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Abstract
File systems do not properly isolate faults that occur
within them. As a result, a single fault may affect multiple
clients adversely, making the entire file system unavail-
able. We introduce a new file system abstraction, called
file pod, to allow applications to manage failure and recov-
ery polices explicitly for a group of files. Based on this
abstraction, we propose the isolation file system, which
provides fine-grained fault isolation and quick recovery.

1 Introduction
High availability is critical for file systems. For desktops
and laptops, local file systems directly affect data access
for the user; for mobile devices [2, 9], user data is also
stored in a local file system; for file and storage servers,
a shared cluster file system may be used to store virtual
machine disks from multiple clients [13, 3].

File systems must handle a wide range of faults [15], in-
cluding resource allocation failures, metadata corruption,
failed I/O operations, and incorrect system state. These
faults are caused by both hardware defects [4] and soft-
ware bugs [8].

Unfortunately, the effect of a single fault can have a
large-scale impact on the operation of the entire file sys-
tem. Suchglobal failures are prevalent in file systems.
For example, when Ext3 detects a corruption in the data
block bitmap of a block group, it will re-mount the whole
file system as read-only or callpanic() to crash the op-
erating system. There are also numerous assertions (e.g.,
Assert, BUG ON) in file system code, which will crash
the file system when only a small piece of system state is
not as expected.

Global failures severely harm the availability of file sys-
tems in various scenarios. For example, in server virtual-
ization environments, multiple virtual machines share the
same underlying host file system; a fault that arises within
a single VM image file may lead to a crash or read-only
remount, and thus affect all running VMs. Isolation, a key
property of virtualized systems, is not preserved.

To prevent global failures, we propose isolation file sys-
tems, which provide fine-grained fault isolation and quick
recovery. Isolation file systems have the following major
characteristics. First, they arethoroughly partitioned: file
system resources are broken down into many independent
units. Second, they areindependent: any individual fault
within defective units will not affect other healthy units.

Finally, they areresilient: faulty units can be identified
and repaired quickly.

In this paper, we begin by analyzing the failure causes
and global failure policies of existing file systems. Moti-
vated by this data, we propose a new file system abstrac-
tion known as afile podwhich allows applications to man-
age failure policies and recovery polices for their data. We
then briefly sketch an implementation of isolation file sys-
tem based on the existing Ext3 file system.

2 Failure Policies in File Systems
Before describing the isolation approach, we first analyze
existing file systems and their reaction to various faults.
This section presents our initial results.

2.1 Global Fault-Handling Policies
Global fault-handling policies are used to react to serious
errors within a file system. Such serious errors include
metadata corruption, I/O failures, and incorrect system
states caused by software bugs. We focus on three ma-
jor file systems in this section: Ext3 (Linux 2.6.32), Ext4
(Linux 2.6.32) and Btrfs (Linux 3.8).

From our analysis of the code, we have found that there
are two types of global reactions in modern file systems:
remount read-onlyand crash. For example, when Ext3
detects a block bitmap is corrupted, it may remount the
whole file system as read-only to prevent further corrup-
tion. In contrast, the Ext3 journaling layer, JBD, may trig-
ger aBUG ON statement to crash when it finds the journal
in an unexpected state.

We analyze the file system code to identify the error
handling functions that cause these reactions; for exam-
ple, Btrfs callsbtrfs handle error() to force the
file system read-only. Then, we count how many times
these basic error functions are called in different places.
Note that we also count wrapper functions which directly
call these basic error handling functions.

Figure 1 shows the total number and breakdown of
global failure types in Ext3, Ext4, and Btrfs. We find that
global failure reactions are common in both young and
mature file systems. Over two thirds of these global be-
haviors will directly crash the whole file system, greatly
reducing availability.

