
Physical Separation
in Modern Storage Systems

Lanyue Lu

Committee:
 Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Shan Lu, Michael Swift, Xinyu Zhang
University of Wisconsin - Madison

Tuesday, December 1, 15

Local Storage Systems Are Important
GFS,

HDFS
vmware
docker

Local
Storage

Riak,
MongoDB

ext4,
NTFS,
SQLite

Tuesday, December 1, 15

Data Layout of Storage Systems

Data layout is fundamental
➡ how to organize data on disks and in memory
➡ impact both reliability and performance

Locality is the key
➡ store relevant data together
➡ locality is pursued in various storage systems
➡ file systems, key-value stores, databases

➡ better performance (caching and prefetching)
➡ high space utilization
➡ optimize for hard drives

Tuesday, December 1, 15

Problems of Data Locality

New environments
➡ fast storage hardware (e.g., SSDs)
➡ servers with many cores and large memory
➡ sharing infrastructure is the reality

➡ virtualization, containers, data centers

Unexpected entanglement
➡ shared failures (e.g., VMs, containers)
➡ bundled performance (e.g., apps)
➡ lack flexibility to manage data differently

Tuesday, December 1, 15

New Technique: Physical Separation

Redesign data layout
➡ rethink existing data layouts
➡ key: separate data structures
➡ apply in both file systems and key-value stores

Many new benefits
➡ IceFS: disentangle structures and transactions
➡ isolated failures, faster recovery
➡ customized performance

➡ WiscKey: key-value separation
➡ minimize I/O amplification
➡ leverage devices’ internal parallelism

Tuesday, December 1, 15

Research Contributions

A study of Linux file system evolution
➡ the first comprehensive file-system study
➡ published in FAST ’13 (best paper award)

Physical disentanglement in IceFS
➡ localized failure, localized recovery
➡ specialized journaling performance
➡ published in OSDI ’14

Key-value separation in WiscKey
➡ an SSD-conscious LSM-tree
➡ over 100x performance improvement
➡ submitted to FAST ’16

1

2

3

Tuesday, December 1, 15

Introduction
Disentanglement in IceFS
➡ File system Disentanglement
➡ The Ice File System
➡ Evaluation

Key-Value Separation in WiscKey
➡ Key-value Separation Idea
➡ Challenges and Optimization
➡ Evaluation

Conclusion

Outline

Tuesday, December 1, 15

Isolation Is Important

Reliability
➡ independent failures and recovery

Performance
➡ isolated performance

Isolation at various scenarios
➡ computing: virtual machines, Linux containers
➡ security: BSD jail, sandbox
➡ cloud: multi-tenant systems

Tuesday, December 1, 15

File Systems Lack Isolation

Local file systems are core building blocks
➡ manage user data
➡ long-standing and stable
➡ foundation for distributed file systems

Existing abstractions provide logical isolation
➡ file, directory, namespace
➡ just illusion

Physical entanglement in local file systems
prevents isolation

➡ entangled data structures and transactions

Tuesday, December 1, 15

Metadata Entanglement

foo.txt

foo.txt
inode

bar.c

one 4KB inode block

bar.c
inode

I/O failure
Metadata corruption

Shared metadata for multiple files
➡ e.g., multiple files share one inode block
➡ many shared structures: bitmap, directory block

Problem: faults in shared structures lead to
shared failures and recovery

Tuesday, December 1, 15

Transaction Entanglement

data of foo.txt data of
bar.c

foo.txt bar.c

Disk

Mem

fsync(bar.c)

A shared transaction for all updates

Problem: shared transactions lead to
entangled performance

Tuesday, December 1, 15

Our Solution: IceFS

Propose a data container abstraction: cube

Disentangle data structures and transactions

Provide reliability and performance isolation

Benefits for local file systems
➡ isolated failures for data containers
➡ up to 8x faster localized recovery
➡ up to 50x higher performance

Benefits for high-level services
➡ virtualized systems: reduce the downtime over 5x
➡ HDFS: improve the recovery efficiency over 7x

