
20  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE

Redundancy Does Not Imply Fault Tolerance
Analysis of Distributed Storage Reactions to
Single Errors and Corruptions
A I S H W A R Y A G A N E S A N , R A M N A T T H A N A L A G A P P A N ,
A N D R E A C . A R P A C I - D U S S E A U , A N D R E M Z I H . A R P A C I - D U S S E A U

W e analyze how modern distributed storage systems behave in the
presence of file-system faults such as data corruption and read
and write errors. We characterize the behaviors of eight popular

distributed storage systems, including Cassandra, Redis, and ZooKeeper.
The major result of our study is that a single file-system fault introduced in
one node of the cluster can induce catastrophic outcomes such as data loss,
corruption, and unavailability. We find that most systems do not consis-
tently use redundancy to recover from file-system faults. We also find that
the above outcomes arise due to fundamental problems in file-system fault
 handling that are common across many systems. Our results have implica-
tions for the design of next generation fault-tolerant distributed storage
systems.

Redundancy is a well-known technique for providing fault tolerance. Using redundancy, a
system can tolerate failures of one or more of its components. For example, in a distributed
storage system, data and functionality are replicated across many servers for fault tolerance.
In most cases, replication can mask various failures such as system crashes, power failures,
or nodes becoming inaccessible due to network failures. Modern distributed storage systems
typically depend on local file systems to store and manage their data. Although replication
can mask whole machine failures, local file systems exhibit a more complex failure model.
For instance, certain blocks of data can become inaccessible due to an underlying latent
sector error or, worse, the local file system may silently return corrupted data on reads if the
underlying device block is corrupted. We call these failures file-system faults.

Several studies have shown the prevalence of errors and corruptions in disks and SSDs
[1, 2, 5] that lead to these file-system faults. However, little is known about how modern
 distributed storage systems react to such file-system faults. Therefore, in this study, we
answer the following questions: How do distributed storage systems behave in the presence of
local file-system faults? Do they use redundancy to recover from local file-system faults?

To answer these questions, we systematically inject file-system faults into distributed stor-
age systems and observe the effects of the injected fault. We picked a broad spectrum of dis-
tributed storage systems, implementing a variety of replication protocols such as replicated
state machines, primary backup, and dynamo-style quorums.

Our fault model is very simple—we inject exactly one file-system fault into one file-system
block in one node in the system at a time. We inject corruptions on reads, errors on reads, and
errors on writes. Moreover, our fault model only includes data corruptions that are detectable
by applications (e.g., using application-level checksums) and does not include undetectable
memory corruptions.

Aishwarya Ganesan is a PhD
student in Computer Sciences
at the University of Wisconsin-
Madison. Her advisors are
Professors Andrea Arpaci-

Dusseau and Remzi Arpaci-Dusseau. She is
interested in distributed systems, file systems,
and storage. ag@cs.wisc.edu

Ramnatthan Alagappan is
a PhD student in computer
sciences at the University of
Wisconsin-Madison, advised
by Professor Andrea Arpaci-

Dusseau and Professor Remzi Arpaci-Dusseau.
His research interests include file systems,
storage, operating systems, and distributed
systems. ra@cs.wisc.edu

Andrea Arpaci-Dusseau is a
Professor of Computer Sciences
at the University of Wisconsin-
Madison. She is an expert in
file and storage systems, having

published more than 80 papers in this area,
co-advised 20 PhD students, and received
more than 10 Best Paper awards.
dusseau@cs.wisc.edu

Remzi Arpaci-Dusseau is a
Professor of Computer Sciences
at the University of Wisconsin-
Madison. His research focus
is on file and storage systems,

and his teaching interests lie in creating free
online materials for all (e.g., http://www.ostep
.org). remzi@cs.wisc.edu

http://www.ostep.org
http://www.ostep.org

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 21

FILE SYSTEMS AND STORAGE
Redundancy Does Not Imply Fault Tolerance

A common and widespread expectation is that redundancy in
higher layers (i.e., across replicas) enables recovery from local
file-system faults. For instance, consider a data item that is rep-
licated across three machines in a system as shown in Figure 1.
What would a user expect if one of the copies of the data item in
the system gets corrupted? Similarly, what if one of the blocks in
one of the copies becomes inaccessible? It is completely reason-
able for a user to expect that the corrupted data will be recover-
able from the intact copies on other replicas and that the user
never sees the corrupted data.