2.2 Global Failure Causes
To understand if these global failures are warranted, we
identify the root cause of each global failure statement in

1



0

200

400

600

800

1000
N

um
be

r 
of

 In
st

an
ce

s

Ext3 Ext4 Btrfs

193

409

829

ReadOnly Crash

Figure 1:Failure Types. This figure shows the failure types
for each file system. The total number of global failure instances
is on top of each bar.

each file system. We have found that there are three major
root causes for each failure case: metadata corruption, I/O
failure, and software bugs.

Table 1 shows our analysis for the Ext3 file system.
Specifically, the table shows the interplay between each
major data structure of the file system (e.g., bitmaps, in-
odes, superblock, directory entries) and the root cause of
a global failure involving that data structure.

Ext3 explicitly validates the integrity of metadata in
many places, especially at the I/O boundary when read-
ing from disk. For example, Ext3 validates a directory en-
try before traversing that directory and Ext3 checks that
the inode bitmap is in a correct state before allocating a
new inode. Unfortunately, as indicated by the Metadata
Corruption column, if Ext3 detects a corruption in any of
these structures, it causes a global failure. The I/O Failure
column similarly shows that Ext3 causes global failures
when an individual I/O request fails. Finally, the Software
Bugs column shows that there are a significant number of
internal assertions (such asBUG ON), which are utilized to
validate file system state at runtime, and these also cause
a global failure when invoked. We observe that all of the
global failures in Ext3 are due to problems with metadata
and other file system internal state, and not user data.

For each data structure, we also check whether it is
shared across different files. As shown in the last col-
umn of Table 1, most metadata structures are organized in
a shared manner and thus can cause global failures. How-
ever, even for local structures, such as indirect blocks, a
global failure can still occur.

2.3 Discussion
A file is the basic file system abstraction used to store the
user’s data in a logically isolated unit. Users can read
from and write to a file. Another basic abstraction is a
directory, which maps a file name to the file itself. Files
and directories are usually organized as a directory tree.

Data Structure MC IOF SB Shared
b-bitmap 2 2 Yes
i-bitmap 1 1 Yes

inode 1 2 2 Yes
super 1 Yes

dir-entry 4 4 3 Yes
gdt 3 2 Yes

indir-blk 1 1 No
xattr 5 2 1 No

block 5 Yes/No
journal 3 27 Yes

journal head 31 Yes
buf head 16 Yes

handle 22 9 Yes
transaction 28 Yes

revoke 2 Yes
other 1 11 Yes/No
Total 19 37 137 = 193

Table 1:Global Failure Causes of Ext3.This table shows
the failure causes for Ext3, in terms of data structures, failure
causes and their related numbers.MC : Metadata Corruption;
IOF : I/O Failures; SB: Software Bugs;Share: whether this
structure is shared by multiple files or directories.

A namespace holds a logical group of files or direc-
tories. To protect files in a shared environment, differ-
ent applications are isolated within separated namespaces.
Typical examples includechroot, BSD jail, Solaris
Zones, and virtual machines.

However, these abstractions do not provide any fault
isolation within a file system. Files and directories
only represent and isolate data logically for applications.
Within a file system, different files and directories share
metadata and system state; when faults are related to these
shared metadata, global failure policies are triggered.

One might think using multiple physical partitions to
separate file systems would provide equivalent fault toler-
ance and protection to a file pod. For example, corrupted
data are isolated to a single partition. However, a single
panic() on one file system may crash the whole oper-
ating system, affecting all partitions. Furthermore, static
physical partitions are not elastic; thus the storage space
is not efficiently utilized.

Therefore, file system abstractions lack a fine-grained
fault isolation mechanism. Current file systems implicitly
use a single fault domain; a fault in one file may cause a
global reaction, thus affecting all clients of the file system.

3 New Abstraction: File Pod
To address the problem of inadequate fault isolation in file
systems, we propose a new abstraction, called afile pod,
for fine-grained fault isolation in file systems.

