opensolaris.org/os/community/zfs/docs/zfst.[adf, 2007.

Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, aRby H.
Campbell. CuriOS: Improving Reliability through OperatiBystem
Structure. INOSDI '08 San Diego, CA, December 2008.

Brian Demsky and Martin Rinard. Automatic Detection @Rejpair of
%r(()):;s in Data Structures. IBOPSLA '03 Anaheim, California, October

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, Bedjamin
Chelf. Bugs as Deviant Behavior: A General Approach to hirfigr
Errors in Systems Code. BOSP '01pages 57-72, Banff, Canada,
October 2001.

K. Fraser, S. Hand, R. Neugebauer, |. Pratt, A. Warfiehd] a

M. Williamson. Safe Hardware Access with the Xen Virtual Ma®
Monitor. In Workshop on Operating System and Architectural Support for
the On-Demand IT Infrastructur@004.

Haryadi S. Gunawi, Cindy Rubio-Gonzalez, Andrea C. Aipausseau,
Remzi H. Arpaci-Dusseau, and Ben Liblit. EIO: Error Handlis
Occasionally Correct. IRAST '08 pages 207—222, San Jose, California,
February 2008.

Robert Hagmann. Reimplementing the Cedar File Systeind1sogging
and Group Commit. ISOSP '87 Austin, TX, November 1987.

Tracy Kidder.Soul of a New Machiné.ittle, Brown, and Company, 1981.
J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz. Unmodiedice Driver
Reuse and Improved System Dependability via Virtual Magsitn
Proceedings of the 6th USENIX OSR004.

L. W. McVoy and S. R. Kleiman. Extent-like Performancerh a UNIX
File System. IFJSENIX Winter '91 pages 33-43, Dallas, Tx, January
1991.

Vijayan Prabhakaran, Lakshmi N. BairavasundaramipMgrawal,
Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. IRON File Systems.$OSP '05pages 206—220,
Brighton, UK, October 2005.

Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, amgli#a&Zhou.
Rx: Treating Bugs As Allergies. IBOSP '05Brighton, UK, October
2005.

Hans Reiser. ReiserFS. www.namesys.com, 2004.

Eric Schrock. UFS/SVM vs. ZFS: Code Complexity.
http://blogs.sun.com/eschrock/, November 2005.

J. S. Shapiro and N. Hardy. EROS: A Principle-Driven @&pieag System
from the Ground UpIEEE Software19(1), January/February 2002.
Adan Sweeney, Doug Doucette, Wei Hu, Curtis AndersoieM
Nishimoto, and Geoff Peck. Scalability in the XFS File Systén
USENIX 1996San Diego, CA, January 1996.

Michael M. Swift, Brian N. Bershad, and Henry M. Levy. pmoving the
Reliability of Commodity Operating Systems. 8OSP '03Bolton
Landing, NY, October 2003.

Michael M. Swift, Brian N. Bershad, and Henry M. Levy. &wering
device drivers. IrOSDI '04, pages 1-16, San Francisco, CA, December
2004.

Theodore Ts'o. http://e2fsprogs.sourceforge.ng2/étml, June 2001.
Theodore Ts’o and Stephen Tweedie. Future Directionsife Ext2/3
Filesystem. IFREENIX 02 Monterey, CA, June 2002.

Wikipedia. ext4. en.wikipedia.org/wiki/Ext4, 2008.

Wikipedia. Btrfs. en.wikipedia.org/wiki/Btrfs, 280

Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gtire§ and
Fred B. Schneider. Device Driver Safety Through a Refer&fadielation
Mechanism. IrProceedings of the 8th USENIX OSR2008.

Junfeng Yang, Paul Twohey, Dawson Engler, and Madahieduvathi.
Using Model Checking to Find Serious File System Error<OBDI '04,
San Francisco, CA, December 2004.

Feng Zhou, Jeremy Condit, Zachary Anderson, llya BegRob Ennals,
Matthew Harren, George Necula, and Eric Brewer. SafeDi8afe and
Recoverable Extensions Using Language-Based Techniqu@sDI
'06, Seattle, WA, November 2006.