Unfortunately, from our study, we find that redundancy does not
provide fault tolerance in many distributed storage systems. We
find several pieces of evidence where a single file-system fault
in only one node leads to catastrophic outcomes such as data
loss, silent user-visible corruption, unavailability, or sometimes
even the spread of corrupted data to other intact replicas. Table
1 shows the prevalence of various undesirable behaviors across
multiple systems. Note that since the system has redundant cop-
ies of data and we inject only one fault at a time, these behaviors
are surprising and undesirable.

Why does redundancy not imply fault tolerance? One
might wonder whether the discovered outcomes arise simply due
to some implementation-level bugs that could be fixed by moder-
ate developer effort. Unfortunately, from our study, we find that
the above outcomes arise due to some alarming and fundamen-
tal root causes in file-system fault tolerance that are common to
many distributed storage systems.

The first fundamental problem we observe is that faults are often
undetected locally by the nodes in a distributed storage system,
leading to harmful effects such as corrupted data being returned
to the users. Second, even when systems reliably detect faults,
in most cases, they simply crash instead of using redundancy to
recover from the fault. Third, many systems do not discern cor-
ruptions caused due to crashes from other corruptions, resulting
in many data loss cases. Finally, we find that local fault-handling

behaviors and global distributed protocols interact in an unsafe
manner, leading to propagation of corruption or data loss.

As distributed storage systems are emerging as the primary
choice for storing critical user data, carefully building them to
tolerate file-system faults is important. Our study is a step in
this direction, and we hope that our results will lead to discus-
sions and future research to improve the resiliency of next
generation cloud storage systems. The full version of our work
was published in FAST ’17 [3]. Our testing framework is publicly
available at http://research.cs.wisc.edu/adsl/Software/cords.

Methodology
In this section, we first discuss the fault model and then describe
our methodology to study how distributed storage systems react
to local file-system faults.

Fault Model
Our fault model is very simple—we inject a single fault into a sin-
gle file-system block exactly one node at a time. We inject these
faults into file-system user data and not the file-system meta-
data. The reason for this is simple: the file system is responsible
for maintaining the integrity of its metadata, while applications
should take care of their on-disk data.

Our fault model captures the behavior of different real file
systems. Consider that the nodes of a distributed storage system
run on an ext4 file system. If the underlying device block is cor-
rupted, ext4 returns corrupted data as-is to applications since
it does not have checksums for user data. On the other hand,
consider a file system such as btrfs that maintains checksums
for user data; such a file system transforms an underlying block
corruption into a read error.

To capture these different file system behaviors, our fault model
injects three types of faults: corruption on reads, error on reads,
and error on writes. Our fault model assumes detectable corrup-
tions (e.g., corruptions detectable using application-level check-

Catastrophic Outcomes R
ed

is
Z

oo
K

ee
pe

r

C
as

sa
nd

ra

K
af

ka

R
et

hi
nk

D
B

M
on

go
D

B

L
og

C
ab

in

C
oc

kr
oa

ch
D

B

Silent Corruption × × ×
Unavailability × × × × ×
Data Loss × × × ×
Query Failures × × ×
Reduced Redundancy × × × × × × × ×

Table 1: Catastrophic outcomes: summary. The table shows the sum-
mary of catastrophic outcomes resulting from a single file-system fault. A
shaded box for a system indicates that we discovered at least one instance
of the outcome mentioned on the left.

corrupted
data

intact
copies

Figure 1: User expectations. The figure shows a data item replicated on
three servers in a distributed storage system. When one copy is corrupted,
users typically expect that redundant copies will help recover from the
single corruption.

http://research.cs.wisc.edu/adsl/Software/cords

22  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
Redundancy Does Not Imply Fault Tolerance

sums) and does not include arbitrary memory corruptions that
are not detectable by applications (e.g., corruptions introduced
before checksum computation or corruptions introduced after
checksum verification).

Fault Injection
To study how distributed storage systems react to local file-sys-
tem faults, we build a framework called Cords, which includes
the following key pieces: errfs, a user-level FUSE file system that
systematically injects file-system faults, and errbench, a suite
of system-specific workloads which drives systems to interact
with their local storage.

To understand how our fault-injection methodology works,
consider a distributed storage system with three nodes, as
shown in Figure 2. We configure the system to run atop errfs
and run a system-specific workload multiple times, each time
injecting a single fault for a single file-system block in a single
node. Assume that for a particular run we would like to inject a
read corruption for block B1 on server 1. After reading the blocks
from the disk, errfs corrupts B1 before returning to the server. To
emulate errors, errfs does not perform the operation but simply
returns an appropriate error code.