Tuesday, December 1, 15

Data Container Abstraction: Cube

b1 b2

a

d1

c

c1

/

b d

b, b1, b2 d, d1/, a, c, c1Disk

cube1 cube2

An isolated directory in a file system
➡ physically disentangled on disk and in memory

Tuesday, December 1, 15

Principles of Disentanglement

No shared physical resources
➡ no shared metadata: e.g., block groups
➡ no shared disk blocks or buffers

No dependency
➡ partition linked lists or trees
➡ avoid directory hierarchy dependency

No entangled updates
➡ use separate transactions
➡ enable customized journaling modes

Tuesday, December 1, 15

Introduction
Disentanglement in IceFS
➡ File system Disentanglement
➡ The Ice File System
➡ Evaluation

Key-Value Separation in WiscKey
➡ Key-value Separation Idea
➡ Challenges and Optimization
➡ Evaluation

Conclusion

Outline

Tuesday, December 1, 15

IceFS Overview

A data container based file system
➡ isolated reliability and performance for containers

Disentanglement techniques
➡ physical resource isolation
➡ directory indirection
➡ transaction splitting

A prototype based on Ext3
➡ local file system: Ext3/JBD
➡ kernel: VFS
➡ user level tool: e2fsprogs

Tuesday, December 1, 15

Ext3 Disk Layout

One block group

block
groupSBDisk

metadata data blocks

group descriptors
bitmaps
inodes

block
group

block
group

block
group

block
group

block
group

block
group

A disk is divided into block groups
➡ physical partition for disk locality

Tuesday, December 1, 15

IceFS Disk Layout

SBDisk S0 block
group

block
groupS1 block

group
block
group

block
group

sub super blocks

cube metadata

Each cube has isolated metadata
➡ sub-super block (Si) and isolated block groups

Tuesday, December 1, 15

Directory Indirection

b1 b2

a

d1

c

c1

/

b d

cube1 cube2

1. load cube pathnames
from sub-super blocks

/a/b/, cube1 dentry
/d/, cube2 dentry
... ...

2. pathname prefix match

read file “/a/b/b2”
match cube1
jump to cube1 top directory

Tuesday, December 1, 15

Ext3/4 Transaction

Journal

file1

Memory

dirty
data

file2

dirty
data

file3

dirty
data

Disk
commit tx

fsync(file1)

Tuesday, December 1, 15

IceFS Transaction Splitting

Journal

file1

Memory

dirty
data

file2

dirty
data

file3

dirty
data

Disk
commit

tx

fsync(file1)

commit
tx

commit
tx

fsync(file2) fsync(file3)

Tuesday, December 1, 15

Benefits of Disentanglement

Localized reactions to failures
➡ per-cube read-only and crash
➡ encourage more runtime checking

Localized recovery
➡ only check faulty cubes
➡ offline and online

Specialized journaling
➡ concurrent and independent transactions
➡ diverse journal modes (e.g., no journal, no fsync)

Tuesday, December 1, 15

Introduction
Disentanglement in IceFS
➡ File system Disentanglement
➡ The Ice File System
➡ Evaluation

Key-Value Separation in WiscKey
➡ Key-value Separation Idea
➡ Challenges and Optimization
➡ Evaluation

Conclusion

Outline

Tuesday, December 1, 15

Evaluation

Does IceFS isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) in IceFS

Tuesday, December 1, 15

Evaluation

Does IceFS isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) in IceFS

Does IceFS have faster recovery ?

Tuesday, December 1, 15

Recovery In Ext3

Ext3:
20 directories

0

200

400

600

800

1000

Fs
ck

 T
im

e
(s

)

File-system Capacity
200GB 400GB 600GB 800GB

231

476

723

1007Ext3

Tuesday, December 1, 15

Fast Recovery In IceFS

Ext3:
20 directories

IceFS:
20 cubes

0

200

400

600

800

1000

Fs
ck

 T
im

e
(s

)

File-system Capacity
200GB 400GB 600GB 800GB

231

476

723

1007

35 64 91 122

Ext3 IceFS

Partial recovery for a cube (up to 8x)

Tuesday, December 1, 15

Evaluation

Does IceFS isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) for IceFS

Does IceFS have faster recovery ?
➡ independent recovery for a cube

Tuesday, December 1, 15

Evaluation

Does IceFS isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) for IceFS

Does IceFS have faster recovery ?
➡ independent recovery for a cube

Does IceFS have better performance ?