A file pod is an abstract file system partition that con-
tains a group of files and their related metadata. Each file
pod is isolated as an independent fault domain within the
file system, with its own failure policy. Any failure related
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to a file pod only affects itself, not the whole file system.
For example, if metadata corruption is detected within a
file pod and the failure policy is to remount as read-only,
then an isolation file system marks only that pod as read-
only, without affecting other consistent file pods.

File pods allow applications to control the failure policy
of their own files and related metadata, instead of letting
the file system manage the failures globally. Furthermore,
this new abstraction supports flexible bindings between
namespaces and fault domains; thus it can be used in a
wide range of environments, such as server virtualization
(a primary target of ours), security isolation, and personal
computer scenarios.

3.1 Operations on File Pods
The file pod abstraction supports following operations.

Create a file pod: An application can create a file pod
when needed. A file pod has a unique ID and attributes.
A default global file pod is assigned when creating a new
file system usingmkfs.

File pod’s attributes: Each file pod has attributes in
addition to its ID. An application can get and set a file
pod’s attributes. Attributes can include: failure policies
(e.g., read-only, pure crash, on-going accesses are allowed
but new accesses are rejected), file characteristics hints
(e.g., large virtual disk files, small configuration files), and
recovery policies (e.g., onlinefsck, offlinefsck).

Set a file’s pod: An application can assign a file pod
for a file or a directory. If the file or directory has a file
pod previously, then its file pod will be changed to this
new file pod. For a directory, the file pod is inherited by
default for all files and directories created later under this
directory.

Remove a file’s pod: An application can remove a file
pod for a file or a directory. If the file or directory only has
one file pod previously, then its file pod will be changed
to the global file pod.

Share a file between pods: An application can share a
file or a directory between several different file pods. A
special API is provided for applications to add a file to
other file pods in addition to the file’s own file pod. If
faults are related to a shared file or directory, then differ-
ent failure policies will be triggered for different file pods
containing the faulty file or directory. Thus, applications
should be aware of all pods for their files and correspond-
ing failure policies.

3.2 Typical Usage Cases
We envision a number of typical usage scenarios for pods.

Server virtualization environment. Each virtual ma-
chine has its own file pod with its virtual disk files and
configuration files. The failure policy can be set specif-
ically per pod, and thus true isolation is enforced across
VM domains. Once failures happen,fsck can be run
immediately to recovery corrupted files.

Running untrusted applications. Each untrusted ap-
plication runs within a separate file pod with its files. The
failure policy of this file pod can be set as killing all the
related processes and removing the file pod namespace.

Intermediate data. Big data applications may gener-
ate a large amount of intermediate data. A useful fail-
ure policy is marking the file pod as erroneous to prevent
new processes from accessing it, but to allow running pro-
cesses to finish. After that, we can runfsck or applica-
tions can check their data integrity directly.

4 Fault Isolation
This section describes how an isolation file system could
provide fine-grained fault isolation for file systems. The
goal of fault isolation is to allow each file pod to handle
its own failures. Our solution consists of two components:
metadata isolation and local failure polices.

4.1 Metadata Isolation
Modern file systems manage metadata in a shared man-
ner. For example, an inode block may contain multiple
inodes. A single failure that occurs with an inode block
may impact multiple files. We argue that shared metadata
organization is harmful for fine-grained fault isolation.

Our idea is to isolate metadata for each file pod. As we
described before, a file pod contains all its files and related
metadata. Because we organize each file pod’s metadata
independently without any sharing, then any metadata re-
lated failure can be narrowed down to a specific file pod.

4.2 Localize Failures
As we showed earlier, current file systems handle serious
failures by remounting as read-only or crashing the whole
system. These global actions need to be changed to local-
ize failures within erroneous file pods. Our goal is not to
change the failure polices in file systems, but adapt them
to local file pods.

How can we handle a read-only remount locally? If a
file pod’s failure policy is remounting as read-only, then
we simply mark the file pod as read-only instead of mark-
ing the whole file system as read-only. We need to prevent
further updates for both file system structures and the on-
disk journal for a faulty pod. In this manner, only files
within this file pod will be affected, while other consistent
files are still available for normal accesses.