Behavior Inference
In a distributed system, multiple nodes work with their local file
system to store user data. When a fault is injected in a node, we
need to observe two things: first, the local behavior of the node
where the fault is injected. Locally, the faulty node could crash,
retry the operation, detect and ignore the faulty data, or perform
no detection or recovery, etc.

Second, we need to observe the global effect of the injected fault.
The global effect of a fault is the result that is externally visible.
Ideally, we should not observe any harmful effect since the data

is replicated and we inject only one fault at a time. Some adverse
global effects that could occur include data loss, user-visible
corruption, read-unavailability, write-unavailability, unavail-
ability, or query failure. These local behaviors and global effects
for a given workload and a fault might vary depending on the role
played (leader or follower) by the node where the fault is injected.

Behavior Analysis
We studied the following eight distributed storage systems
using Cords, our framework for injecting faults: Redis (v3.0.4),
ZooKeeper (v3.4.8), Cassandra (v3.7), Kafka (v0.9), RethinkDB
(v2.3.4), MongoDB (v3.2.0), LogCabin (v1.0), and CockroachDB
(beta-20160714).

An Example: Redis
To illustrate our behavior analysis, we use Redis as an example.
Redis is a data structure store with a leader and set of follow-
ers. On a write request, data is appended to the append-only file
and also replicated on to the followers. The append-only file is
periodically snapshotted into the Redis database_file.

Figure 3 shows the behaviors of Redis when faults are injected
during a read workload. We represent our results in grids like the
ones shown in the figure. We inject different faults such as cor-
ruption and read or write errors into either a leader or a follower
one at a time and for different on-disk structures. The on-disk
structures take the form: file_name.logical_entity. We derive

Read

Fault for current run:
Server 1, block B1, and read corruption

read
B1-B4

read
B1-B4

return
B1-B4

return
B1’-B4Local Behavior

Crash
Retry
Ignore faulty data
No detection/
recovery

Global Effect
Corruption
Data loss
Unavailability

Server 1

errfs

Server 2

errfs

Client Server 3

errfs

Figure 2: Fault injection methodology. errfs injects faults into one file-
system block one node at a time. For each fault, we need to observe the
local behavior and the global effect.

Corrupt

Local Behavior Global Effect
On-disk Structures

appendonlyfile.metadata
appendonlyfile.data
redis_db.block_0
redis_db.metadata
redis_db.userdata

Crash Retry
No Detection/
Recovery CorrectCorruption

Redis Read Workload

Read Error

L LF F

LeaderL FollowerF

Read Error

L LF F
Unavailability

Write Unavailability

Reduced
Redundancy

Corrupt

Figure 3: Behavior analysis of Redis read. The figure shows local behaviors
and global effects when corruptions and read errors are injected in various
on-disk logical structures during read workload in Redis. The grid on the
left shows the local behavior of the node where the fault is injected, and
the one on the right shows the cluster-wide global effect of the injected
fault. The annotation on the top of a grid shows the type of fault: for
example, “Corrupt” means that we inject data corruption using errfs. The
annotation between the grids shows the on-disk logical structure in which
the fault is injected. Annotations on the bottom show where a particular
fault is injected (L - leader, F - follower).

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 23

FILE SYSTEMS AND STORAGE
Redundancy Does Not Imply Fault Tolerance

the logical entity name from our understanding of the on-disk
format of the file. For each injected fault, we observe how the
system behaves.

For example, when there are corruptions in the data in the
append-only file on the leader (highlighted with outlining in the
figure), the corruption is undetected (local behavior), and the
corrupted data is silently returned (global effect). Redis does not
use checksums for append-only file user data; thus, it does not
detect corruptions. Moreover, the resynchronization protocol in
Redis propagates corrupted user data from the leader to the fol-
lowers leading to a global user-visible corruption. We repeat this
analysis by running the read workload multiple times, each time
injecting a different fault into a different on-disk structure.

We also repeat the analysis for other systems for read and write
workloads. These results and analyses are presented in detail in
our FAST ’17 paper [3]. We will use the results from this behavior
analysis of various systems to draw observations in the rest of
this article.