Tuesday, December 1, 15

Workloads

SQLite
➡ a database application
➡ sequentially write large key/value pairs
➡ asynchronous

Varmail
➡ an email server workload
➡ randomly write small blocks
➡ fsync after each write

Tuesday, December 1, 15

Ext3 Journaling

0

30

60

90

120

150

180

Th
ro

ug
hp

ut
 (M

B/
s)

146.7

76.1

120.6

20
1.9 9.8

SQLite Varmail

Alone
Ext3

Ext3 runs with 2 directories

Tuesday, December 1, 15

Ext3 Journaling

0

30

60

90

120

150

180

Th
ro

ug
hp

ut
 (M

B/
s)

146.7

76.1

120.6

20
1.9 9.8

SQLite Varmail

Alone
Ext3

Together
Ext3

Shared transactions hurt performance (over 10x)

Ext3 runs with 2 directories

Tuesday, December 1, 15

Isolated Journaling In IceFS

0

30

60

90

120

150

180

Th
ro

ug
hp

ut
 (M

B/
s)

146.7

76.1

120.6

20
1.9 9.8

SQLite Varmail

Alone
in Ext3

Together
in Ext3

Together
in IceFS

Ext3 runs with 2
directories

IceFS runs with 2
cubes

Parallel transactions in IceFS provide isolated
performance (over 5x)

Tuesday, December 1, 15

Specialized Journaling In IceFS

or
de

re
d

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B/
s)

120.6

220.3

125.4

9.8 5.6

103.4

SQLite Varmail

or
de

re
d

Both cubes use ordered mode

Tuesday, December 1, 15

Specialized Journaling In IceFS

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B/
s)

120.6

220.3

125.4

9.8 5.6

103.4

SQLite Varmail

no
 jo

ur
na

l

or
de

re
d

or
de

re
d

or
de

re
d

SQLite runs with no journal
Varmail runs with ordered

Tuesday, December 1, 15

Specialized Journaling In IceFS

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B/
s)

120.6

220.3

125.4

9.8 5.6

103.4

SQLite Varmail

no
 jo

ur
na

l

or
de

re
d

or
de

re
d

or
de

re
d

or
de

re
d

no
 jo

ur
na

l

SQLite runs
with ordered

Varmail runs
with no journal

Specialized journaling in IceFS provide flexibility
between consistency and performance (over 50x)

Tuesday, December 1, 15

Evaluation

Isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) for IceFS

Faster recovery ?
➡ independent recovery for a cube

Better journaling performance ?
➡ isolated journaling performance
➡ flexibility between consistency and performance

Tuesday, December 1, 15

Evaluation

Isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) for IceFS

Faster recovery ?
➡ independent recovery for a cube

Better journaling performance ?
➡ isolated journaling performance
➡ flexibility between consistency and performance

Useful for applications ?

Tuesday, December 1, 15

Server Virtualization

Shared file system

Disk virtual disk 2 virtual disk 3virtual disk 1

vm1 vm2 vm3

Failures and recovery of the shared file system
impact all virtual machines

Tuesday, December 1, 15

Virtual Machines

0 50 100 150 200 250 300 350 400 450 500 550 600 650 7000

20

40

60

80

100

Time (Second)

Th
ro

ug
hp

ut
 (I

O
PS

)

fsck: 496s + bootup: 68s

VM1 VM2 VM3

Inject metadata corruption bootup three vms

Tuesday, December 1, 15

Server Virtualization with IceFS

Shared file system with cubes

Disk virtual disk 2 virtual disk 3virtual disk 1

vm1 vm2 vm3

cube1 cube2 cube3

Tuesday, December 1, 15

Server Virtualization with IceFS

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100
Th

ro
ug

hp
ut

 (I
O

PS
)
IceFS-Offline

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

Time (Second)