How can we handle a pure crash locally? If a file pod’s
failure policy is to crash, then we need to provide the same
states and behaviors for a file pod as for whole file system
restarts. When such a pure crash is triggered, an isolation
file system immediately stops any file access for this file
pod. It may also need to return error codes to all the pro-
cesses which have opened files of this file pod. Further-
more, an isolation file system needs to clean the file pod’s
related system states and free resources (such as buffers in
the page cache and metadata in the journal). Note that an
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isolation file system does not preserve or unwind file sys-
tem states for transparent recovery, but instead provides
the same semantics of system crashes for a file pod locally.
To warrant a continuous execution while a pure crash is
triggered, we need to isolate or even re-design a file pod’s
in-memory and on-disk states very carefully, preventing
incorrect system states to propagate to other pods. We are
in progress of solving this problem.

An isolation file system may also support other useful
failure policies. For example, we may allow processes
with opened files of a target file pod to finish their data
accesses even when failures are detected. Until then, we
mark the file pod as read-only or pure crash the file pod.
Otherwise, immediately remounting a faulty file pod as
read-only or crashing it may cause data loss for applica-
tions.

5 Quick Recovery
Recovering a whole file system is time consuming, es-
pecially runningfsck. With the increased capacity of
disks, users’ file systems also easily scale to multiple TBs.
Even whenfsck can run at peak disk speed, it still takes
a long time to finish checking. For example, it takes nearly
seven hours to read a 2 TB disk sequentially.

Since we isolate faults for each file pod, this provides
great opportunities to recover corrupted file pods effi-
ciently. Instead of checking the whole disk, we can nar-
row down our target to certain file pods which triggered
their failure policies.

When should we run online recovery? We utilize a
file system’s own internal detection mechanism to iden-
tify various failures. For example, when an isolation file
system finds a file pod’s block bitmap is corrupted, it will
first trigger the file pod’s failure policy, such as remount-
ing as read-only. Then, custom recovery policies are ex-
ecuted for this file pod. An isolation file system can run
checking immediately after such failures are detected. It
may also run checking when the file pod is idle without
any failure detected. Or it can periodically run checking
for some important file pods, such as file pods storing sys-
tem configuration files.

How can we improve checking efficiency? Since an
isolation file system can only check a small part of the
whole file system, it can provide quick checking both
online and offline. Metadata of isolation file systems is
isolated in such a manner that checking can be done in-
dependently for each file pod, avoiding expensive global
cross checking. Furthermore, an isolation file system uti-
lizes the file system’s fault detection mechanism to pro-
vide hints for integrity checking, such as a corrupted block
bitmap. This can even narrow down the checking to cer-
tain data structures. For online checking, when failures
happen, the metadata of the target file pod may be already
in memory, thus avoiding slow disk reads.

6 Implementation
We sketch out our initial ideas for a standard journaling
file system, Ext3. Major changes are described in the fol-
lowing categories.

File system layout.Each block group only belongs to
a single file pod, while a file pod may have multiple block
groups. With this new layout, any metadata corruption
can be narrowed down to a single file pod. Block groups
in Ext style file systems provide a good model for data
locality. Our file pod is built on top of block groups to
maintain the performance benefits and provide extra fault
isolation. For other file systems, such as log-structured
file system, we will need a new way to map a file pod to
underlying disk structures.

Data structures. The file pod structure for a block
group is stored in the group descriptor of that block group
in Ext3. We do not maintain extra mapping structures for
file pods. When mounting an Ext3 file system, all group
descriptors will be loaded into memory by default. Since
all group descriptors are replicated in multiple locations,
we can retrieve other replicas if needed. To get a file pod
information for a file, we can easily map the file’s inode
to a block group, and then retrieve its file pod information
from the corresponding group descriptor.