Major Results
The most important overarching lesson from our study is this:
a single file-system fault can induce catastrophic outcomes in
most modern distributed storage systems. Despite the pres-
ence of checksums, redundancy, and other resiliency methods
prevalent in distributed storage, a single file-system fault can
lead to data loss, corruption, unavailability, and, in some cases,
the spread of corruption to other intact replicas. Figure 4 shows
a sample of results that illustrate the prevalence of catastrophic
problems across multiple systems.

In most cases, the problems shown in Figure 4 are not caused by
simple implementation bugs. Rather, they are caused due to some

fundamental problems in file-system fault tolerance that are
common to many distributed storage systems.

Fundamental Problems
We now discuss some of the fundamental root causes that are
responsible for the catastrophic problems that we discover in all
systems.

Faults Are Often Undetected Locally

The first fundamental problem we observe is that faults are
often undetected locally. These locally undetected faults might
lead to harmful global effects. For example, a locally undetected
corruption could result in a global silent corruption.

Figure 5 shows how a locally undetected fault leads to harmful
global effects in Cassandra. The figure shows the case where the
user data in the sstable on one node is corrupted. Cassandra does
not detect this corruption using checksums when compression is
not enabled. Thus, any read request for this data item to the cor-
rupted replica will silently receive corrupted data. Further, the

Redis Read
Corrupt Read Error

txn_head
log.tail

ZooKeeper Write
Write Error

log.header
log.other
replication

L F L F

L F

L F L F

Kafka Read

aof.metadata
aof.data
rdb.metadata
rdb.userdata

RethinkDB Read

db.txn_head
db.txn_body
db.txn_tail
db.metablock

L F

Corruption

Write
Unavailability

Data Loss

Unavailability

Corrupt
Query FailureCassandra Read (R=1)

Kafka Write

checkpoint
L F L F

Corrupt Read Error Corrupt Read Error

Corrupt Read Error
sstable.block0
sstable.metadata
sstable.userdata
sstable.index

Reduced
Redundancy

LeaderL
FollowerF

Figure 4: Redundancy does not provide fault tolerance. The figure shows a sample of catastrophic outcomes such as corruption, data loss, unavailability,
query failures, and reduced redundancy that occur across many systems. These outcomes (global effects) occur when corruptions, read errors, and write
errors are injected in various on-disk logical structures during read and write workloads in different distributed storage systems.

Read
Repair

sstable compression = off
No checksums to detect

corruption

sstable
key | value

Client Replica 1 Other Replicas

key | value
sstable.userdata corrupted

key | value
read

corrupt

sstable

corrupt

read (R = 1)

Figure 5: Faults are often undetected locally. The figure shows how a lo-
cally undetected fault can lead to harmful global effects in Cassandra.

24  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
Redundancy Does Not Imply Fault Tolerance

read repair protocol that fixes stale versions of data propagates
the corruption to other replicas. Many other systems exhibit
similar problems (e.g., RethinkDB and Redis); these systems
completely trust and rely upon the lower layers in the storage
stack to handle data integrity problems.

Crashing Is the Most Common Reaction
The next fundamental problem is that crashing is the most com-
mon local reaction. Many systems do reliably detect faults, but
in most cases they simply crash on detecting a fault instead of
using redundancy to recover from the fault. For example, Mon-
goDB and ZooKeeper have checksums for most of their on-disk
data structures to detect corruptions. Figure 6 shows the local
behavior of these systems when corruptions are introduced into
various on-disk structures during the read workload. As shown
in the figure, nodes in MongoDB and ZooKeeper simply crash on
detecting a corruption. We observe the same behavior in many
other systems.

Although crashing does not result in a harmful effect immedi-
ately, it introduces the possibility of an imminent unavailabil-
ity. Moreover, since storage faults could be persistent, simply
restarting the faulty node does not help; the node would encoun-
ter the same fault and crash again. Solving such cases requires
some manual intervention, which is often error-prone and
cumbersome. Although crashing may seem like a good strategy
to employ, in a distributed system there are opportunities to
recover from local faults using copies on other intact replicas.

Crashing and Corruption Handling Are Entangled
The next observation we make is that crash and corruption
handling are entangled. We illustrate this using Kafka. Kafka is
a persistent distributed message queue in which the messages

are stored in a log. Incoming messages are appended to the log,
and each message is checksummed. Consider that a Kafka node
crashes during an append of message 2 as shown in Figure 7.
When the node recovers from the crash, it detects a checksum
mismatch because of the partially appended entry. As a recovery
action, the node truncates the log at message 1. Note that mes-
sage 2 is uncommitted as the node crashed while appending it.
Hence, it is safe to truncate the uncommitted message in this
case.