IceFS-Online

fsck: 35s
+

bootup: 67s

fsck: 74s
+

bootup: 39s

VM1 VM2 VM3

recover
a cube
offline

Inject metadata corruptionbootup three vms

Tuesday, December 1, 15

Server Virtualization with IceFS

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100
Th

ro
ug

hp
ut

 (I
O

PS
)
IceFS-Offline

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

Time (Second)

IceFS-Online

fsck: 35s
+

bootup: 67s

fsck: 74s
+

bootup: 39s

VM1 VM2 VM3

recover
a cube
offline

recover
a cube
online

Tuesday, December 1, 15

Evaluation

Isolate failures ?
➡ inject around 200 faults
➡ per-cube failure (read-only or crash) for IceFS

Faster recovery ?
➡ independent recovery for a cube

Better journaling performance ?
➡ isolated journaling performance for cubes
➡ flexibility between consistency and performance

Useful for applications ?
➡ significantly reduce system downtime

Tuesday, December 1, 15

Summary of IceFS

Local file systems lack physical isolation
➡ physical entanglement
➡ reliability and performance problems

IceFS provides isolation with data containers

Computing is becoming virtualized, shared,
and multi-tenant

➡ isolation is the key

Systems need to rethink isolation
➡ avoid entanglement
➡ provide useful abstractions for applications

Tuesday, December 1, 15

Introduction
Disentanglement in IceFS
➡ File system Disentanglement
➡ The Ice File System
➡ Evaluation

Key-Value Separation in WiscKey
➡ Key-value Separation Idea
➡ Challenges and Optimization
➡ Evaluation

Conclusion

Outline

Tuesday, December 1, 15

Key-Value Stores

Key-value stores are important
➡ web indexing, e-commerce, social networks
➡ local and distributed key-value stores
➡ hash table, b-trees
➡ log-structured merge trees (LSM-trees)

LSM-tree based key-value stores are popular
➡ optimize for write intensive workloads
➡ advanced features: range query, snapshot
➡ widely deployed
➡ BigTable and LevelDB at Google
➡ HBase, Cassandra and RocksDB at FaceBook

Tuesday, December 1, 15

LSM-trees Background

Log
L0 (8MB)

L1 (10MB)

L2 (100MB)

L6 (ITB)

memory 1

KVmemTmemT
23

4

5

disk

Batch and write sequentially
Sort data for quick lookups

LevelDB

Tuesday, December 1, 15

Problems:

large write amplification

large read amplification

Random load:
a 100GB database

Random lookup:
100,000 lookups

I/O Amplification in LSM-trees

1

10

100

1000
Am

pl
ifi

ca
tio

n
R

at
io

14

327

100 GB

Write Read

Tuesday, December 1, 15

Why LSM-trees ?

Good for hard drives
➡ high write throughput
➡ sequential vs random: can be up to 1000

Not optimal for SSDs
➡ large write/read amplification
➡ waste device resource
➡ decrease device’s lifetime

➡ unique characteristics of SSDs
➡ fast random reads
➡ internal parallelism

Tuesday, December 1, 15

Our Solution: WiscKey

An SSD-conscious LSM-tree store
➡ main idea: separate keys and values
➡ harness SSD’s internal parallelism for range queries
➡ online and light-weight garbage collection
➡ minimize I/O amplification and crash consistent

Performance of WiscKey
➡ 2.5x to 111x for loading, 1.6x to 14x for lookups
➡ both micro and macro benchmarks

LSM-tree

key value

Value Log

Tuesday, December 1, 15

Key-Value Separation

key

LSM-tree

value

Value Log

k, addr value

SSD device

Main idea: only keys are required to be
sorted, values can be managed separately

Tuesday, December 1, 15

Introduction
Disentanglement in IceFS
➡ File system Disentanglement
➡ The Ice File System
➡ Evaluation

Key-Value Separation in WiscKey
➡ Key-value Separation Idea
➡ Challenges and Optimization
➡ Evaluation

Conclusion

Outline

Tuesday, December 1, 15

Parallel Range Query

1KB 4KB 16KB 64KB 256KB
0

100

200

300

400

500

600

Request size: 1KB to 256KB

Th
ro

ug
hp

ut
 (M

B/
s)