Algorithms. Data, inode, and directory block alloca-
tion / de-allocation algorithms need to be changed to be
file pod based. Isolation file systems still preserve the lo-
cality property of default allocation algorithms of Ext3.
But when the allocation moves across block group bound-
aries, Isolation file systems make sure that the target block
group belongs to the same pod or it is an empty block
group. Readers may be concerned about the internal frag-
mentation within a file pod. A possible solution is to pro-
vide a de-fragmentation tool for pods. Similar solution
exists in Ext4 (online de-fragmentation).

Journaling. Ext3 consolidates multiple atomic updates
from different files into a single transaction. To isolate
updates from different file pods, we change the journaling
mechanisms for both better reliability and performance.
To provide reliability isolation, each transaction contains
updates only from a single file pod. When an isolation
file system updates its metadata, it will pass the file pod
information to its journaling layer. The journaling layer
maintains a separate transaction for each active file pod.
Thus, once any failure happens in the journaling layer,
we can relate the failure to a single transaction of a spe-
cific file pod. During the commit phase, three ordering
points are enforced for data blocks, metadata blocks and
the commit block respectively. To improve journaling per-
formance, an isolation file system commits multiple trans-
actions from different file pods in parallel by using multi-
ple committing threads. In this manner, we hope to get
better I/O scheduling for submitted blocks and overlap
waiting time from different transactions.
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Failure Policy Support. For read-only, we can mark
all the block groups in the file pod as read-only and stop
journaling updates for the file pod. For pure crash, we
need to clean the file pod’s system states, by doing a
lightweight restart. This includes returning an error code
to processes which are opening files in this file pod, free-
ing all cached memory objects, and marking errors on disk
for later recovery.

Recovery Policy Support. We can utilize existing
fsck code to conduct checking for a file pod. We need to
instrument all the global failure polices in Ext3 to use our
failure and recovery framework.

7 Related Work
Security / Namespace Isolation. Previous file system
isolation mechanisms focus purely on the namespace.
chroot [1] confines a process to a portion of a file sys-
tem. The namespace is limited to a single directory sub-
tree. BSDjail [7] is based onchroot mechanism.
Each jail includes processes, a file system directory and
network resources. Solaris zones [11] are based onjail.
Each zone is confined to a disjoint portion of a file sys-
tem. Hypervisors not only isolate each virtual machine’s
namespace, they also provide resource and performance
isolation. Their fault isolation mechanisms still focus on
process and memory faults. Both Solitude [6] and De-
nali [14] target on security isolation for untrusted appli-
cations. For all these solutions, they only provide names-
pace isolation for file systems. The underlying file-system
failures are still shared across namespaces, jails, zones,
and virtual machines.

File System Checkers.Windows ReFS [12] can de-
tect and recover data corruption at runtime. Its recovery
mechanism depends on metadata checksum and replicas
on multiple disks. Specifically, it can only auto-recover
corrupted files if the file system is run on mirrored storage
devices. Furthermore, it cannot handle memory corrup-
tion and software bugs. Wafliron [10] is an online file
system checker for WAFL file system. It allows data ac-
cesses from volumes not being checked. However, no de-
tails about how it conducts online checking are available.
Chunkfs [5] partitions a file system into fixed size, inde-
pendent chunks, and hopefully can check each chunk in-
dependently. However, cross-chunk references still exist;
for example, a large file may span on multiple chunks.
It is also hard to know when to trigger online checking.
Furthermore, its design is only based on Ext2, without
modern journaling features.

8 Conclusion
Global failures are prevalent in modern file systems,
which severely harm the availability of file systems in var-
ious scenarios. We analyzed global failure policies and
failure causes of existing file systems. A new file system

abstraction was proposed to allow applications to manage
failure policies and recovery polices explicitly. Finally,
we briefly discussed the design and implementation of an
isolation file system. What we present here is just a first
step towards a resilient file system.
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