On the other hand, consider the case where all messages 0, 1, and
2 are persisted safely on disk, but the block holding message 1 is
corrupted. Kafka detects this corruption using checksums, but it
truncates the log at message 0 since it treats this disk corruption
as a corruption that occurred due to a crash. Note that messages
1 and 2 were committed and it is not safe to lose them. Since
Kafka conflates the handling of a disk corruption and a corrup-
tion due to a crash, it loses committed data.

Developers of RethinkDB and LogCabin agree that entanglement
is a problem. Thus, there is a need to disentangle corruptions due
to crashes from other types of corruptions.

Unsafe Interaction between Local and Global Protocols
Next, we observe that the local behavior of a faulty node and the
global protocols interact in unsafe ways. We illustrate this again
using Kafka. Recall that the Kafka node treats a disk corrup-
tion the same way it treats a corruption due to a crash, resulting
in a data loss. However, this data loss is the local behavior of the
corrupted node. Assume that this data loss occurred on node 1.
Other nodes still have the data as shown in Figure 8.

Kafka maintains a piece of metadata that contains information
about replicas that are in-sync; any node in this set has all the
committed data and is eligible to become a leader. In this case,

collections.header
collections.metadata
collections.data
index
journal.header
journal.other
storage_bson
wiredtiger_wt

MongoDB
Read Workload: Local Behavior

L F

epoch
epoch_tmp
myid
log.transaction_head
log.transaction_body
log.transaction_tail
log.remaining
log.tail

ZooKeeper

L F
Crash Leader FollowerL F

CorruptCorrupt

Figure 6: Crashing is the most common local reaction. The figure shows
that crashing is the most common local reaction when corruptions are
introduced into various on-disk structures during the read workload in
MongoDB and ZooKeeper.

append(log, entry 2)

truncate at 0

Kafka Message Logchecksum

data 0 1 2

disk corruption – entry 1 corrupted

truncate at 1

(a) Handling corruption due to a crash

(b) Handling disk corruption

0 1 2

lose uncommitted data

lose committed data!

Figure 7: Crash and corruption handling are entangled. The figure shows
how entanglement in crash and corruption handling could lead to a local
data loss of committed data in Kafka.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 25

FILE SYSTEMS AND STORAGE
Redundancy Does Not Imply Fault Tolerance

node 1, which lost committed data, is not removed from the set
of in-sync replicas and is elected as the leader. Thus, any further
reads return only message 0, resulting in a silent data loss.
Moreover, the leader also instructs the followers to truncate the
log at message 0 which triggers an assertion at followers, result-
ing in their crash. Thus, all future writes become unavailable.
The unsafe interaction between local behavior (i.e., to truncate
the log) and the global protocol (leader election) in Kafka leads
to a data loss and write unavailability. Thus, there is a need for
synergy between local behaviors and global protocols to avoid
such problems.

Fundamental Problems: Summary
Table 2 shows how the fundamental problems are common
across many systems. We observe that all systems we studied
simply crash on detecting a fault in many cases. In some cases,
systems take incorrect recovery action on detecting a fault, lead-
ing to undesirable behaviors. We also observe that all systems
miss opportunities to recover from local file-system faults using
redundancy.

Conclusion
Most popular distributed systems we studied are not yet resil-
ient to local file-system faults. Although a body of research work
and enterprise storage systems provide software guidelines to
tackle partial file-system faults, such wisdom has not filtered
down to commodity distributed storage systems. Our findings
provide motivation for distributed systems to build on existing
research work to tolerate practical faults other than crashes.

Our study provides four important lessons for future distributed
storage system design. First, in the world of layered storage
stacks that run on commodity hardware, faults are common;

thus, distributed storage systems need to detect such faults care-
fully. Second, in a distributed system, several unavoidable cases
such as power faults and network failures can cause nodes to be
unavailable. In cases where automatic recovery is possible, sim-
ply crashing is not the optimal behavior. Next, by disentangling
corruptions caused by a crash from other types of corruptions
and by handling them differently, storage systems can avoid
many problems. Finally, local fault-handling behavior has global
implications for distributed systems. Distributed storage system
developers need to fully understand this interaction in order to
improve reliability.

We hope that our study and results will provide direction for the
design of more robust distributed storage systems. Our fault-
injection framework is available at http://research.cs.wisc.edu
/adsl/Software/cords.