Sequential Rand-1thread Rand-32threads

SSD: Samsung 840
EVO 500GB

Reads on a 100GB
file on ext4

SSD read performance
➡ sequential, random, parallel

Tuesday, December 1, 15

Parallel Range Query

Challenge
➡ sequential reads in LevelDB
➡ read keys and values separately in WiscKey

Parallel range query
➡ leverage parallel random reads of SSDs
➡ prefetch key-value pairs in advance
➡ range query interface: seek(), next(), prev()
➡ detect a sequential pattern
➡ prefetch concurrently in background

Tuesday, December 1, 15

Garbage Collection

LSM-tree Value Log

valuek, addr value value

SSD device

ksize, vsize, key, value

tail head

Online and light-weight
➡ append (ksize, vsize, key, value) in value log
➡ tail and head pointers for the valid range
➡ tail and head are stored in LSM-tree

Tuesday, December 1, 15

Garbage Collection

LSM-tree Value Log

k, addr

tail head

memory

disk

addr match ?
write back

1. read from the tail
2. check the LSM-tree

3. write back valid kv pairs
4. free space and update pointers

Tuesday, December 1, 15

Optimizing LSM-tree Log

LSM-tree Value Log

k, addr ksize, vsize,
key, value

tail head

log ksize, vsize,
key, value

LSM-tree log
➡ used for recovery in case of a crash
➡ performance overhead for small kv pairs

Remove LSM-tree log in WiscKey
➡ store head in LSM-tree periodically
➡ scan the value log from the head to recover

Tuesday, December 1, 15

WiscKey Implementation

Based on LevelDB
➡ a separate vLog file for values
➡ modify I/O paths to separate keys and values
➡ straightforward to implement

Range query
➡ a background thread pool
➡ detect sequential pattern with the Iterator interface

File-system support
➡ fadvise to predeclare access patterns
➡ hole-punching to free space

Tuesday, December 1, 15

Introduction
Disentanglement in IceFS
➡ File system Disentanglement
➡ The Ice File System
➡ Evaluation

Key-Value Separation in WiscKey
➡ Key-value Separation Idea
➡ Challenges and Optimization
➡ Evaluation

Conclusion

Outline

Tuesday, December 1, 15

Experiment Setup

Testing machine
➡ 16 cores (3.3 GHz), 64 GB memory
➡ Samsung 840 EVO SSD (500 GB)
➡ maximal sequential read: 500 MB/s
➡ maximal sequential write: 400 MB/s

Workloads
➡ micro benchmarks (db_bench)
➡ YCSB benchmark

Tuesday, December 1, 15

Evaluation

How does key-value separation impact the
performance of WiscKey ?

Tuesday, December 1, 15

Sequential Load

WiscKey is over 3x faster due to its write buffer
and removing the LSM-tree log

64B 256B 1KB 4KB 16KB 64KB 256KB
0

50
100
150
200
250
300
350
400
450
500

Key: 16B, Value: 64B to 256KB

Th
ro

ug
hp

ut
 (M

B/
s)

LevelDB WiscKey load 100 GB database

log writing in
LevelDB has
high overhead

Tuesday, December 1, 15

Random Load

only 2 MB/s to 4.1 MB/s

Small write amplification in WiscKey due to key-
value separation (up to 111x in throughput)

64B 256B 1KB 4KB 16KB 64KB 256KB
0

50
100
150
200
250
300
350
400
450
500

Key: 16B, Value: 64B to 256KB

Th
ro

ug
hp

ut
 (M

B/
s)

LevelDB WiscKey load 100 GB database

large write amplification
(12 to 16) in LevelDB

Tuesday, December 1, 15

Random Lookup

Smaller LSM-tree in WiscKey leads to better
lookup performance (1.6x - 14x)

64B 256B 1KB 4KB 16KB 64KB 256KB
0

50

100

150

200

250

300

Key: 16B, Value: 64B to 256KB

Th
ro

ug
hp

ut
 (M

B/
s)

LevelDB WiscKey

100,000 lookups on a
randomly loaded 100
GB database large read amplification

in LevelDB

Tuesday, December 1, 15

Evaluation

How does key-value separation impact the
performance of WiscKey ?