Acknowledgments
We thank the anonymous FAST reviewers, Hakim Weather-
spoon (our shepherd), and Rik Farrow for their insightful com-
ments. We thank the members of the ADSL and the developers of
CockroachDB, LogCabin, Redis, RethinkDB, and ZooKeeper for
their valuable discussions.

This material was supported by funding from NSF grants CNS-
1419199, CNS-1421033, CNS-1319405, and CNS1218405, DOE
grant DE-SC0014935, as well as donations from EMC, Facebook,
Google, Huawei, Microsoft, NetApp, Samsung, Seagate, Veritas,
and VMware. Finally, we thank CloudLab [4] for providing a
great environment for running our experiments. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and may not reflect the views of
NSF, DOE, or other institutions.

0 1 2

Client

message: 0
[silent data loss]

read

truncate upto
message 0

assertion failure

failure
write (W = 2)

Leader Followers

0 1 2

disk block of entry 1 corrupted

truncate at 0

crash

Figure 8: Unsafe interaction between local behaviors and global protocols.
The figure shows how local fault-handling behaviors in Kafka interact with
the global leader election protocol in an unsafe manner. Node 1, which lost
committed data due to entanglement in crash and corruption handling, is
elected as the leader, resulting in data loss and write unavailability.

Problem R
ed

is

Z
oo

K
ee

pe
r

C
as

sa
nd

ra

K
af

ka

R
et

hi
nk

D
B

M
on

go
D

B

L
og

C
ab

in

C
oc

kr
oa

ch
D

B

Locally Undetected Faults × × × × ×
Crashing on Faults × × × × × × × ×
Crash Corruption Entangled × × × × ×
Unsafe Protocol Interaction × × ×
Redundancy Underutilized × × × × × × × ×

Table 2: Fundamental problems summary. The table shows the summary
of the fundamental problems across all the systems we studied. A shaded
box for a system indicates that we observed at least one instance of the
problem mentioned on the left.

http://research.cs.wisc.edu/adsl/Software/cords
http://research.cs.wisc.edu/adsl/Software/cords

26  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
Redundancy Does Not Imply Fault Tolerance

References
[1] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, G. R. Goodson, and B. Schroeder, “An Analysis of
Data Corruption in the Storage Stack,” in Proceedings of the
6th USENIX Symposium on File and Storage Technologies
(FAST ’08), February 2008, pp. 223–238: https://www.usenix
.org/legacy/event/fast08/tech/full_papers/bairavasundaram
/bairavasundaram.pdf .

[2] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J.
Schindler, “An Analysis of Latent Sector Errors in Disk Drives,”
in Proceedings of the 2007 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems (SIG-
METRICS ’07), June 2007: http://research.cs.wisc.edu/adsl
/Publications/latent-sigmetrics07.pdf.

[3] A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Redundancy Does Not Imply Fault Tolerance:
Analysis of Distributed Storage Reactions to Single Errors and
Corruptions,” in Proceedings of the 15th USENIX Conference
on File and Storage Technologies (FAST ’17), February 2017,
pp. 149–166: https://www.usenix.org/system/files/conference
/fast17/fast17-ganesan.pdf.

[4] R. Ricci, E. Eide, and CloudLab Team, “Introducing Cloud-
Lab: Scientific Infrastructure for Advancing Cloud Architec-
tures and Applications,” ;login:, vol. 39, no. 6 (December 2014):
https://www.usenix.org/publications/login/dec14.

[5] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash Reli-
ability in Production: The Expected and the Unexpected,” in
Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST ’16), February 2016, pp. 67–80: https://
www.usenix.org/system/files/conference/fast16/fast16-papers
-schroeder.pdf.

https://www.usenix.org/legacy/event/fast08/tech/full_papers/bairavasundaram/bairavasundaram.pdf
https://www.usenix.org/legacy/event/fast08/tech/full_papers/bairavasundaram/bairavasundaram.pdf
https://www.usenix.org/legacy/event/fast08/tech/full_papers/bairavasundaram/bairavasundaram.pdf
http://research.cs.wisc.edu/adsl/Publications/latent-sigmetrics07.pdf
http://research.cs.wisc.edu/adsl/Publications/latent-sigmetrics07.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-ganesan.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-ganesan.pdf
https://www.usenix.org/publications/login/dec14
https://www.usenix.org/system/files/conference/fast16/fast16-papers-schroeder.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-schroeder.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-schroeder.pdf