➡ low write and read amplification
➡ load (2.5x to 111x), lookup (1.6x to 14x)

Is the parallel range query fast enough ?

Tuesday, December 1, 15

Range Query

Better for large kv pairs, but worse for small kv
pairs on an unsorted database

64B 256B 1KB 4KB 16KB 64KB 256KB
0

100

200

300

400

500

600

Key: 16B, Value: 64B to 256KB

Th
ro

ug
hp

ut
 (M

B/
s)

LevelDB-Rand
WiscKey-Rand

read 4GB from a
randomly loaded 100
GB database

WiscKey is limited by
SSD’s parallel random
read performance

For large kv pairs,
WiscKey can
perform better

Tuesday, December 1, 15

Range Query

Sorted databases help WiscKey’s range query

64B 256B 1KB 4KB 16KB 64KB 256KB
0

100

200

300

400

500

600

Key: 16B, Value: 64B to 256KB

Th
ro

ug
hp

ut
 (M

B/
s)

LevelDB-Rand
WiscKey-Rand

LevelDB-Seq
WiscKey-Seq

read 4GB from a
sequentially loaded
100 GB database

Both WiscKey
and LevelDB
read sequentially

Tuesday, December 1, 15

Evaluation

How does key-value separation impact the
performance of WiscKey ?

➡ low write and read amplification
➡ load (2.5x to 111x), lookup (1.6x to 14x)

Is the parallel range query fast enough ?
➡ limited by random read performance
➡ sorting helps

How about real workloads ? What is the
effect of garbage collection ?

Tuesday, December 1, 15

YCSB Benchmarks

A: 50% R, 50% U; B: 95% R, 5% U; C: 100% R;
D: 95% R, 5% I; E: 95% Scan, 5% I; F: 50% R, 50% RMW

48x-116x

6x-16x

2x-20x

2.6x-25x

1.5x-4x

1x-7x

6x-8x

0.1

1

10

100

1000

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Key size: 16B, Value size: 1KB
LOAD A B C D E F

LevelDB RocksDB WiscKey-GC WiscKey

many small
range queries

Tuesday, December 1, 15

Evaluation

How does key-value separation impact the
performance of WiscKey ?

➡ low write and read amplification
➡ load (2.5x to 111x), lookup (1.6x to 14x)

Is the parallel range query fast enough ?
➡ limited by random read performance
➡ sorting helps

How about real workloads ? What is the
effect of garbage collection ?

➡ faster on all workloads
➡ performance similar to micro benchmarks

Tuesday, December 1, 15

Summary of WiscKey

LSM-trees are not optimized for SSD devices

WiscKey separates keys from values with an
SSD-conscious design

Many novel storage systems have been built
for hard drives

Transition to new storage hardware
➡ leverage existing software
➡ explore new ways to utilize the new hardware
➡ get the best of two worlds

Tuesday, December 1, 15

Introduction
Disentanglement in IceFS
➡ File system Disentanglement
➡ The Ice File System
➡ Evaluation

Key-Value Separation in WiscKey
➡ Key-value Separation Idea
➡ Challenges and Optimization
➡ Evaluation

Conclusion

Outline

Tuesday, December 1, 15

Lessons Learned

A large-scale study is feasible and valuable

Research should match reality

History repeats itself

Don’t settle for existing abstraction

Isolation should be a fundamental design goal

Don’t run old software on new hardware

Fundamental details matter

Work on systems extremely slow or unreliable
Tuesday, December 1, 15

Conclusion

Local storage systems are important

Physical separation is useful
➡ improve both reliability and performance over 10x
➡ better reliability: isolated failures, localized recovery
➡ better performance: specialized journaling, minimize
I/O amplification

Computing and storage are evolving
➡ virtualized, shared and fast
➡ physical separation is the key
➡ IceFS and WiscKey are just a beginning

Tuesday, December 1, 15

